Halo Investor dan Trader,
Halaman ini berisi Raw Information dari Technical Analysis ala Muhamad Makky Dandytra, CFTe untuk MMD Charts.
## [1] "Based on Trading Date 09 November 2022"
Untuk informasi lengkap, silahkan kunjungi website https://www.mmdcharts.com.
Semoga berguna dan bermanfaat.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik Super Quadrant Stocks ini menampilkan Trend dan Sinyal dibagi per Sektor.
Grafik Super Quadrant Stocks ini menampilkan Trend dan sinyal Buy dibagi per Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Outperform Trend dan Uptrend - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Outperform Trend dan Uptrend dengan sinyal Buy - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Champion Quadrant dan Uptrend - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Champion Quadrant dan Uptrend dengan sinyal Buy - dibagi berdasarkan Sektor.
# TPT.IDX
#
# TPT %>%
# filter(KairiMABB20 > 0, KairiMABB60 > 0, KairiMABB200 > 0) %>%
# arrange(DateTime, Ticker) %>%
# select(Ticker, Close, Ch1D, Ch5D, Ch20D, YTDRet) %>%
# ggplot(aes(x = DateTime))+
# geom_bar(aes(y = Ch1D))+
# facet_wrap(~ Ticker, ncol = 5)
Table dan Grafik ini menggolongkan saham pada return 1, 5, 20 hari dan YTD (dari sejak awal tahun 2020).
head(TPT)
## Ticker Close DateTime Trend SO SOSignal Ch1D YestCh Ch5D Ch20D
## 1 BFIN 1115 2022-11-09 Uptrend 55.87 Alert Buy 0.45 -1.77 0.90 4.21
## 2 BTPS 3180 2022-11-09 Uptrend 26.16 Still Sell -0.93 -4.46 -2.45 16.48
## 3 DMMX 1105 2022-11-09 Downtrend 67.25 Sell Now -2.64 1.34 0.00 6.76
## 4 TAPG 695 2022-11-09 Uptrend 62.50 Still Sell 0.00 -1.42 2.21 6.92
## 5 HMSP 930 2022-11-09 Downtrend 19.58 Buy Now 0.00 0.00 -5.10 3.33
## 6 MYOR 2370 2022-11-09 Uptrend 53.68 Alert Buy 0.42 -2.48 1.72 17.33
## Ch60D YTDRet Volume ChTurnover ChTurnover5D AvgCondition RCTrend
## 1 -6.30 -5.11 --- -0.52 -0.87 Low TO O/P Trend
## 2 5.30 -11.17 --- -0.52 -0.80 High TO O/P Trend
## 3 -13.33 -59.38 --- -0.70 -0.76 Low TO U/P Trend
## 4 0.00 13.93 --- -0.44 -0.73 Low TO O/P Trend
## 5 2.20 -3.63 --- -0.02 -0.73 Low TO U/P Trend
## 6 25.07 16.18 Above Previous 1.34 -0.72 Low TO O/P Trend
## RCMomentum RCTrendSignal RCMomentumSignal KairiMABB20 KairiMABB60
## 1 U/P Momentum --- --- 4.71 0.10
## 2 U/P Momentum --- --- 7.06 10.07
## 3 U/P Momentum --- U/P Momentum Signal -7.43 -11.12
## 4 U/P Momentum --- --- 0.53 0.62
## 5 U/P Momentum --- U/P Momentum Signal -4.26 1.31
## 6 U/P Momentum --- --- 0.48 17.72
## KairiMABB200 Prev.KairiMABB200 OP.Trend.Start BB Bandwidth F1D F2D
## 1 -7.11 -7.39 --- 78.99 19.79 0.90 0.66
## 2 1.74 2.92 --- 75.29 31.99 1.82 5.70
## 3 -33.75 -32.08 --- 26.66 27.74 -0.10 0.11
## 4 -0.05 0.29 U/P Trend Start 62.14 12.63 0.26 -1.95
## 5 -3.87 -3.65 --- 28.72 15.51 0.39 1.14
## 6 25.60 25.45 --- 57.13 20.41 -0.70 -1.75
## F1Wk F1Mo MTTrend WkESOValue WkESO PriceVolumeCond
## 1 -9.96 -12.34 Downtrend 72.46 Warning Sell Fake +
## 2 -13.40 -34.94 Uptrend 78.73 Still Sell fake -
## 3 0.56 0.56 Downtrend 30.89 Alert Buy fake -
## 4 5.66 28.70 Uptrend 58.73 Still Buy ---
## 5 2.97 16.70 New Downtrend 41.23 Alert Buy ---
## 6 -1.88 15.69 Uptrend 86.38 Still Sell Real +
## Last1DPVCond Last2DPVCond RC.JKSE MA.RC RC.BB PrevRC.BB Corr20D Corr60D
## 1 fake - fake - 157.71 150.61 79.32 79.48 0.76 0.75
## 2 Real - Real - 449.78 420.13 74.46 81.62 0.63 0.35
## 3 Real + Real + 156.29 168.85 23.88 34.85 -0.05 0.71
## 4 fake - fake - 98.30 97.78 55.69 60.46 0.76 0.62
## 5 --- --- 131.54 137.39 16.82 19.92 0.62 -0.32
## 6 fake - fake - 335.22 333.63 52.87 54.94 0.81 -0.57
## Corr5D KairiMA20 KairiMA60 KairiMA200 MA20Direction MA60Direction
## 1 0.78 5.43 -0.34 -6.20 2.25 -1.25
## 2 0.39 7.48 8.79 3.08 22.50 2.67
## 3 0.45 -6.92 -13.02 -48.42 3.50 -2.83
## 4 0.92 1.51 0.22 1.24 2.25 0.00
## 5 -0.63 -3.41 0.96 -2.58 1.50 0.33
## 6 0.57 1.43 14.85 21.49 17.50 7.92
## MA200Direction LTTrend MoESOValue MoESO MarketCap Turnover
## 1 -1.30 Uptrend 48.05 Alert Buy 17803.33 2.71
## 2 -1.25 New Uptrend 49.95 Buy Now 24252.79 14.16
## 3 -7.03 Downtrend 13.91 Buy Now 8500.00 0.80
## 4 0.57 Uptrend 54.70 Still Buy 13797.52 7.67
## 5 -0.20 Downtrend 33.33 Buy Now 107880.00 5.25
## 6 1.05 Uptrend 71.97 Warning Sell 52990.12 5.01
## AvgMOTurnover TurnoverRatio AvgMOTurnoverRatio IDXSector
## 1 21.24 0.02 NA Keuangan
## 2 20.26 0.06 0.09 Keuangan
## 3 5.09 0.01 0.05 Teknologi
## 4 15.87 0.06 0.12 Barang Konsumen Primer
## 5 36.50 0.00 0.03 Barang Konsumen Primer
## 6 24.45 0.01 0.05 Barang Konsumen Primer
## IDXIndustry Candle MA200
## 1 Pembiayaan Konsumen White Candle Below MA200
## 2 Bank Three Outside Down Above MA200
## 3 Jasa & Konsultan TI Harami - Bearish Below MA200
## 4 Perkebunan & Tanaman Pangan Hammer Above MA200
## 5 Rokok Hammer - Inverted Below MA200
## 6 Makanan Olahan Harami - Bullish Above MA200
# value : SO, Ch1D, Ch5D, Ch20D, YTDRet, ChTurnover, KairiMABB20, KairiMABB60, KairiMABB200, BB, Bandwidth, F1D, F2D, F1Wk, F1Mo,KairiMA20, KairiMA60, KairiMA200, MA20Direction, MA60Direction, MA200Direction
# Discrete : Ticker, Trend, SOSignal, Volume, AvgCondition, RCTrend, RCMomentum, RCTrendSignal, RCMomentumSignal, PriceVolumeCond, MA200
TPT.value <- TPT %>%
select(c("SO", "Ch1D", "Ch5D", "Ch20D", "YTDRet", "ChTurnover", "KairiMABB20", "KairiMABB60", "KairiMABB200", "BB", "Bandwidth", "F1D", "F2D", "F1Wk", "F1Mo","KairiMA20", "KairiMA60", "KairiMA200", "MA20Direction", "MA60Direction", "MA200Direction"))
TPT.Discrete <- TPT %>%
select(c("Trend", "SOSignal", "Volume", "AvgCondition", "RCTrend", "RCMomentum", "RCTrendSignal", "RCMomentumSignal", "PriceVolumeCond", "MA200"))
library(DataExplorer)
##
## Attaching package: 'DataExplorer'
## The following object is masked from 'package:expss':
##
## split_columns
plot_intro(TPT)
plot_intro(TPT.Discrete)
plot_intro(TPT.value)
plot_missing(TPT)
plot_missing(TPT.Discrete)
plot_missing(TPT.value)
plot_bar(TPT.Discrete)
plot_histogram(TPT.value)
single.stock <- "JSMR"
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Close)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Ch1D, .smooth = F)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_seasonal_diagnostics(DateTime, Ch1D, .feature_set = "wday.lbl")
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_stl_diagnostics(DateTime, Close, .feature_set = c("observed", "season", "trend"))
## .date_var is missing. Using: DateTime
## frequency = 5 observations per 1 week
## trend = 65 observations per 3 months
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_stl_diagnostics(DateTime, Ch1D, .feature_set = c("observed", "season", "trend"))
## .date_var is missing. Using: DateTime
## frequency = 5 observations per 1 week
## trend = 65 observations per 3 months
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_acf_diagnostics(DateTime, Ch1D, .lags = 20)
## .date_var is missing. Using: DateTime
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## Please use `gather()` instead.
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM")) %>%
arrange(Ticker, DateTime) %>%
select(Ticker, DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Close, .facet_vars = Ticker)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM")) %>%
arrange(Ticker, DateTime) %>%
select(Ticker, DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
pivot_wider(names_from = Ticker, values_from = c(Close, Ch1D)) %>%
drop_na() %>%
mutate(across(Close_ASII:Ch1D_TLKM, .fns = standardize_vec)) %>%
pivot_longer(Close_ASII:Ch1D_TLKM) %>%
filter(name == c("Close_ASII", "Close_TLKM")) %>%
plot_time_series(DateTime, value, .color_var = name, .smooth = FALSE)
## .date_var is missing. Using: DateTime
## Standardization Parameters
## mean: 6519.125
## standard deviation: 542.299783005895
## Standardization Parameters
## mean: 4367.45
## standard deviation: 194.546237931931
## Standardization Parameters
## mean: 0.0807
## standard deviation: 1.88289590656915
## Standardization Parameters
## mean: 0.0138
## standard deviation: 1.57377744207557
# unique(dandy.rotation$IDXSector)
# head(dandy.rotation)
# selected.date <- print("2022-02-09")
# Date.Signs2 <- "Based on Trading Date 09 Februari 2022"
#
# TPT <- TPT.IDX %>%
# filter(DateTime == selected.date)
#
# dandy.rotation <- TPT %>%
# mutate(RCBB = RC.BB - PrevRC.BB,
# kairiRC = round(((RC.JKSE - MA.RC)/MA.RC*100),2))
#
# dandy.rotation %>%
# filter(Ticker == "ENRG")
# library(gganimate)
#
# # head(airquality)
#
# TPT.IDX %>%
# na.omit() %>%
# filter(DateTime >= max(DateTime) %-time% "2 day") %>%
# arrange(DateTime) %>%
# filter(IDXSector == "Kesehatan") %>%
# ggplot(aes(x = KairiMABB200, y = KairiMABB20, label = Ticker, color = Trend))+
# # geom_text_repel(aes(size = ChTurnover))+
# geom_text_repel(max.overlaps = 20)+
# geom_point(aes(shape = SOSignal))+
# theme_bw() +
# theme(panel.border = element_blank(), panel.grid.major = element_blank(),panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
# # facet_wrap(~ IDXSector, ncol = 2, scales = "free")+
# scale_shape_manual(values=SOSignal.shape,name = "Signal")+
# scale_size(range = c(2, 6), name = "%Ch in Turnover")+
# scale_y_continuous("Momentum Performance")+
# scale_x_continuous("Trend Performance")+
# scale_color_manual(values=Trend.color)+
# geom_vline(xintercept = 0, linetype="dotted")+
# geom_hline(yintercept = 0, linetype="dotted")+
# annotate("text", x = max(dandy.rotation.consumer.interest$KairiMABB200), y = max(dandy.rotation.consumer.interest$KairiMABB20), label = "Champion", hjust = "top")+
# annotate("text", x = min(dandy.rotation.consumer.interest$KairiMABB200), y = min(dandy.rotation.consumer.interest$KairiMABB20), label = "Loser", hjust = "bottom")+
# annotate("text", x = max(dandy.rotation.consumer.interest$KairiMABB200), y = min(dandy.rotation.consumer.interest$KairiMABB20), label = "Recharge", hjust = "top")+
# annotate("text", x = min(dandy.rotation.consumer.interest$KairiMABB200), y = max(dandy.rotation.consumer.interest$KairiMABB20), label = "Quick", hjust = "bottom")+
# # labs(title = {DateTime}, subtitle = Date.Signs2, caption = "IG : @superquadrant")+
# # watermark(show = TRUE, lab = "Super Quadrant Stocks")+
# ggtitle("Now showing {DateTime}")+
# # transition_time(DateTime)
# transition_states(DateTime, transition_length = 2, state_length = 2)
range(TPT.IDX$DateTime)
## [1] "2022-01-14" "2022-11-09"
min_max_norm <- function(x) {
(x - min(x)) / (max(x) - min(x))
}
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM", "JSMR", "BBCA", "GGRM")) %>%
filter(DateTime >= max(TPT.IDX$DateTime) %-time% "20 day") %>%
arrange(DateTime) %>%
select(DateTime, Ticker, Close) %>%
pivot_wider(names_from = Ticker, values_from = Close) %>%
# mutate(across(-DateTime, .fns = standardize_vec)) %>%
mutate(across(-DateTime, .fns = normalize_vec)) %>%
# mutate(across(-DateTime, .fns = min_max_norm)) %>%
pivot_longer(-DateTime) %>%
plot_time_series(.date_var = DateTime, .color_var = name, .value = value, .smooth = F)
## Normalization Parameters
## min: 3300
## max: 3480
## Normalization Parameters
## min: 6375
## max: 6700
## Normalization Parameters
## min: 8500
## max: 8900
## Normalization Parameters
## min: 4130
## max: 4450
## Normalization Parameters
## min: 22200
## max: 25475