Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” by Hamermesh and Parker found that instructors who are viewed to be better looking receive higher instructional ratings.
Here, you will analyze the data from this study in order to learn what goes into a positive professor evaluation.
In this lab, you will explore and visualize the data using the tidyverse suite of packages. The data can be found in the companion package for OpenIntro resources, openintro.
Let’s load the packages.
library(tidyverse)
library(openintro)
library(GGally)This is the first time we’re using the GGally package.
You will be using the ggpairs function from this package
later in the lab.
The data were gathered from end of semester student evaluations for a
large sample of professors from the University of Texas at Austin. In
addition, six students rated the professors’ physical appearance. The
result is a data frame where each row contains a different course and
columns represent variables about the courses and professors. It’s
called evals.
glimpse(evals)## Rows: 463
## Columns: 23
## $ course_id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1…
## $ prof_id <int> 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5,…
## $ score <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8, 4…
## $ rank <fct> tenure track, tenure track, tenure track, tenure track, …
## $ ethnicity <fct> minority, minority, minority, minority, not minority, no…
## $ gender <fct> female, female, female, female, male, male, male, male, …
## $ language <fct> english, english, english, english, english, english, en…
## $ age <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40, …
## $ cls_perc_eval <dbl> 55.81395, 68.80000, 60.80000, 62.60163, 85.00000, 87.500…
## $ cls_did_eval <int> 24, 86, 76, 77, 17, 35, 39, 55, 111, 40, 24, 24, 17, 14,…
## $ cls_students <int> 43, 125, 125, 123, 20, 40, 44, 55, 195, 46, 27, 25, 20, …
## $ cls_level <fct> upper, upper, upper, upper, upper, upper, upper, upper, …
## $ cls_profs <fct> single, single, single, single, multiple, multiple, mult…
## $ cls_credits <fct> multi credit, multi credit, multi credit, multi credit, …
## $ bty_f1lower <int> 5, 5, 5, 5, 4, 4, 4, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 7, 7,…
## $ bty_f1upper <int> 7, 7, 7, 7, 4, 4, 4, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 9, 9,…
## $ bty_f2upper <int> 6, 6, 6, 6, 2, 2, 2, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 9, 9,…
## $ bty_m1lower <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 7, 7,…
## $ bty_m1upper <int> 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6,…
## $ bty_m2upper <int> 6, 6, 6, 6, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6,…
## $ bty_avg <dbl> 5.000, 5.000, 5.000, 5.000, 3.000, 3.000, 3.000, 3.333, …
## $ pic_outfit <fct> not formal, not formal, not formal, not formal, not form…
## $ pic_color <fct> color, color, color, color, color, color, color, color, …
We have observations on 21 different variables, some categorical and some numerical. The meaning of each variable can be found by bringing up the help file:
?evalsIs this an observational study or an experiment? The original research question posed in the paper is whether beauty leads directly to the differences in course evaluations. Given the study design, is it possible to answer this question as it is phrased? If not, rephrase the question. This is an observational study Is there a linear relationship between score received and beauty of professor
Describe the distribution of score. Is the
distribution skewed? What does that tell you about how students rate
courses? Is this what you expected to see? Why, or why not? The
distribution is skewed and that is what I expected as I dont think
individuals really want to be harsh on professors unreasonably, so there
wouldnt be a higher frequency of low scores
hist(evals$score, main = "Professor Score on Course Evaluation", xlab = "score")score, select two other variables and
describe their relationship with each other using an appropriate
visualization. # of students in the class ethnicity vs scorehist(evals$cls_students, prob = TRUE, breaks = 16, main = "# Students per Class", xlab = "Age")
x <- seq(from = 20, to =95, by = 10)
curve(dnorm(x, mean = mean(evals$cls_students), sd = sd(evals$cls_students) ), add = TRUE, col = "red", lwd = 2)plot(evals$ethnicity, evals$score)The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:
ggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_point()Before you draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?
geom_jitter
as your layer. What was misleading about the initial scatterplot? The
scatterplot seemed like alphabet lettering by the overlapping
pointsggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_jitter()m_bty to
predict average professor score by average beauty rating. Write out the
equation for the linear model and interpret the slope. Is average beauty
score a statistically significant predictor? Does it appear to be a
practically significant predictor? y= 3.88034 + 0.06664 X score The
R-squared value is terrible: 0.03502. NOT A GOOD PREDICTORm_bty <- lm(score ~ bty_avg, data = evals)
summary(m_bty)##
## Call:
## lm(formula = score ~ bty_avg, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9246 -0.3690 0.1420 0.3977 0.9309
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
## bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
## F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05
Add the line of the bet fit model to your plot using the following:
ggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_jitter() +
geom_smooth(method = "lm")The blue line is the model. The shaded gray area around the line
tells you about the variability you might expect in your predictions. To
turn that off, use se = FALSE.
ggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_jitter() +
geom_smooth(method = "lm", se = FALSE)plot(m_bty, ask= FALSE)The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.
ggplot(data = evals, aes(x = bty_f1lower, y = bty_avg)) +
geom_point()evals %>%
summarise(cor(bty_avg, bty_f1lower))## # A tibble: 1 × 1
## `cor(bty_avg, bty_f1lower)`
## <dbl>
## 1 0.844
As expected, the relationship is quite strong—after all, the average score is calculated using the individual scores. You can actually look at the relationships between all beauty variables (columns 13 through 19) using the following command:
evals %>%
select(contains("bty")) %>%
ggpairs()These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.
In order to see if beauty is still a significant predictor of professor score after you’ve accounted for the professor’s gender, you can add the gender term into the model.
m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
summary(m_bty_gen)##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
plot(m_bty_gen , ask = FALSE)bty_avg still a significant predictor of
score? Has the addition of gender to the model
changed the parameter estimate for bty_avg? Adding It has
made the R-squared value double but it is still considerably low as a
predictorNote that the estimate for gender is now called
gendermale. You’ll see this name change whenever you
introduce a categorical variable. The reason is that R recodes
gender from having the values of male and
female to being an indicator variable called
gendermale that takes a value of \(0\) for female professors and a value of
\(1\) for male professors. (Such
variables are often referred to as “dummy” variables.)
As a result, for female professors, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.
\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]
byt_df <- select(evals, gender, bty_avg, score)
ggplot(byt_df, aes(x = bty_avg, y = score, fill = gender)) +
geom_smooth(method = "lm" , formula = y ~ x , se = FALSE) +
geom_point(size = 4, shape = 21)The decision to call the indicator variable gendermale
instead of genderfemale has no deeper meaning. R simply
codes the category that comes first alphabetically as a \(0\). (You can change the reference level of
a categorical variable, which is the level that is coded as a 0, using
therelevel() function. Use ?relevel to learn
more.)
m_bty_rank with
gender removed and rank added in. How does R
appear to handle categorical variables that have more than two levels?
Note that the rank variable has three levels: teaching,
tenure track, `tenured It seems to handle the parameters
wellm_bty_rank <- lm(score~bty_avg + rank, data = evals)
summary(m_bty_rank)##
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8713 -0.3642 0.1489 0.4103 0.9525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.98155 0.09078 43.860 < 2e-16 ***
## bty_avg 0.06783 0.01655 4.098 4.92e-05 ***
## ranktenure track -0.16070 0.07395 -2.173 0.0303 *
## ranktenured -0.12623 0.06266 -2.014 0.0445 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared: 0.04652, Adjusted R-squared: 0.04029
## F-statistic: 7.465 on 3 and 459 DF, p-value: 6.88e-05
The interpretation of the coefficients in multiple regression is
slightly different from that of simple regression. The estimate for
bty_avg reflects how much higher a group of professors is
expected to score if they have a beauty rating that is one point higher
while holding all other variables constant. In this case, that
translates into considering only professors of the same rank with
bty_avg scores that are one point apart.
We will start with a full model that predicts professor score based on rank, gender, ethnicity, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.
Let’s run the model…
m_full <- lm(score ~ rank + gender + ethnicity + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full)##
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age +
## cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.77397 -0.32432 0.09067 0.35183 0.95036
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0952141 0.2905277 14.096 < 2e-16 ***
## ranktenure track -0.1475932 0.0820671 -1.798 0.07278 .
## ranktenured -0.0973378 0.0663296 -1.467 0.14295
## gendermale 0.2109481 0.0518230 4.071 5.54e-05 ***
## ethnicitynot minority 0.1234929 0.0786273 1.571 0.11698
## languagenon-english -0.2298112 0.1113754 -2.063 0.03965 *
## age -0.0090072 0.0031359 -2.872 0.00427 **
## cls_perc_eval 0.0053272 0.0015393 3.461 0.00059 ***
## cls_students 0.0004546 0.0003774 1.205 0.22896
## cls_levelupper 0.0605140 0.0575617 1.051 0.29369
## cls_profssingle -0.0146619 0.0519885 -0.282 0.77806
## cls_creditsone credit 0.5020432 0.1159388 4.330 1.84e-05 ***
## bty_avg 0.0400333 0.0175064 2.287 0.02267 *
## pic_outfitnot formal -0.1126817 0.0738800 -1.525 0.12792
## pic_colorcolor -0.2172630 0.0715021 -3.039 0.00252 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared: 0.1871, Adjusted R-squared: 0.1617
## F-statistic: 7.366 on 14 and 448 DF, p-value: 6.552e-14
Check your suspicions from the previous exercise. Include the model output in your response. My suspicion wasn’t correct but it wasn’t too far from the top.
Interpret the coefficient associated with the ethnicity variable. Ethnicity multiplied by 1 in the equation
Drop the variable with the highest p-value and re-fit the model. Did the coefficients and significance of the other explanatory variables change? (One of the things that makes multiple regression interesting is that coefficient estimates depend on the other variables that are included in the model.) If not, what does this say about whether or not the dropped variable was collinear with the other explanatory variables? Yes the coefficients and significance saw a great change. This shows that there is great collinearity between variables
m_full <- lm(score ~ rank + gender + ethnicity + language + age + cls_perc_eval
+ cls_students + cls_level + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full)##
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age +
## cls_perc_eval + cls_students + cls_level + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7836 -0.3257 0.0859 0.3513 0.9551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0872523 0.2888562 14.150 < 2e-16 ***
## ranktenure track -0.1476746 0.0819824 -1.801 0.072327 .
## ranktenured -0.0973829 0.0662614 -1.470 0.142349
## gendermale 0.2101231 0.0516873 4.065 5.66e-05 ***
## ethnicitynot minority 0.1274458 0.0772887 1.649 0.099856 .
## languagenon-english -0.2282894 0.1111305 -2.054 0.040530 *
## age -0.0089992 0.0031326 -2.873 0.004262 **
## cls_perc_eval 0.0052888 0.0015317 3.453 0.000607 ***
## cls_students 0.0004687 0.0003737 1.254 0.210384
## cls_levelupper 0.0606374 0.0575010 1.055 0.292200
## cls_creditsone credit 0.5061196 0.1149163 4.404 1.33e-05 ***
## bty_avg 0.0398629 0.0174780 2.281 0.023032 *
## pic_outfitnot formal -0.1083227 0.0721711 -1.501 0.134080
## pic_colorcolor -0.2190527 0.0711469 -3.079 0.002205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.1634
## F-statistic: 7.943 on 13 and 449 DF, p-value: 2.336e-14
m_full <- lm(score ~ rank + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full)##
## Call:
## lm(formula = score ~ rank + gender + language + age + cls_perc_eval +
## cls_students + cls_level + cls_credits + bty_avg + pic_outfit +
## pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7543 -0.3295 0.0907 0.3621 0.9986
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2626074 0.2690811 15.841 < 2e-16 ***
## ranktenure track -0.1674521 0.0812551 -2.061 0.039894 *
## ranktenured -0.1139092 0.0656240 -1.736 0.083286 .
## gendermale 0.2233478 0.0511587 4.366 1.57e-05 ***
## languagenon-english -0.2868306 0.1055082 -2.719 0.006810 **
## age -0.0092004 0.0031362 -2.934 0.003521 **
## cls_perc_eval 0.0050186 0.0015258 3.289 0.001084 **
## cls_students 0.0005090 0.0003736 1.362 0.173741
## cls_levelupper 0.0780740 0.0566282 1.379 0.168668
## cls_creditsone credit 0.4645454 0.1123303 4.136 4.23e-05 ***
## bty_avg 0.0370868 0.0174300 2.128 0.033900 *
## pic_outfitnot formal -0.1124285 0.0722658 -1.556 0.120467
## pic_colorcolor -0.2452555 0.0694820 -3.530 0.000459 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4984 on 450 degrees of freedom
## Multiple R-squared: 0.182, Adjusted R-squared: 0.1602
## F-statistic: 8.346 on 12 and 450 DF, p-value: 2.631e-14
summary(m_full) 16. Verify that the conditions for this model are reasonable using diagnostic plots. The data is still skewed but not as bad as before
plot(m_full, ask = FALSE)The original paper describes how these data were gathered by taking a sample of professors from the University of Texas at Austin and including all courses that they have taught. Considering that each row represents a course, could this new information have an impact on any of the conditions of linear regression? This could encur more confusion as multiple teachers teach different courses and student can have different opinions
Based on your final model, describe the characteristics of a professor and course at University of Texas at Austin that would be associated with a high evaluation score. A professor with ideal levels does not take into account minority and is heavily tailored to male teachers.
Would you be comfortable generalizing your conclusions to apply to professors generally (at any university)? Why or why not? No, this model is far too innacurate in prediction. The data is a bit skewed thus not normal and the R-squared value is shockingly low.