# Table 6: Food groups consumed by ≥50% of households by dietary diversity
# HDDS.pdf pag.31
dfSEtmp <- inner_join(dfSE %>% mutate(city=paste(country,city,sep="_")),
dfSE %>% mutate_at(.vars = 116:133,~ifelse(.=="Yes",1,0)) %>%
rowwise() %>%
# mutate(HDDS_Tot = sum(c_across(HDDS_01:HDDS_18))) %>%
mutate(HH_size=adult14plus+child3to13+child0to2) %>%
mutate(HD01.Cereals=HDDS_01,
HD02.Green.leafy.vegetables=ifelse((HDDS_04+HDDS_03)>0,1,0),
HD03.Vitamin.A.rich.fruit=HDDS_06,
HD04.Oil=HDDS_15,
HD05.Other.vegetables=HDDS_05,
HD06.Fish=HDDS_11,
HD07.Legumes.nuts.seeds=ifelse((HDDS_12+HDDS_13)>0,1,0)) %>%
select(unique_id,HD01.Cereals:HD07.Legumes.nuts.seeds),
by="unique_id") %>%
mutate(HD7.Tot=HD01.Cereals+HD02.Green.leafy.vegetables+HD03.Vitamin.A.rich.fruit+HD04.Oil+HD05.Other.vegetables+HD06.Fish+HD07.Legumes.nuts.seeds)
Food.group | variable.name | question | descr |
Cereals | HDDS_01 | Q17.1 | Cereals |
Green leafy vegetables | HDDS_04 | Q17.4 | Dark green leafy vegetables |
HDDS_03 | Q17.3 | Orange fleshed roots/tubers or vegetables | |
Vitamin A rich fruit | HDDS_06 | Q17.6 | Orange fleshed fruits |
Oil | HDDS_15 | Q17.15 | Oils/Fats |
Other vegetables | HDDS_05 | Q17.5 | Other vegetables |
Fish | HDDS_11 | Q17.11 | Fish |
Legumes, nuts and seeds | HDDS_12 | Q17.12 | Pulses |
HDDS_13 | Q17.13 | Nuts and seeds |
variable | KE | MO | TN | TZ | UG | Total |
HD01.Cereals | 91.1 | 95.0 | 85.3 | 94.9 | 88.3 | 90.6 |
HD02.Green.leafy.vegetables | 86.6 | 64.3 | 68.0 | 90.0 | 65.5 | 75.2 |
HD03.Vitamin.A.rich.fruit | 50.8 | 46.8 | 17.4 | 51.1 | 50.2 | 44.4 |
HD04.Oil | 68.4 | 89.6 | 80.4 | 77.9 | 74.2 | 76.7 |
HD05.Other.vegetables | 89.7 | 61.9 | 75.0 | 78.2 | 90.3 | 81.2 |
HD06.Fish | 22.7 | 28.4 | 30.3 | 51.3 | 33.4 | 32.4 |
HD07.Legumes.nuts.seeds | 58.5 | 53.9 | 66.9 | 71.5 | 74.6 | 65.5 |
variable | KE_Kisumu | KE_Kitui | KE_Nyeri | MO_Beni Mellal | MO_Meknes | TN_Sousse | TN_Tunis | TZ_Daressalaam | TZ_Morogoro | UG_Kalerwe | UG_Kampala | UG_Kapeeka | Total |
HD01.Cereals | 89.0 | 97.4 | 86.7 | 96.5 | 93.8 | 80.7 | 90.0 | 92.6 | 97.2 | 87.0 | 91.7 | 86.3 | 90.6 |
HD02.Green.leafy.vegetables | 99.8 | 83.1 | 77.4 | 54.5 | 72.2 | 72.1 | 63.9 | 89.8 | 90.2 | 68.6 | 70.4 | 57.5 | 75.2 |
HD03.Vitamin.A.rich.fruit | 41.8 | 60.2 | 50.1 | 47.8 | 46.0 | 33.5 | 1.4 | 64.8 | 37.7 | 51.0 | 41.9 | 57.7 | 44.4 |
HD04.Oil | 67.1 | 71.3 | 66.9 | 85.5 | 92.8 | 79.9 | 80.8 | 83.8 | 72.1 | 63.2 | 83.2 | 75.9 | 76.7 |
HD05.Other.vegetables | 89.5 | 97.0 | 82.7 | 60.2 | 63.2 | 76.1 | 73.9 | 80.2 | 76.2 | 87.4 | 90.5 | 93.0 | 81.2 |
HD06.Fish | 52.5 | 10.6 | 6.0 | 19.0 | 36.0 | 38.8 | 21.8 | 50.1 | 52.5 | 36.2 | 32.8 | 31.1 | 32.4 |
HD07.Legumes.nuts.seeds | 40.8 | 71.3 | 62.8 | 44.0 | 61.8 | 68.1 | 65.7 | 68.1 | 74.9 | 78.4 | 70.2 | 75.1 | 65.5 |
variable | 1.Low | 2.Medium | 3.High | Total |
HD01.Cereals | 67.2 | 94.2 | 98.6 | 90.6 |
HD02.Green.leafy.vegetables | 27.7 | 78.6 | 98.3 | 75.2 |
HD03.Vitamin.A.rich.fruit | 11.8 | 34.6 | 82.2 | 44.4 |
HD04.Oil | 46.7 | 76.9 | 94.9 | 76.7 |
HD05.Other.vegetables | 40.5 | 85.8 | 98.0 | 81.2 |
HD06.Fish | 8.6 | 22.7 | 64.4 | 32.4 |
HD07.Legumes.nuts.seeds | 24.4 | 64.5 | 92.6 | 65.5 |
dfSE <- inner_join(dfSE,
dfSE %>% mutate_at(.vars = 116:133,~ifelse(.=="Yes",1,0)) %>%
rowwise() %>%
# mutate(HDDS_Tot = sum(c_across(HDDS_01:HDDS_18))) %>%
mutate(HH_size=adult14plus+child3to13+child0to2) %>%
mutate(H01.Cereals=HDDS_01,
H02.White.tubers.roots=HDDS_02,
H03.Vegetables=ifelse((HDDS_03+HDDS_04+HDDS_05)>0,1,0),
H04.Fruits=ifelse((HDDS_06+HDDS_07)>0,1,0),
H05.Meat=ifelse((HDDS_08+HDDS_09)>0,1,0),
H06.Eggs=HDDS_10,
H07.Fish=HDDS_11,
H08.Legumes.nuts.seeds=ifelse((HDDS_12+HDDS_13)>0,1,0),
H09.Milk=HDDS_14,
H10.Oils.fats=HDDS_15,
H11.Sweets=HDDS_16,
H12.Spices.condiments.beverages=ifelse((HDDS_17+HDDS_18)>0,1,0)) %>%
mutate(HDDS12.Tot=H01.Cereals+H02.White.tubers.roots+H03.Vegetables+H04.Fruits+H05.Meat+H06.Eggs+H07.Fish+H08.Legumes.nuts.seeds+H09.Milk+H10.Oils.fats+H11.Sweets+H12.Spices.condiments.beverages) %>%
select(unique_id,HH_size:HDDS12.Tot),
by="unique_id")
dfSE <- dfSE %>% mutate(educ3 = factor(ifelse(is.na(educ),NA,
ifelse(educ %in% levels(dfSE$educ)[1:2],educ,3)),
levels=1:3,
labels=c(levels(dfSE$educ)[1:2],"Secondary or more")))
dfSE <- dfSE %>% mutate(hh_head_employ_3=ifelse(hh_head_employ %in% c("Unemployed","Casual worker (paid by the day)"),1,
ifelse(hh_head_employ %in% c("Sole trader","Businessman / self-employed","Other"),2,
ifelse(hh_head_employ %in% c("Clerk (formal employment)","Manager","Regular worker"),3,NA))))
dfSE$hh_head_employ_3 <- factor(dfSE$hh_head_employ_3,levels = 1:3,labels = c("Unemployed.Casual","self.employed","Clerk.Regular.Manager"))
dfSE$children0_2 <- factor(ifelse(is.na(dfSE$child0to2),NA,ifelse(dfSE$child0to2>0,1,0)),levels = 0:1,labels = c("No","Yes"))
dfSE$children3_13 <- factor(ifelse(is.na(dfSE$child3to13),NA,ifelse(dfSE$child3to13>0,1,0)),levels = 0:1,labels = c("No","Yes"))
a single summary variable was created between local_food_interest and nutri_food_interest
some reasons for choosing innovative products and some obstacles were then aggregated (see tables below)
methodology used: confirmatory factor analysis
group.variable | group.code | group.descr | ref.variable | variable | descr |
Reason | 1 | wellness | local_food_interest | local_envfriend | It would be environmentally-friendly |
nutri_food_interest | nutri_healthy | It could make my household diet healthier | |||
2 | availability | local_food_interest | local_afford | I could afford it | |
local_food_interest | local_find | I could easily find it where I buy food | |||
nutri_food_interest | nustri_afford | I could afford it | |||
3 | culture | local_food_interest | local_tradition | It would be in line with my culture / tradition | |
nutri_food_interest | nutri_lifestyle | It would be in line with my lifestyle / culture | |||
4 | farmers | local_food_interest | local_helpfarmer | It could help local farmers | |
nutri_food_interest | nutri_trust | I trust the farmer / seller | |||
5 | trust | local_food_interest | local_friends | It has been suggested by friends / people I trust | |
nutri_food_interest | nustri_doctor | I would trust my doctor’s recommendation | |||
6 | status | nutri_food_interest | nutri_sstatus | It could enhance my social status |
group.variable | group.code | group.descr | ref.variable | variable | descr |
Obstacle | 1 | taste | local_food_interest | obst_loc_familar | I would not be familiar with its taste |
nutri_food_interest | obst_nutri_fam | I would not be familiar with its taste | |||
2 | habits | local_food_interest | obst_loc_change | I don’t want to change my food practice/habits | |
nutri_food_interest | obst_nutri_fpractice | I don’t want to change my food practice/habits | |||
nutri_food_interest | obst_nutri_time | I would not have enough time to prepare it | |||
3 | price | local_food_interest | obst_loc_comparab | I would need to compare its price with other food products | |
nutri_food_interest | obst_nutri_price | I would need to compare its price with other food products | |||
4 | healthy | local_food_interest | obst_loc_healthy | I don’t know if it is healthy | |
nutri_food_interest | obst_nutri_safe | A new food product would make me feel less safe | |||
5 | trust | local_food_interest | obst_loc_friend | My friends / people I know do not eat it | |
local_food_interest | obst_loc_trust | I don’t trust the farmer / seller | |||
nutri_food_interest | obst_nutri_friend | My friends / people I know do not eat it |
# variables in analysis
cbind(names(dfSE.HD)[1:39])
## [,1]
## [1,] "HDDS12.Tot"
## [2,] "country"
## [3,] "city"
## [4,] "gender"
## [5,] "age"
## [6,] "HH_size"
## [7,] "children0_2"
## [8,] "children3_13"
## [9,] "educ3"
## [10,] "income_avg"
## [11,] "hh_salary"
## [12,] "hh_head_employ_3"
## [13,] "income_food"
## [14,] "imp_availability"
## [15,] "imp_nutrition"
## [16,] "imp_provider"
## [17,] "imp_price"
## [18,] "imp_envfriend"
## [19,] "imp_divers"
## [20,] "imp_tradition"
## [21,] "imp_local"
## [22,] "imp_product"
## [23,] "healty_diet"
## [24,] "local_food"
## [25,] "meet_food_needs"
## [26,] "lacking"
## [27,] "innov_food_interest"
## [28,] "Obstacle.habits"
## [29,] "Obstacle.healthy"
## [30,] "Obstacle.price"
## [31,] "Obstacle.taste"
## [32,] "Obstacle.trust"
## [33,] "Reason.availability"
## [34,] "Reason.culture"
## [35,] "Reason.farmers"
## [36,] "Reason.status"
## [37,] "Reason.trust"
## [38,] "Reason.wellness"
## [39,] "yest_celebration"
variable | KE | MO | TN | TZ | UG | Total |
H01.Cereals | 91.0 | 95.0 | 87.5 | 94.9 | 88.3 | 91.2 |
H02.White.tubers.roots | 38.7 | 66.6 | 62.0 | 44.9 | 76.6 | 58.2 |
H03.Vegetables | 95.3 | 83.4 | 87.7 | 93.4 | 95.4 | 92.0 |
H04.Fruits | 76.0 | 78.3 | 72.1 | 77.0 | 71.9 | 74.9 |
H05.Meat | 38.6 | 70.6 | 76.6 | 46.7 | 40.5 | 50.7 |
H06.Eggs | 39.7 | 62.4 | 59.3 | 20.1 | 37.7 | 41.8 |
H07.Fish | 25.4 | 28.4 | 30.1 | 51.3 | 33.3 | 33.5 |
H08.Legumes.nuts.seeds | 57.8 | 53.9 | 68.1 | 71.3 | 74.5 | 65.6 |
H09.Milk | 79.2 | 65.7 | 86.4 | 36.3 | 46.3 | 60.7 |
H10.Oils.fats | 69.9 | 89.6 | 83.2 | 77.7 | 74.2 | 77.5 |
H11.Sweets | 62.1 | 81.4 | 72.7 | 63.9 | 78.9 | 71.8 |
country | n | avg.HDDS | sd.HDDS | median.HDDS |
KE | 1,291 | 7.646785 | 2.180416 | 8 |
MO | 900 | 8.718889 | 2.189031 | 9 |
TN | 674 | 8.772997 | 2.552355 | 9 |
TZ | 976 | 7.722336 | 2.202039 | 8 |
UG | 1,515 | 8.157096 | 1.896010 | 8 |
Total | 5,356 | 8.126774 | 2.205626 | 8 |
Test | Statistic | df | p.value | Signif |
Kruskal-Wallis rank sum test | 292.89 | 4 | 3.703e-62 | *** |
income_avg | n | avg.HDDS | sd.HDDS | median.HDDS |
lower than average | 1,207 | 7.590721 | 2.294961 | 8 |
somewhat lower than average | 1,978 | 8.180991 | 2.098631 | 8 |
about average | 847 | 8.409681 | 2.162664 | 9 |
somewhat higher than average | 684 | 8.277778 | 2.065268 | 8 |
higher than average | 640 | 8.434375 | 2.381871 | 9 |
Total | 5,356 | 8.126774 | 2.205626 | 8 |
Test | Statistic | df | p.value | Signif |
Kruskal-Wallis rank sum test | 124.28 | 4 | 6.498e-26 | *** |
mod.HD <- lm(HDDS12.Tot~.,data=dfSE.HD)
tbm1a <- lm2df(mod.HD)
tbm1b <- Anova2df(mod.HD)
my.flextb(tbm1a,title = "model 1 - coefficients") %>% autofit()
variable | Estimate | Std.Error | t.value | p.value | signif |
(Intercept) | 2.5198 | 0.7000 | 3.5999 | 3.2e-04 | *** |
cityKE.Kitui | 0.2334 | 0.1614 | 1.4463 | 0.1482 | |
cityKE.Nyeri | 0.0778 | 0.1691 | 0.4604 | 0.6453 | |
cityMO.Beni Mellal | 0.9297 | 0.1592 | 5.8393 | 5.6e-09 | *** |
cityMO.Meknes | 1.6319 | 0.1532 | 10.6524 | 3.1e-26 | *** |
cityTN.Sousse | 0.7668 | 0.1634 | 4.6927 | 2.8e-06 | *** |
cityTN.Tunis | 1.4224 | 0.1742 | 8.1631 | 4.0e-16 | *** |
cityTZ.Daressalaam | -0.0366 | 0.1595 | -0.2295 | 0.8185 | |
cityTZ.Morogoro | 0.1451 | 0.1651 | 0.8790 | 0.3794 | |
cityUG.Kalerwe | 0.7684 | 0.1520 | 5.0563 | 4.4e-07 | *** |
cityUG.Kampala | 0.9306 | 0.1554 | 5.9894 | 2.2e-09 | *** |
cityUG.Kapeeka | 0.6186 | 0.1534 | 4.0313 | 5.6e-05 | *** |
genderFemale | 0.1451 | 0.0592 | 2.4523 | 0.0142 | * |
age | 0.0022 | 0.0024 | 0.9199 | 0.3577 | |
HH_size | 0.0101 | 0.0140 | 0.7158 | 0.4741 | |
children0_2Yes | 0.1403 | 0.0705 | 1.9894 | 0.0467 | * |
children3_13Yes | 0.1943 | 0.0681 | 2.8542 | 0.0043 | ** |
educ3Primary | 0.5015 | 0.1121 | 4.4728 | 7.9e-06 | *** |
educ3Secondary or more | 0.5376 | 0.1121 | 4.7953 | 1.7e-06 | *** |
income_avgsomewhat lower than average | 0.3459 | 0.0816 | 4.2402 | 2.3e-05 | *** |
income_avgabout average | 0.4559 | 0.1018 | 4.4786 | 7.7e-06 | *** |
income_avgsomewhat higher than average | 0.5574 | 0.1131 | 4.9292 | 8.5e-07 | *** |
income_avghigher than average | 0.7676 | 0.1285 | 5.9724 | 2.5e-09 | *** |
hh_salary | 0.0869 | 0.0348 | 2.4982 | 0.0125 | * |
hh_head_employ_3self.employed | 0.2134 | 0.0775 | 2.7522 | 0.0059 | ** |
hh_head_employ_3Clerk.Regular.Manager | 0.1510 | 0.0799 | 1.8909 | 0.0587 | . |
income_foodLess than half (from 25% to 50%) | 0.0153 | 0.1076 | 0.1422 | 0.8870 | |
income_foodAbout half (50%) | 0.1324 | 0.1017 | 1.3019 | 0.1930 | |
income_foodMore than half (from 50% to 75%) | 0.1328 | 0.1082 | 1.2275 | 0.2197 | |
income_foodAlmost all (from 75% to 100%). | -0.3285 | 0.1347 | -2.4395 | 0.0147 | * |
imp_availability | -0.0224 | 0.0263 | -0.8514 | 0.3946 | |
imp_nutrition | 0.0022 | 0.0289 | 0.0771 | 0.9386 | |
imp_provider | 0.1055 | 0.0255 | 4.1367 | 3.6e-05 | *** |
imp_price | -0.0994 | 0.0297 | -3.3436 | 8.3e-04 | *** |
imp_envfriend | -0.0067 | 0.0252 | -0.2652 | 0.7909 | |
imp_divers | -0.0057 | 0.0299 | -0.1909 | 0.8486 | |
imp_tradition | -0.0361 | 0.0237 | -1.5248 | 0.1274 | |
imp_local | -0.0021 | 0.0231 | -0.0926 | 0.9262 | |
imp_product | -0.0646 | 0.0271 | -2.3794 | 0.0174 | * |
healty_diet | 0.2204 | 0.0292 | 7.5434 | 5.4e-14 | *** |
local_food | 0.0170 | 0.0238 | 0.7135 | 0.4756 | |
meet_food_needs | 0.1149 | 0.0298 | 3.8625 | 1.1e-04 | *** |
lacking | 0.2369 | 0.0435 | 5.4503 | 5.3e-08 | *** |
innov_food_interest | -0.0537 | 0.3517 | -0.1527 | 0.8786 | |
Obstacle.habits | 0.2333 | 0.2974 | 0.7844 | 0.4328 | |
Obstacle.healthy | -0.3243 | 0.2970 | -1.0919 | 0.2749 | |
Obstacle.price | -0.3292 | 0.3010 | -1.0936 | 0.2742 | |
Obstacle.taste | 0.6376 | 0.4320 | 1.4758 | 0.1401 | |
Obstacle.trust | -0.2155 | 0.1909 | -1.1291 | 0.2589 | |
Reason.availability | 0.1869 | 0.2034 | 0.9186 | 0.3583 | |
Reason.culture | -0.6052 | 1.0029 | -0.6034 | 0.5463 | |
Reason.farmers | 0.2067 | 0.4613 | 0.4480 | 0.6542 | |
Reason.status | 0.0094 | 0.0594 | 0.1585 | 0.8740 | |
Reason.trust | 0.5599 | 0.4743 | 1.1805 | 0.2379 | |
Reason.wellness | 0.2699 | 0.4210 | 0.6410 | 0.5216 | |
yest_celebrationYes | 0.2716 | 0.0944 | 2.8767 | 0.0040 | ** |
r.squared | 0.1536 | ||||
adj.r.squared | 0.1448 | ||||
fstatistic | 17.4841 | 55.0000 | 5,300.0000 | 0.0e+00 | |
n.obs | 5,356.0000 |
my.flextb(tbm1b,title = "model 1 - anova") %>% autofit()
variable | Sum Sq | Df | F value | p.value | signif |
city | 923.7763 | 11 | 20.1854 | 1.6e-40 | *** |
gender | 25.0204 | 1 | 6.0139 | 0.0142 | * |
age | 3.5207 | 1 | 0.8462 | 0.3577 | |
HH_size | 2.1318 | 1 | 0.5124 | 0.4741 | |
children0_2 | 16.4662 | 1 | 3.9578 | 0.0467 | * |
children3_13 | 33.8933 | 1 | 8.1466 | 0.0043 | ** |
educ3 | 100.3434 | 2 | 12.0593 | 6.0e-06 | *** |
income_avg | 174.6901 | 4 | 10.4972 | 1.8e-08 | *** |
hh_salary | 25.9661 | 1 | 6.2412 | 0.0125 | * |
hh_head_employ_3 | 31.8903 | 2 | 3.8326 | 0.0217 | * |
income_food | 82.4848 | 4 | 4.9565 | 5.5e-04 | *** |
imp_availability | 3.0161 | 1 | 0.7250 | 0.3946 | |
imp_nutrition | 0.0247 | 1 | 0.0059 | 0.9386 | |
imp_provider | 71.1944 | 1 | 17.1124 | 3.6e-05 | *** |
imp_price | 46.5121 | 1 | 11.1797 | 8.3e-04 | *** |
imp_envfriend | 0.2925 | 1 | 0.0703 | 0.7909 | |
imp_divers | 0.1516 | 1 | 0.0364 | 0.8486 | |
imp_tradition | 9.6734 | 1 | 2.3251 | 0.1274 | |
imp_local | 0.0357 | 1 | 0.0086 | 0.9262 | |
imp_product | 23.5536 | 1 | 5.6614 | 0.0174 | * |
healty_diet | 236.7388 | 1 | 56.9028 | 5.4e-14 | *** |
local_food | 2.1181 | 1 | 0.5091 | 0.4756 | |
meet_food_needs | 62.0695 | 1 | 14.9191 | 1.1e-04 | *** |
lacking | 123.5864 | 1 | 29.7054 | 5.3e-08 | *** |
innov_food_interest | 0.0970 | 1 | 0.0233 | 0.8786 | |
Obstacle.habits | 2.5600 | 1 | 0.6153 | 0.4328 | |
Obstacle.healthy | 4.9605 | 1 | 1.1923 | 0.2749 | |
Obstacle.price | 4.9759 | 1 | 1.1960 | 0.2742 | |
Obstacle.taste | 9.0610 | 1 | 2.1779 | 0.1401 | |
Obstacle.trust | 5.3041 | 1 | 1.2749 | 0.2589 | |
Reason.availability | 3.5109 | 1 | 0.8439 | 0.3583 | |
Reason.culture | 1.5149 | 1 | 0.3641 | 0.5463 | |
Reason.farmers | 0.8349 | 1 | 0.2007 | 0.6542 | |
Reason.status | 0.1046 | 1 | 0.0251 | 0.8740 | |
Reason.trust | 5.7976 | 1 | 1.3935 | 0.2379 | |
Reason.wellness | 1.7094 | 1 | 0.4109 | 0.5216 | |
yest_celebration | 34.4288 | 1 | 8.2753 | 0.0040 | ** |
Residuals | 22,050.1585 | 5,300 |
mod.HD.s <- my.stepwise(mod.HD,direction = "both",crit = "bic")
lmb.s <- lm.beta(mod.HD.s)
tbm1a <- lm2df(mod.HD.s)
tbm1a$Std.Estimate <- NA
tbm1a$Std.Estimate[1:29] <- round(lmb.s$standardized.coefficients,4)
tbm1b <- Anova2df(mod.HD.s)
my.flextb(tbm1a,title = "model 1 - stepwise BIC - coefficients") %>% autofit()
variable | Estimate | Std.Error | t.value | p.value | signif | Std.Estimate |
(Intercept) | 3.6624 | 0.2803 | 13.0675 | 2.0e-38 | *** | |
cityKE.Kitui | 0.1576 | 0.1538 | 1.0249 | 0.3055 | 0.0192 | |
cityKE.Nyeri | -0.0905 | 0.1569 | -0.5769 | 0.5640 | -0.0106 | |
cityMO.Beni Mellal | 0.7035 | 0.1502 | 4.6849 | 2.9e-06 | *** | 0.0839 |
cityMO.Meknes | 1.4807 | 0.1446 | 10.2380 | 2.3e-24 | *** | 0.1953 |
cityTN.Sousse | 0.6739 | 0.1562 | 4.3142 | 1.6e-05 | *** | 0.0747 |
cityTN.Tunis | 1.2332 | 0.1590 | 7.7554 | 1.0e-14 | *** | 0.1348 |
cityTZ.Daressalaam | -0.1919 | 0.1438 | -1.3348 | 0.1820 | -0.0250 | |
cityTZ.Morogoro | -0.0032 | 0.1442 | -0.0220 | 0.9825 | -0.0004 | |
cityUG.Kalerwe | 0.6588 | 0.1423 | 4.6298 | 3.7e-06 | *** | 0.0869 |
cityUG.Kampala | 0.7548 | 0.1435 | 5.2591 | 1.5e-07 | *** | 0.0999 |
cityUG.Kapeeka | 0.5651 | 0.1441 | 3.9225 | 8.9e-05 | *** | 0.0753 |
children3_13Yes | 0.2338 | 0.0614 | 3.8085 | 1.4e-04 | *** | 0.0515 |
educ3Primary | 0.5137 | 0.1118 | 4.5939 | 4.5e-06 | *** | 0.1042 |
educ3Secondary or more | 0.5527 | 0.1081 | 5.1122 | 3.3e-07 | *** | 0.1208 |
income_avgsomewhat lower than average | 0.3754 | 0.0807 | 4.6524 | 3.4e-06 | *** | 0.0821 |
income_avgabout average | 0.4799 | 0.1001 | 4.7934 | 1.7e-06 | *** | 0.0794 |
income_avgsomewhat higher than average | 0.5927 | 0.1111 | 5.3349 | 1.0e-07 | *** | 0.0897 |
income_avghigher than average | 0.8171 | 0.1253 | 6.5234 | 7.5e-11 | *** | 0.1202 |
hh_salary | 0.1011 | 0.0316 | 3.1936 | 0.0014 | ** | 0.0432 |
imp_provider | 0.1012 | 0.0239 | 4.2391 | 2.3e-05 | *** | 0.0584 |
imp_price | -0.1155 | 0.0291 | -3.9648 | 7.4e-05 | *** | -0.0543 |
healty_diet | 0.2282 | 0.0286 | 7.9902 | 1.6e-15 | *** | 0.1111 |
meet_food_needs | 0.1307 | 0.0295 | 4.4374 | 9.3e-06 | *** | 0.0647 |
lacking | 0.2221 | 0.0427 | 5.1995 | 2.1e-07 | *** | 0.0766 |
Obstacle.price | -0.2179 | 0.0624 | -3.4903 | 4.9e-04 | *** | -0.0768 |
Obstacle.taste | 0.1812 | 0.0537 | 3.3745 | 7.4e-04 | *** | 0.0656 |
Reason.availability | 0.2578 | 0.0579 | 4.4527 | 8.7e-06 | *** | 0.0746 |
yest_celebrationYes | 0.2766 | 0.0939 | 2.9450 | 0.0032 | ** | 0.0387 |
r.squared | 0.1419 | |||||
adj.r.squared | 0.1374 | |||||
fstatistic | 31.4698 | 28.0000 | 5,327.0000 | 0.0e+00 | ||
n.obs | 5,356.0000 |
my.flextb(tbm1b,title = "model 1 - stepwise BIC - anova") %>% autofit()
variable | Sum Sq | Df | F value | p.value | signif |
city | 1,129.6923 | 11 | 24.4741 | 5.7e-50 | *** |
children3_13 | 60.8643 | 1 | 14.5045 | 1.4e-04 | *** |
educ3 | 112.2618 | 2 | 13.3765 | 1.6e-06 | *** |
income_avg | 211.9784 | 4 | 12.6291 | 3.1e-10 | *** |
hh_salary | 42.7989 | 1 | 10.1993 | 0.0014 | ** |
imp_provider | 75.4071 | 1 | 17.9702 | 2.3e-05 | *** |
imp_price | 65.9627 | 1 | 15.7195 | 7.4e-05 | *** |
healty_diet | 267.9017 | 1 | 63.8432 | 1.6e-15 | *** |
meet_food_needs | 82.6246 | 1 | 19.6902 | 9.3e-06 | *** |
lacking | 113.4454 | 1 | 27.0350 | 2.1e-07 | *** |
Obstacle.price | 51.1195 | 1 | 12.1822 | 4.9e-04 | *** |
Obstacle.taste | 47.7836 | 1 | 11.3872 | 7.4e-04 | *** |
Reason.availability | 83.1977 | 1 | 19.8267 | 8.7e-06 | *** |
yest_celebration | 36.3940 | 1 | 8.6730 | 0.0032 | ** |
Residuals | 22,353.3809 | 5,327 |
tbm1c <- ols_vif_tol(mod.HD.s)
my.flextb(tbm1c,title = "model 1 - stepwise BIC - VIF") %>% autofit()
Variables | Tolerance | VIF |
cityKE.Kitui | 0.4585218 | 2.180921 |
cityKE.Nyeri | 0.4771503 | 2.095776 |
cityMO.Beni Mellal | 0.5027575 | 1.989030 |
cityMO.Meknes | 0.4425395 | 2.259685 |
cityTN.Sousse | 0.5371740 | 1.861594 |
cityTN.Tunis | 0.5329579 | 1.876321 |
cityTZ.Daressalaam | 0.4578217 | 2.184257 |
cityTZ.Morogoro | 0.4548312 | 2.198618 |
cityUG.Kalerwe | 0.4571326 | 2.187549 |
cityUG.Kampala | 0.4462202 | 2.241046 |
cityUG.Kapeeka | 0.4373596 | 2.286448 |
children3_13Yes | 0.8818977 | 1.133918 |
educ3Primary | 0.3130226 | 3.194657 |
educ3Secondary or more | 0.2887049 | 3.463745 |
income_avgsomewhat lower than average | 0.5166474 | 1.935556 |
income_avgabout average | 0.5872204 | 1.702938 |
income_avgsomewhat higher than average | 0.5697702 | 1.755094 |
income_avghigher than average | 0.4745943 | 2.107063 |
hh_salary | 0.8786503 | 1.138109 |
imp_provider | 0.8490350 | 1.177808 |
imp_price | 0.8596357 | 1.163283 |
healty_diet | 0.8333207 | 1.200018 |
meet_food_needs | 0.7567280 | 1.321479 |
lacking | 0.7428316 | 1.346200 |
Obstacle.price | 0.3323803 | 3.008602 |
Obstacle.taste | 0.4268361 | 2.342820 |
Reason.availability | 0.5737739 | 1.742847 |
yest_celebrationYes | 0.9312493 | 1.073826 |
lm.resid.plots(mod.HD.s)
tbm1d <- test2df(ks.test(mod.HD.s$residuals, 'pnorm'),test="s")
my.flextb(tbm1d,title = "model 1 - stepwise BIC - residuals normality test") %>% autofit()
Test | Statistic | df | p.value | Signif |
One-sample Kolmogorov-Smirnov test | 0.17 | 0 | *** |
mod.HD.sA <- my.stepwise(mod.HD,direction = "both",crit = "aic")
lmb.sA <- lm.beta(mod.HD.sA)
tbLM <- lm2df(mod.HD.sA)
tbLM$Std.Estimate <- NA
tbLM$Std.Estimate[1:41] <- round(lmb.sA$standardized.coefficients,4)
tbAN <- Anova2df(mod.HD.sA)
my.flextb(tbLM,title = "model 1 - stepwise AIC - coefficients") %>% autofit()
variable | Estimate | Std.Error | t.value | p.value | signif | Std.Estimate |
(Intercept) | 3.1060 | 0.3199 | 9.7101 | 4.2e-22 | *** | |
cityKE.Kitui | 0.2354 | 0.1567 | 1.5023 | 0.1331 | 0.0287 | |
cityKE.Nyeri | 0.0567 | 0.1616 | 0.3507 | 0.7258 | 0.0066 | |
cityMO.Beni Mellal | 0.9240 | 0.1568 | 5.8944 | 4.0e-09 | *** | 0.1101 |
cityMO.Meknes | 1.6328 | 0.1502 | 10.8735 | 3.0e-27 | *** | 0.2154 |
cityTN.Sousse | 0.7549 | 0.1595 | 4.7318 | 2.3e-06 | *** | 0.0837 |
cityTN.Tunis | 1.4033 | 0.1647 | 8.5231 | 2.0e-17 | *** | 0.1534 |
cityTZ.Daressalaam | -0.0515 | 0.1513 | -0.3403 | 0.7337 | -0.0067 | |
cityTZ.Morogoro | 0.1321 | 0.1542 | 0.8564 | 0.3918 | 0.0172 | |
cityUG.Kalerwe | 0.7487 | 0.1461 | 5.1252 | 3.1e-07 | *** | 0.0988 |
cityUG.Kampala | 0.8944 | 0.1507 | 5.9367 | 3.1e-09 | *** | 0.1184 |
cityUG.Kapeeka | 0.5893 | 0.1474 | 3.9973 | 6.5e-05 | *** | 0.0785 |
genderFemale | 0.1385 | 0.0587 | 2.3594 | 0.0183 | * | 0.0312 |
children0_2Yes | 0.1500 | 0.0669 | 2.2424 | 0.0250 | * | 0.0294 |
children3_13Yes | 0.2149 | 0.0614 | 3.4997 | 4.7e-04 | *** | 0.0473 |
educ3Primary | 0.4925 | 0.1115 | 4.4187 | 1.0e-05 | *** | 0.0999 |
educ3Secondary or more | 0.5086 | 0.1087 | 4.6804 | 2.9e-06 | *** | 0.1111 |
income_avgsomewhat lower than average | 0.3433 | 0.0812 | 4.2265 | 2.4e-05 | *** | 0.0751 |
income_avgabout average | 0.4515 | 0.1014 | 4.4524 | 8.7e-06 | *** | 0.0747 |
income_avgsomewhat higher than average | 0.5531 | 0.1126 | 4.9142 | 9.2e-07 | *** | 0.0837 |
income_avghigher than average | 0.7613 | 0.1280 | 5.9497 | 2.9e-09 | *** | 0.1120 |
hh_salary | 0.0973 | 0.0316 | 3.0814 | 0.0021 | ** | 0.0416 |
hh_head_employ_3self.employed | 0.2216 | 0.0772 | 2.8688 | 0.0041 | ** | 0.0490 |
hh_head_employ_3Clerk.Regular.Manager | 0.1546 | 0.0796 | 1.9418 | 0.0522 | . | 0.0334 |
income_foodLess than half (from 25% to 50%) | 0.0203 | 0.1072 | 0.1896 | 0.8496 | 0.0039 | |
income_foodAbout half (50%) | 0.1379 | 0.1012 | 1.3626 | 0.1731 | 0.0300 | |
income_foodMore than half (from 50% to 75%) | 0.1442 | 0.1077 | 1.3392 | 0.1806 | 0.0275 | |
income_foodAlmost all (from 75% to 100%). | -0.3215 | 0.1337 | -2.4054 | 0.0162 | * | -0.0398 |
imp_provider | 0.1031 | 0.0245 | 4.1995 | 2.7e-05 | *** | 0.0595 |
imp_price | -0.1019 | 0.0291 | -3.5045 | 4.6e-04 | *** | -0.0479 |
imp_tradition | -0.0391 | 0.0217 | -1.7960 | 0.0726 | . | -0.0273 |
imp_product | -0.0667 | 0.0268 | -2.4850 | 0.0130 | * | -0.0345 |
healty_diet | 0.2207 | 0.0288 | 7.6686 | 2.1e-14 | *** | 0.1075 |
meet_food_needs | 0.1152 | 0.0297 | 3.8827 | 1.0e-04 | *** | 0.0570 |
lacking | 0.2334 | 0.0430 | 5.4319 | 5.8e-08 | *** | 0.0805 |
Obstacle.price | -0.1573 | 0.0561 | -2.8057 | 0.0050 | ** | -0.0555 |
Obstacle.taste | 0.2602 | 0.0661 | 3.9371 | 8.4e-05 | *** | 0.0942 |
Reason.trust | 0.2158 | 0.0643 | 3.3547 | 8.0e-04 | *** | 0.0603 |
yest_celebrationYes | 0.2710 | 0.0940 | 2.8827 | 0.0040 | ** | 0.0380 |
innov_food_interest | 0.1595 | 0.0573 | 2.7844 | 0.0054 | ** | 0.0468 |
Obstacle.trust | -0.0790 | 0.0560 | -1.4116 | 0.1581 | -0.0283 | |
r.squared | 0.1526 | |||||
adj.r.squared | 0.1462 | |||||
fstatistic | 23.9285 | 40.0000 | 5,315.0000 | 0.0e+00 | ||
n.obs | 5,356.0000 |
my.flextb(tbAN,title = "model 1 - stepwise AIC - anova") %>% autofit()
variable | Sum Sq | Df | F value | p.value | signif |
city | 1,059.7440 | 11 | 23.1953 | 3.7e-47 | *** |
gender | 23.1214 | 1 | 5.5668 | 0.0183 | * |
children0_2 | 20.8854 | 1 | 5.0285 | 0.0250 | * |
children3_13 | 50.8706 | 1 | 12.2478 | 4.7e-04 | *** |
educ3 | 95.9145 | 2 | 11.5464 | 9.9e-06 | *** |
income_avg | 173.2103 | 4 | 10.4257 | 2.1e-08 | *** |
hh_salary | 39.4372 | 1 | 9.4951 | 0.0021 | ** |
hh_head_employ_3 | 34.5029 | 2 | 4.1535 | 0.0158 | * |
income_food | 84.0683 | 4 | 5.0602 | 4.5e-04 | *** |
imp_provider | 73.2502 | 1 | 17.6361 | 2.7e-05 | *** |
imp_price | 51.0097 | 1 | 12.2813 | 4.6e-04 | *** |
imp_tradition | 13.3969 | 1 | 3.2255 | 0.0726 | . |
imp_product | 25.6485 | 1 | 6.1752 | 0.0130 | * |
healty_diet | 244.2529 | 1 | 58.8075 | 2.1e-14 | *** |
meet_food_needs | 62.6153 | 1 | 15.0756 | 1.0e-04 | *** |
lacking | 122.5501 | 1 | 29.5057 | 5.8e-08 | *** |
Obstacle.price | 32.6967 | 1 | 7.8722 | 0.0050 | ** |
Obstacle.taste | 64.3809 | 1 | 15.5006 | 8.4e-05 | *** |
Reason.trust | 46.7434 | 1 | 11.2542 | 8.0e-04 | *** |
yest_celebration | 34.5148 | 1 | 8.3099 | 0.0040 | ** |
innov_food_interest | 32.2004 | 1 | 7.7527 | 0.0054 | ** |
Obstacle.trust | 8.2760 | 1 | 1.9926 | 0.1581 | |
Residuals | 22,075.5039 | 5,315 |
tbVIFa <- ols_vif_tol(mod.HD.sA)
my.flextb(tbVIFa,title = "model 1 - stepwise AIC - VIF") %>% autofit()
Variables | Tolerance | VIF |
cityKE.Kitui | 0.4372201 | 2.287177 |
cityKE.Nyeri | 0.4451279 | 2.246545 |
cityMO.Beni Mellal | 0.4566546 | 2.189839 |
cityMO.Meknes | 0.4063464 | 2.460954 |
cityTN.Sousse | 0.5096985 | 1.961944 |
cityTN.Tunis | 0.4919540 | 2.032710 |
cityTZ.Daressalaam | 0.4088204 | 2.446062 |
cityTZ.Morogoro | 0.3936746 | 2.540169 |
cityUG.Kalerwe | 0.4293111 | 2.329313 |
cityUG.Kampala | 0.4008233 | 2.494865 |
cityUG.Kapeeka | 0.4134606 | 2.418610 |
genderFemale | 0.9114096 | 1.097202 |
children0_2Yes | 0.9280124 | 1.077572 |
children3_13Yes | 0.8725968 | 1.146005 |
educ3Primary | 0.3118500 | 3.206670 |
educ3Secondary or more | 0.2828856 | 3.534998 |
income_avgsomewhat lower than average | 0.5047296 | 1.981259 |
income_avgabout average | 0.5663255 | 1.765769 |
income_avgsomewhat higher than average | 0.5494636 | 1.819957 |
income_avghigher than average | 0.4501593 | 2.221436 |
hh_salary | 0.8741883 | 1.143918 |
hh_head_employ_3self.employed | 0.5474619 | 1.826611 |
hh_head_employ_3Clerk.Regular.Manager | 0.5377755 | 1.859512 |
income_foodLess than half (from 25% to 50%) | 0.3862238 | 2.589173 |
income_foodAbout half (50%) | 0.3281121 | 3.047739 |
income_foodMore than half (from 50% to 75%) | 0.3787205 | 2.640470 |
income_foodAlmost all (from 75% to 100%). | 0.5816809 | 1.719156 |
imp_provider | 0.7945425 | 1.258586 |
imp_price | 0.8540054 | 1.170953 |
imp_tradition | 0.6910013 | 1.447175 |
imp_product | 0.8285757 | 1.206890 |
healty_diet | 0.8120751 | 1.231413 |
meet_food_needs | 0.7391340 | 1.352935 |
lacking | 0.7265165 | 1.376431 |
Obstacle.price | 0.4079383 | 2.451351 |
Obstacle.taste | 0.2787729 | 3.587149 |
Reason.trust | 0.4933228 | 2.027070 |
yest_celebrationYes | 0.9198172 | 1.087173 |
innov_food_interest | 0.5636276 | 1.774221 |
Obstacle.trust | 0.3969378 | 2.519286 |
lm.resid.plots(mod.HD.sA)
tbm1da <- test2df(ks.test(mod.HD.sA$residuals, 'pnorm'),test="s")
my.flextb(tbm1da,title = "model 1 - stepwise AIC - residuals normality test") %>% autofit()
Test | Statistic | df | p.value | Signif |
One-sample Kolmogorov-Smirnov test | 0.17 | 0 | *** |
risulati per paese dopo procedura stewise (AIC)
variable | KE.Estimate | KE.p.value | KE.signif | KE.St.Estimate | MO.Estimate | MO.p.value | MO.signif | MO.St.Estimate | TN.Estimate | TN.p.value | TN.signif | TN.St.Estimate | TZ.Estimate | TZ.p.value | TZ.signif | TZ.St.Estimate | UG.Estimate | UG.p.value | UG.signif | UG.St.Estimate |
(Intercept) | 0.0767 | 0.9145 | 4.7173 | 6.8e-25 | *** | 4.3699 | 9.2e-04 | *** | 3.0654 | 9.1e-05 | *** | 4.8579 | 2.7e-28 | *** | ||||||
cityKE.Kitui | ||||||||||||||||||||
cityKE.Nyeri | ||||||||||||||||||||
cityMO.Beni Mellal | ||||||||||||||||||||
cityMO.Meknes | 0.5796 | 3.0e-05 | *** | 0.1316 | ||||||||||||||||
cityTN.Sousse | ||||||||||||||||||||
cityTN.Tunis | 0.9968 | 8.4e-05 | *** | 0.1954 | ||||||||||||||||
cityTZ.Daressalaam | ||||||||||||||||||||
cityTZ.Morogoro | ||||||||||||||||||||
cityUG.Kalerwe | ||||||||||||||||||||
cityUG.Kampala | ||||||||||||||||||||
cityUG.Kapeeka | ||||||||||||||||||||
genderFemale | 0.4277 | 0.0354 | * | 0.0823 | ||||||||||||||||
age | -0.0072 | 0.0869 | . | -0.0441 | 0.0207 | 0.0090 | ** | 0.1112 | ||||||||||||
HH_size | 0.0912 | 0.0025 | ** | 0.0909 | 0.0506 | 9.2e-04 | *** | 0.0843 | ||||||||||||
children0_2Yes | 0.2199 | 0.0955 | . | 0.0424 | ||||||||||||||||
children3_13Yes | 0.3049 | 0.0158 | * | 0.0622 | 0.3832 | 0.0513 | . | 0.0740 | ||||||||||||
educ3Primary | 0.8634 | 5.2e-05 | *** | 0.1604 | 1.7100 | 0.0336 | * | 0.2192 | 0.3461 | 0.0184 | * | 0.0841 | ||||||||
educ3Secondary or more | 0.9105 | 2.1e-06 | *** | 0.2029 | 1.7040 | 0.0313 | * | 0.2304 | 0.3803 | 0.0063 | ** | 0.1000 | ||||||||
income_avgsomewhat lower than average | 1.1067 | 1.5e-06 | *** | 0.1559 | 0.5766 | 0.1656 | 0.1077 | 0.3095 | 0.0165 | * | 0.0785 | |||||||||
income_avgabout average | 0.8743 | 1.4e-05 | *** | 0.1497 | 0.7442 | 0.0830 | . | 0.1344 | 0.4515 | 0.0125 | * | 0.0791 | ||||||||
income_avgsomewhat higher than average | 0.9267 | 1.0e-06 | *** | 0.1876 | 1.2308 | 0.0086 | ** | 0.1887 | 0.7225 | 0.0053 | ** | 0.0778 | ||||||||
income_avghigher than average | 1.2284 | 1.4e-09 | *** | 0.2606 | 1.3204 | 0.0111 | * | 0.1507 | 0.4801 | 0.2246 | 0.0316 | |||||||||
hh_salary | 0.2203 | 0.0012 | ** | 0.0839 | 0.2168 | 0.0389 | * | 0.0830 | ||||||||||||
hh_head_employ_3self.employed | 0.2250 | 0.1270 | 0.0473 | 0.6281 | 0.0011 | ** | 0.1126 | 0.2233 | 0.0503 | . | 0.0582 | |||||||||
hh_head_employ_3Clerk.Regular.Manager | 0.2832 | 0.0397 | * | 0.0630 | 0.3714 | 0.0180 | * | 0.0840 | 0.0681 | 0.5979 | 0.0159 | |||||||||
income_foodLess than half (from 25% to 50%) | 0.7502 | 0.0122 | * | 0.1398 | 0.1474 | 0.5246 | 0.0261 | -0.2201 | 0.1552 | -0.0510 | ||||||||||
income_foodAbout half (50%) | 0.6723 | 0.0180 | * | 0.1518 | 0.0924 | 0.6506 | 0.0205 | 0.1243 | 0.4186 | 0.0297 | ||||||||||
income_foodMore than half (from 50% to 75%) | 0.6538 | 0.0248 | * | 0.1283 | 0.4300 | 0.0545 | . | 0.0818 | 0.1397 | 0.3969 | 0.0295 | |||||||||
income_foodAlmost all (from 75% to 100%). | 0.0627 | 0.8441 | 0.0085 | -0.3585 | 0.2881 | -0.0366 | -0.2771 | 0.1567 | -0.0444 | |||||||||||
imp_availability | 0.1883 | 0.0043 | ** | 0.0750 | -0.1481 | 0.0727 | . | -0.0707 | ||||||||||||
imp_nutrition | 0.1125 | 0.0566 | . | 0.0675 | ||||||||||||||||
imp_provider | 0.1469 | 0.0035 | ** | 0.0840 | 0.0914 | 0.1079 | 0.0563 | 0.1079 | 0.0047 | ** | 0.0753 | |||||||||
imp_price | -0.1635 | 0.0381 | * | -0.0654 | -0.1223 | 0.0017 | ** | -0.0792 | ||||||||||||
imp_envfriend | ||||||||||||||||||||
imp_divers | -0.1005 | 0.0692 | . | -0.0484 | 0.2371 | 0.0018 | ** | 0.1122 | ||||||||||||
imp_tradition | -0.1851 | 0.0080 | ** | -0.0946 | -0.1794 | 9.9e-05 | *** | -0.1372 | ||||||||||||
imp_local | 0.1011 | 0.0379 | * | 0.0540 | 0.0989 | 0.0594 | . | 0.0693 | -0.0850 | 0.0067 | ** | -0.0694 | ||||||||
imp_product | 0.0841 | 0.1043 | 0.0437 | -0.3037 | 3.2e-05 | *** | -0.1444 | -0.2249 | 0.0212 | * | -0.0913 | -0.1321 | 0.0758 | . | -0.0597 | |||||
healty_diet | 0.3819 | 7.0e-11 | *** | 0.1920 | 0.2807 | 2.6e-05 | *** | 0.1431 | 0.1410 | 0.0036 | ** | 0.0785 | ||||||||
local_food | -0.1462 | 0.0884 | . | -0.0675 | 0.2146 | 6.2e-04 | *** | 0.1154 | ||||||||||||
meet_food_needs | -0.0891 | 0.1595 | -0.0393 | 0.3155 | 6.0e-07 | *** | 0.1665 | 0.2813 | 5.2e-04 | *** | 0.1104 | 0.1220 | 0.0046 | ** | 0.0761 | |||||
lacking | 0.1893 | 0.0298 | * | 0.0646 | 0.1926 | 0.1407 | 0.0578 | 0.4019 | 1.7e-04 | *** | 0.1244 | 0.2799 | 6.0e-04 | *** | 0.0900 | |||||
innov_food_interest | 0.6159 | 1.5e-04 | *** | 0.1591 | 0.3736 | 0.0391 | * | 0.1167 | -0.6033 | 0.0132 | * | -0.1548 | ||||||||
Obstacle.habits | -0.8531 | 0.0021 | ** | -0.2522 | 0.6043 | 0.0109 | * | 0.2410 | ||||||||||||
Obstacle.healthy | 0.2768 | 0.0094 | ** | 0.1021 | -1.1224 | 0.0637 | . | -0.2996 | ||||||||||||
Obstacle.price | -0.2197 | 0.0200 | * | -0.0865 | ||||||||||||||||
Obstacle.taste | 1.5790 | 0.0101 | * | 0.4657 | -0.2958 | 0.0352 | * | -0.1224 | 0.1537 | 0.0612 | . | 0.0581 | ||||||||
Obstacle.trust | -0.4417 | 0.0307 | * | -0.1703 | ||||||||||||||||
Reason.availability | 0.3935 | 0.0281 | * | 0.0880 | -0.4758 | 0.0153 | * | -0.1520 | 0.2544 | 0.1018 | 0.0568 | 0.2719 | 0.0021 | ** | 0.1012 | |||||
Reason.culture | 0.7652 | 3.3e-04 | *** | 0.2149 | ||||||||||||||||
Reason.farmers | -0.5237 | 0.0399 | * | -0.1279 | 0.5785 | 0.0025 | ** | 0.1755 | ||||||||||||
Reason.status | -0.0684 | 0.1237 | -0.0501 | |||||||||||||||||
Reason.trust | 0.6937 | 0.0050 | ** | 0.1654 | ||||||||||||||||
Reason.wellness | -0.7690 | 2.0e-06 | *** | -0.1632 | 0.7125 | 0.0052 | ** | 0.1621 | ||||||||||||
yest_celebrationYes | 0.2913 | 0.0955 | . | 0.0520 | 0.7104 | 0.0353 | * | 0.0799 | 0.3131 | 0.0171 | * | 0.0599 | ||||||||
r.squared | 0.2312 | 0.2250 | 0.1178 | 0.1653 | 0.1126 | |||||||||||||||
adj.r.squared | 0.2148 | 0.2128 | 0.0880 | 0.1478 | 0.0989 | |||||||||||||||
fstatistic | 14.0696 | 0.0e+00 | 18.3543 | 0.0e+00 | 3.9519 | 5.5e-09 | 9.4581 | 0.0e+00 | 8.2251 | 0.0e+00 | ||||||||||
n.obs | 1,291.0000 | 900.0000 | 674.0000 | 976.0000 | 1,515.0000 |
variable | KE.p.value | KE.signif | MO.p.value | MO.signif | TN.p.value | TN.signif | TZ.p.value | TZ.signif | UG.p.value | UG.signif |
city | 3.0e-05 | *** | 8.4e-05 | *** | ||||||
gender | 0.0354 | * | ||||||||
age | 0.0869 | . | 0.0090 | ** | ||||||
HH_size | 0.0025 | ** | 0.00092 | *** | ||||||
children0_2 | 0.0955 | . | ||||||||
children3_13 | 0.0158 | * | 0.0513 | . | ||||||
educ3 | 5.6e-06 | *** | 0.0916 | . | 0.0204 | * | ||||
income_avg | 3.6e-08 | *** | 0.0322 | * | 0.0279 | * | ||||
hh_salary | 0.0012 | ** | 0.0389 | * | ||||||
hh_head_employ_3 | 0.1049 | 0.0032 | ** | 0.1187 | ||||||
income_food | 0.0042 | ** | 0.0842 | . | 0.0107 | * | ||||
imp_availability | 0.0043 | ** | 0.0727 | . | ||||||
imp_nutrition | 0.0566 | . | ||||||||
imp_provider | 0.0035 | ** | 0.1079 | 0.0047 | ** | |||||
imp_price | 0.0381 | * | 0.0017 | ** | ||||||
imp_envfriend | ||||||||||
imp_divers | 0.0692 | . | 0.0018 | ** | ||||||
imp_tradition | 0.0080 | ** | 9.9e-05 | *** | ||||||
imp_local | 0.0379 | * | 0.0594 | . | 0.0067 | ** | ||||
imp_product | 0.1043 | 3.2e-05 | *** | 0.0212 | * | 0.0758 | . | |||
healty_diet | 7.0e-11 | *** | 2.6e-05 | *** | 0.0036 | ** | ||||
local_food | 0.0884 | . | 6.2e-04 | *** | ||||||
meet_food_needs | 0.1595 | 6.0e-07 | *** | 5.2e-04 | *** | 0.0046 | ** | |||
lacking | 0.0298 | * | 0.1407 | 1.7e-04 | *** | 0.00060 | *** | |||
innov_food_interest | 1.5e-04 | *** | 0.0391 | * | 0.0132 | * | ||||
Obstacle.habits | 0.0021 | ** | 0.0109 | * | ||||||
Obstacle.healthy | 0.0094 | ** | 0.0637 | . | ||||||
Obstacle.price | 0.0200 | * | ||||||||
Obstacle.taste | 0.0101 | * | 0.0352 | * | 0.0612 | . | ||||
Obstacle.trust | 0.0307 | * | ||||||||
Reason.availability | 0.0281 | * | 0.0153 | * | 0.1018 | 0.0021 | ** | |||
Reason.culture | 3.3e-04 | *** | ||||||||
Reason.farmers | 0.0399 | * | 0.0025 | ** | ||||||
Reason.status | 0.1237 | |||||||||
Reason.trust | 0.0050 | ** | ||||||||
Reason.wellness | 2.0e-06 | *** | 0.0052 | ** | ||||||
yest_celebration | 0.0955 | . | 0.0353 | * | 0.0171 | * | ||||
Residuals |
variable | Estimate | Std.Error | t.value | p.value | signif |
(Intercept) | 1.9234 | 0.7459 | 2.5787 | 0.0099 | ** |
cityKE.Kitui | 0.2140 | 0.1662 | 1.2877 | 0.1979 | |
cityKE.Nyeri | 0.1077 | 0.1738 | 0.6199 | 0.5353 | |
cityMO.Beni Mellal | 0.9562 | 0.1679 | 5.6957 | 1.3e-08 | *** |
cityMO.Meknes | 1.5294 | 0.1661 | 9.2063 | 5.0e-20 | *** |
cityTN.Sousse | 0.6862 | 0.1740 | 3.9443 | 8.1e-05 | *** |
cityTN.Tunis | 1.3940 | 0.1811 | 7.6955 | 1.7e-14 | *** |
cityTZ.Daressalaam | -0.0002 | 0.1681 | -0.0012 | 0.9991 | |
cityTZ.Morogoro | 0.0916 | 0.1734 | 0.5282 | 0.5974 | |
cityUG.Kalerwe | 0.7608 | 0.1629 | 4.6693 | 3.1e-06 | *** |
cityUG.Kampala | 0.8121 | 0.1657 | 4.9023 | 9.8e-07 | *** |
cityUG.Kapeeka | 0.6289 | 0.1629 | 3.8608 | 1.1e-04 | *** |
genderFemale | 0.1349 | 0.0627 | 2.1506 | 0.0316 | * |
age | 0.0006 | 0.0026 | 0.2169 | 0.8283 | |
HH_size | 0.0241 | 0.0149 | 1.6174 | 0.1059 | |
children0_2Yes | 0.1497 | 0.0746 | 2.0071 | 0.0448 | * |
children3_13Yes | 0.1832 | 0.0720 | 2.5427 | 0.0110 | * |
educ3Primary | 0.5027 | 0.1197 | 4.1985 | 2.7e-05 | *** |
educ3Secondary or more | 0.4846 | 0.1196 | 4.0508 | 5.2e-05 | *** |
income_avgsomewhat lower than average | 0.3849 | 0.0871 | 4.4179 | 1.0e-05 | *** |
income_avgabout average | 0.4445 | 0.1098 | 4.0491 | 5.2e-05 | *** |
income_avgsomewhat higher than average | 0.5641 | 0.1193 | 4.7301 | 2.3e-06 | *** |
income_avghigher than average | 0.7763 | 0.1348 | 5.7600 | 8.9e-09 | *** |
hh_salary | 0.1091 | 0.0373 | 2.9278 | 0.0034 | ** |
hh_head_employ_3self.employed | 0.2210 | 0.0820 | 2.6952 | 0.0071 | ** |
hh_head_employ_3Clerk.Regular.Manager | 0.1482 | 0.0849 | 1.7464 | 0.0808 | . |
income_foodLess than half (from 25% to 50%) | 0.0181 | 0.1183 | 0.1530 | 0.8784 | |
income_foodAbout half (50%) | 0.1668 | 0.1121 | 1.4875 | 0.1370 | |
income_foodMore than half (from 50% to 75%) | 0.1591 | 0.1182 | 1.3459 | 0.1784 | |
income_foodAlmost all (from 75% to 100%). | -0.3667 | 0.1455 | -2.5200 | 0.0118 | * |
imp_availability | -0.0225 | 0.0281 | -0.8031 | 0.4219 | |
imp_nutrition | 0.0243 | 0.0305 | 0.7963 | 0.4259 | |
imp_provider | 0.1058 | 0.0270 | 3.9121 | 9.3e-05 | *** |
imp_price | -0.1158 | 0.0319 | -3.6242 | 2.9e-04 | *** |
imp_envfriend | -0.0030 | 0.0268 | -0.1122 | 0.9107 | |
imp_divers | -0.0030 | 0.0317 | -0.0960 | 0.9236 | |
imp_tradition | -0.0424 | 0.0252 | -1.6822 | 0.0926 | . |
imp_local | 0.0099 | 0.0244 | 0.4054 | 0.6852 | |
imp_product | -0.0499 | 0.0289 | -1.7290 | 0.0839 | . |
healty_diet | 0.2113 | 0.0310 | 6.8235 | 1.0e-11 | *** |
local_food | 0.0187 | 0.0251 | 0.7435 | 0.4572 | |
meet_food_needs | 0.1205 | 0.0324 | 3.7197 | 2.0e-04 | *** |
lacking | 0.2432 | 0.0461 | 5.2771 | 1.4e-07 | *** |
innov_food_interest | -0.1909 | 0.3759 | -0.5077 | 0.6117 | |
Obstacle.habits | 0.2496 | 0.3203 | 0.7792 | 0.4359 | |
Obstacle.healthy | -0.5892 | 0.3153 | -1.8690 | 0.0617 | . |
Obstacle.price | -0.4474 | 0.3222 | -1.3887 | 0.1650 | |
Obstacle.taste | 1.0245 | 0.4592 | 2.2309 | 0.0257 | * |
Obstacle.trust | -0.2459 | 0.2050 | -1.1995 | 0.2304 | |
Reason.availability | 0.2381 | 0.2180 | 1.0922 | 0.2748 | |
Reason.culture | -1.0316 | 1.0732 | -0.9612 | 0.3365 | |
Reason.farmers | 0.4602 | 0.4941 | 0.9313 | 0.3518 | |
Reason.status | 0.0046 | 0.0635 | 0.0730 | 0.9418 | |
Reason.trust | 0.7819 | 0.5054 | 1.5472 | 0.1219 | |
Reason.wellness | 0.4788 | 0.4494 | 1.0654 | 0.2867 | |
r.squared | 0.1547 | ||||
adj.r.squared | 0.1451 | ||||
fstatistic | 16.0322 | 54.0000 | 4,729.0000 | 0.0e+00 | |
n.obs | 4,784.0000 |
variable | Sum Sq | Df | F value | p.value | signif |
city | 724.5259 | 11 | 15.7277 | 1.1e-30 | *** |
gender | 19.3693 | 1 | 4.6251 | 0.0316 | * |
age | 0.1971 | 1 | 0.0471 | 0.8283 | |
HH_size | 10.9552 | 1 | 2.6159 | 0.1059 | |
children0_2 | 16.8703 | 1 | 4.0283 | 0.0448 | * |
children3_13 | 27.0755 | 1 | 6.4652 | 0.0110 | * |
educ3 | 79.2383 | 2 | 9.4604 | 7.9e-05 | *** |
income_avg | 163.6559 | 4 | 9.7696 | 7.2e-08 | *** |
hh_salary | 35.8980 | 1 | 8.5718 | 0.0034 | ** |
hh_head_employ_3 | 30.5397 | 2 | 3.6462 | 0.0262 | * |
income_food | 101.0372 | 4 | 6.0315 | 7.7e-05 | *** |
imp_availability | 2.7012 | 1 | 0.6450 | 0.4219 | |
imp_nutrition | 2.6555 | 1 | 0.6341 | 0.4259 | |
imp_provider | 64.0930 | 1 | 15.3044 | 9.3e-05 | *** |
imp_price | 55.0072 | 1 | 13.1348 | 2.9e-04 | *** |
imp_envfriend | 0.0527 | 1 | 0.0126 | 0.9107 | |
imp_divers | 0.0386 | 1 | 0.0092 | 0.9236 | |
imp_tradition | 11.8510 | 1 | 2.8298 | 0.0926 | . |
imp_local | 0.6884 | 1 | 0.1644 | 0.6852 | |
imp_product | 12.5191 | 1 | 2.9893 | 0.0839 | . |
healty_diet | 194.9904 | 1 | 46.5605 | 1.0e-11 | *** |
local_food | 2.3148 | 1 | 0.5527 | 0.4572 | |
meet_food_needs | 57.9450 | 1 | 13.8363 | 2.0e-04 | *** |
lacking | 116.6237 | 1 | 27.8478 | 1.4e-07 | *** |
innov_food_interest | 1.0796 | 1 | 0.2578 | 0.6117 | |
Obstacle.habits | 2.5426 | 1 | 0.6071 | 0.4359 | |
Obstacle.healthy | 14.6286 | 1 | 3.4931 | 0.0617 | . |
Obstacle.price | 8.0757 | 1 | 1.9284 | 0.1650 | |
Obstacle.taste | 20.8437 | 1 | 4.9771 | 0.0257 | * |
Obstacle.trust | 6.0258 | 1 | 1.4389 | 0.2304 | |
Reason.availability | 4.9960 | 1 | 1.1930 | 0.2748 | |
Reason.culture | 3.8695 | 1 | 0.9240 | 0.3365 | |
Reason.farmers | 3.6320 | 1 | 0.8673 | 0.3518 | |
Reason.status | 0.0223 | 1 | 0.0053 | 0.9418 | |
Reason.trust | 10.0253 | 1 | 2.3939 | 0.1219 | |
Reason.wellness | 4.7537 | 1 | 1.1351 | 0.2867 | |
Residuals | 19,804.5468 | 4,729 |
variable | Estimate | Std.Error | t.value | p.value | signif |
(Intercept) | 3.2036 | 0.3088 | 10.3754 | 5.9e-25 | *** |
cityKE.Kitui | 0.1330 | 0.1535 | 0.8664 | 0.3863 | |
cityKE.Nyeri | -0.0730 | 0.1577 | -0.4631 | 0.6433 | |
cityMO.Beni Mellal | 0.7814 | 0.1574 | 4.9635 | 7.2e-07 | *** |
cityMO.Meknes | 1.4117 | 0.1570 | 8.9908 | 3.5e-19 | *** |
cityTN.Sousse | 0.6617 | 0.1662 | 3.9800 | 7.0e-05 | *** |
cityTN.Tunis | 1.2628 | 0.1626 | 7.7675 | 9.7e-15 | *** |
cityTZ.Daressalaam | -0.0627 | 0.1495 | -0.4192 | 0.6751 | |
cityTZ.Morogoro | 0.0186 | 0.1490 | 0.1249 | 0.9006 | |
cityUG.Kalerwe | 0.6472 | 0.1504 | 4.3037 | 1.7e-05 | *** |
cityUG.Kampala | 0.6434 | 0.1533 | 4.1965 | 2.8e-05 | *** |
cityUG.Kapeeka | 0.5702 | 0.1524 | 3.7413 | 1.9e-04 | *** |
children3_13Yes | 0.2513 | 0.0651 | 3.8604 | 1.1e-04 | *** |
educ3Primary | 0.5430 | 0.1193 | 4.5525 | 5.4e-06 | *** |
educ3Secondary or more | 0.5418 | 0.1154 | 4.6946 | 2.7e-06 | *** |
income_avgsomewhat lower than average | 0.4213 | 0.0862 | 4.8858 | 1.1e-06 | *** |
income_avgabout average | 0.4781 | 0.1081 | 4.4235 | 9.9e-06 | *** |
income_avgsomewhat higher than average | 0.6098 | 0.1173 | 5.1995 | 2.1e-07 | *** |
income_avghigher than average | 0.8604 | 0.1316 | 6.5367 | 6.9e-11 | *** |
hh_salary | 0.1348 | 0.0341 | 3.9481 | 8.0e-05 | *** |
imp_provider | 0.1031 | 0.0254 | 4.0670 | 4.8e-05 | *** |
imp_price | -0.1292 | 0.0306 | -4.2240 | 2.4e-05 | *** |
healty_diet | 0.2300 | 0.0300 | 7.6702 | 2.1e-14 | *** |
meet_food_needs | 0.1437 | 0.0320 | 4.4908 | 7.3e-06 | *** |
lacking | 0.2468 | 0.0451 | 5.4669 | 4.8e-08 | *** |
innov_food_interest | 0.2759 | 0.0507 | 5.4450 | 5.4e-08 | *** |
r.squared | 0.1404 | ||||
adj.r.squared | 0.1359 | ||||
fstatistic | 31.0944 | 25.0000 | 4,758.0000 | 0.0e+00 | |
n.obs | 4,784.0000 |
variable | Sum Sq | Df | F value | p.value | signif |
city | 888.6979 | 11 | 19.0867 | 5.0e-38 | *** |
children3_13 | 63.0799 | 1 | 14.9026 | 1.1e-04 | *** |
educ3 | 100.1599 | 2 | 11.8313 | 7.5e-06 | *** |
income_avg | 210.4618 | 4 | 12.4304 | 4.6e-10 | *** |
hh_salary | 65.9774 | 1 | 15.5871 | 8.0e-05 | *** |
imp_provider | 70.0130 | 1 | 16.5405 | 4.8e-05 | *** |
imp_price | 75.5221 | 1 | 17.8420 | 2.4e-05 | *** |
healty_diet | 249.0277 | 1 | 58.8326 | 2.1e-14 | *** |
meet_food_needs | 85.3647 | 1 | 20.1673 | 7.3e-06 | *** |
lacking | 126.5050 | 1 | 29.8867 | 4.8e-08 | *** |
innov_food_interest | 125.4945 | 1 | 29.6480 | 5.4e-08 | *** |
Residuals | 20,139.7502 | 4,758 |
variable | Estimate | Std.Error | t.value | p.value | signif |
(Intercept) | 8.5247 | 0.1373 | 62.0972 | 0.00 | *** |
risk | -0.0158 | 0.0239 | -0.6615 | 0.5084 | |
r.squared | 0.0003 | ||||
adj.r.squared | -0.0004 | ||||
fstatistic | 0.4376 | 1.0000 | 1,568.0000 | 0.5084 | |
n.obs | 1,570.0000 |
variable | Estimate | Std.Error | t.value | p.value | signif |
(Intercept) | 8.2569 | 0.0958 | 86.1493 | 0.00 | *** |
time | 0.0127 | 0.0138 | 0.9259 | 0.3546 | |
r.squared | 0.0004 | ||||
adj.r.squared | -0.0001 | ||||
fstatistic | 0.8574 | 1.0000 | 2,016.0000 | 0.3546 | |
n.obs | 2,018.0000 |
variable | Estimate | Std.Error | t.value | p.value | signif |
(Intercept) | 8.2345 | 0.1411 | 58.3545 | 0.000 | *** |
PGG.1 | 0.0039 | 0.0023 | 1.6568 | 0.0979 | . |
PGG.2 | -0.0018 | 0.0022 | -0.8126 | 0.4166 | |
r.squared | 0.0029 | ||||
adj.r.squared | 0.0010 | ||||
fstatistic | 1.5228 | 2.0000 | 1,049.0000 | 0.2186 | |
n.obs | 1,052.0000 |
variable | Estimate | Std.Error | t.value | p.value | signif |
(Intercept) | 8.4968 | 0.1218 | 69.7829 | 0.000 | *** |
Trust.1 | -0.0002 | 0.0045 | -0.0484 | 0.9614 | |
Trust.2 | 0.0002 | 0.0033 | 0.0509 | 0.9594 | |
Trust.3 | -0.0019 | 0.0021 | -0.8968 | 0.3700 | |
Trust.4 | -0.0009 | 0.0016 | -0.5461 | 0.5851 | |
r.squared | 0.0064 | ||||
adj.r.squared | 0.0037 | ||||
fstatistic | 2.3420 | 4.0000 | 1,448.0000 | 0.0530 | |
n.obs | 1,453.0000 |
country | n | avg | sd | median |
KE | 1,291 | 3.395019 | 0.7438695 | 3.479202 |
MO | 900 | 4.046933 | 0.7810282 | 4.146254 |
TN | 674 | 3.872472 | 0.7661246 | 3.967603 |
TZ | 976 | 4.190486 | 0.6813964 | 4.291344 |
UG | 1,515 | 3.749216 | 0.6097538 | 3.756556 |
Total | 5,356 | 3.809789 | 0.7602628 | 3.876982 |
Test | Statistic | df | p.value | Signif |
Kruskal-Wallis rank sum test | 5,355 | 2210 | 5.287e-261 | *** |
income_avg | n | avg | sd | median |
lower than average | 1,207 | 3.753482 | 0.8130557 | 3.790144 |
somewhat lower than average | 1,978 | 3.846051 | 0.6923425 | 3.903963 |
about average | 847 | 3.860031 | 0.7251989 | 3.906979 |
somewhat higher than average | 684 | 3.787525 | 0.7861516 | 3.878621 |
higher than average | 640 | 3.761215 | 0.8602171 | 3.875530 |
Total | 5,356 | 3.809789 | 0.7602628 | 3.876982 |
Test | Statistic | df | p.value | Signif |
Kruskal-Wallis rank sum test | 10.47 | 4 | 0.03325 | * |
variable | Estimate | Std.Error | t.value | p.value | signif |
(Intercept) | 1.4700 | 0.2199 | 6.6848 | 2.5e-11 | *** |
cityKE.Kitui | 0.1555 | 0.0508 | 3.0592 | 0.0022 | ** |
cityKE.Nyeri | -0.0895 | 0.0533 | -1.6797 | 0.0931 | . |
cityMO.Beni Mellal | 0.6594 | 0.0495 | 13.3184 | 7.9e-40 | *** |
cityMO.Meknes | 0.5973 | 0.0481 | 12.4208 | 6.1e-35 | *** |
cityTN.Sousse | 0.4709 | 0.0512 | 9.2002 | 5.0e-20 | *** |
cityTN.Tunis | 0.2993 | 0.0551 | 5.4327 | 5.8e-08 | *** |
cityTZ.Daressalaam | 0.6841 | 0.0494 | 13.8540 | 6.7e-43 | *** |
cityTZ.Morogoro | 0.6867 | 0.0512 | 13.4225 | 2.0e-40 | *** |
cityUG.Kalerwe | 0.4762 | 0.0476 | 10.0149 | 2.1e-23 | *** |
cityUG.Kampala | 0.5209 | 0.0486 | 10.7192 | 1.5e-26 | *** |
cityUG.Kapeeka | 0.4237 | 0.0481 | 8.8137 | 1.6e-18 | *** |
genderFemale | 0.0160 | 0.0187 | 0.8562 | 0.3919 | |
age | 0.0019 | 0.0008 | 2.4533 | 0.0142 | * |
HH_size | -0.0036 | 0.0044 | -0.8073 | 0.4195 | |
children0_2Yes | 0.0080 | 0.0222 | 0.3584 | 0.7200 | |
children3_13Yes | 0.0206 | 0.0215 | 0.9594 | 0.3374 | |
educ3Primary | -0.0106 | 0.0354 | -0.2981 | 0.7656 | |
educ3Secondary or more | 0.0557 | 0.0354 | 1.5745 | 0.1154 | |
income_avgsomewhat lower than average | 0.0477 | 0.0257 | 1.8549 | 0.0637 | . |
income_avgabout average | 0.0799 | 0.0321 | 2.4883 | 0.0129 | * |
income_avgsomewhat higher than average | 0.1285 | 0.0357 | 3.6028 | 3.2e-04 | *** |
income_avghigher than average | 0.0927 | 0.0406 | 2.2834 | 0.0224 | * |
hh_salary | 0.0175 | 0.0110 | 1.5988 | 0.1099 | |
hh_head_employ_3self.employed | 0.0662 | 0.0244 | 2.7078 | 0.0068 | ** |
hh_head_employ_3Clerk.Regular.Manager | 0.0269 | 0.0252 | 1.0670 | 0.2860 | |
income_foodLess than half (from 25% to 50%) | 0.0735 | 0.0339 | 2.1694 | 0.0301 | * |
income_foodAbout half (50%) | 0.0583 | 0.0320 | 1.8209 | 0.0687 | . |
income_foodMore than half (from 50% to 75%) | -0.0090 | 0.0341 | -0.2631 | 0.7925 | |
income_foodAlmost all (from 75% to 100%). | 0.0000 | 0.0425 | 0.0010 | 0.9992 | |
HDDS12.Tot | 0.0235 | 0.0043 | 5.4503 | 5.3e-08 | *** |
meet_food_needs | 0.0866 | 0.0093 | 9.2918 | 2.2e-20 | *** |
imp_availability | 0.0139 | 0.0083 | 1.6790 | 0.0932 | . |
imp_nutrition | 0.0126 | 0.0091 | 1.3894 | 0.1648 | |
imp_provider | 0.0215 | 0.0080 | 2.6775 | 0.0074 | ** |
imp_price | 0.0371 | 0.0094 | 3.9617 | 7.5e-05 | *** |
imp_envfriend | 0.0191 | 0.0079 | 2.4041 | 0.0162 | * |
imp_divers | 0.0499 | 0.0094 | 5.3098 | 1.1e-07 | *** |
imp_tradition | 0.0126 | 0.0075 | 1.6853 | 0.0920 | . |
imp_local | 0.0155 | 0.0073 | 2.1384 | 0.0325 | * |
imp_product | 0.0631 | 0.0085 | 7.4160 | 1.4e-13 | *** |
healty_diet | 0.0885 | 0.0092 | 9.6438 | 7.9e-22 | *** |
local_food | 0.0003 | 0.0075 | 0.0393 | 0.9687 | |
innov_food_interest | 0.1055 | 0.1108 | 0.9522 | 0.3410 | |
Obstacle.habits | -0.2079 | 0.0937 | -2.2194 | 0.0265 | * |
Obstacle.healthy | 0.2081 | 0.0935 | 2.2240 | 0.0262 | * |
Obstacle.price | 0.0394 | 0.0949 | 0.4150 | 0.6782 | |
Obstacle.taste | -0.2267 | 0.1361 | -1.6650 | 0.0960 | . |
Obstacle.trust | 0.2094 | 0.0601 | 3.4859 | 4.9e-04 | *** |
Reason.availability | 0.0233 | 0.0641 | 0.3630 | 0.7166 | |
Reason.culture | 0.3967 | 0.3160 | 1.2555 | 0.2094 | |
Reason.farmers | -0.1828 | 0.1454 | -1.2578 | 0.2085 | |
Reason.status | -0.0179 | 0.0187 | -0.9559 | 0.3392 | |
Reason.trust | -0.2349 | 0.1494 | -1.5717 | 0.1161 | |
Reason.wellness | -0.1618 | 0.1326 | -1.2196 | 0.2227 | |
yest_celebrationYes | -0.0288 | 0.0298 | -0.9673 | 0.3334 | |
r.squared | 0.2926 | ||||
adj.r.squared | 0.2853 | ||||
fstatistic | 39.8659 | 55.0000 | 5,300.0000 | 0.0e+00 | |
n.obs | 5,356.0000 |
variable | Sum Sq | Df | F value | p.value | signif |
city | 202.0509 | 11 | 44.4647 | 1.9e-93 | *** |
gender | 0.3028 | 1 | 0.7331 | 0.3919 | |
age | 2.4864 | 1 | 6.0189 | 0.0142 | * |
HH_size | 0.2692 | 1 | 0.6517 | 0.4195 | |
children0_2 | 0.0531 | 1 | 0.1285 | 0.7200 | |
children3_13 | 0.3803 | 1 | 0.9205 | 0.3374 | |
educ3 | 3.8311 | 2 | 4.6370 | 0.0097 | ** |
income_avg | 5.6714 | 4 | 3.4323 | 0.0083 | ** |
hh_salary | 1.0559 | 1 | 2.5561 | 0.1099 | |
hh_head_employ_3 | 3.2293 | 2 | 3.9086 | 0.0201 | * |
income_food | 6.1392 | 4 | 3.7153 | 0.0050 | ** |
HDDS12.Tot | 12.2712 | 1 | 29.7054 | 5.3e-08 | *** |
meet_food_needs | 35.6661 | 1 | 86.3382 | 2.2e-20 | *** |
imp_availability | 1.1646 | 1 | 2.8192 | 0.0932 | . |
imp_nutrition | 0.7974 | 1 | 1.9303 | 0.1648 | |
imp_provider | 2.9614 | 1 | 7.1688 | 0.0074 | ** |
imp_price | 6.4837 | 1 | 15.6954 | 7.5e-05 | *** |
imp_envfriend | 2.3876 | 1 | 5.7796 | 0.0162 | * |
imp_divers | 11.6467 | 1 | 28.1935 | 1.1e-07 | *** |
imp_tradition | 1.1733 | 1 | 2.8403 | 0.0920 | . |
imp_local | 1.8889 | 1 | 4.5726 | 0.0325 | * |
imp_product | 22.7193 | 1 | 54.9974 | 1.4e-13 | *** |
healty_diet | 38.4197 | 1 | 93.0038 | 7.9e-22 | *** |
local_food | 0.0006 | 1 | 0.0015 | 0.9687 | |
innov_food_interest | 0.3746 | 1 | 0.9067 | 0.3410 | |
Obstacle.habits | 2.0349 | 1 | 4.9259 | 0.0265 | * |
Obstacle.healthy | 2.0433 | 1 | 4.9462 | 0.0262 | * |
Obstacle.price | 0.0711 | 1 | 0.1722 | 0.6782 | |
Obstacle.taste | 1.1452 | 1 | 2.7722 | 0.0960 | . |
Obstacle.trust | 5.0198 | 1 | 12.1516 | 4.9e-04 | *** |
Reason.availability | 0.0544 | 1 | 0.1318 | 0.7166 | |
Reason.culture | 0.6512 | 1 | 1.5763 | 0.2094 | |
Reason.farmers | 0.6535 | 1 | 1.5821 | 0.2085 | |
Reason.status | 0.3775 | 1 | 0.9138 | 0.3392 | |
Reason.trust | 1.0204 | 1 | 2.4702 | 0.1161 | |
Reason.wellness | 0.6144 | 1 | 1.4874 | 0.2227 | |
yest_celebration | 0.3865 | 1 | 0.9357 | 0.3334 | |
Residuals | 2,189.4193 | 5,300 |
variable | Estimate | Std.Error | t.value | p.value | signif | Std.Estimate |
(Intercept) | 1.5509 | 0.1634 | 9.4917 | 3.3e-21 | *** | |
cityKE.Kitui | 0.1553 | 0.0497 | 3.1228 | 0.0018 | ** | 0.0549 |
cityKE.Nyeri | -0.0885 | 0.0513 | -1.7245 | 0.0847 | . | -0.0301 |
cityMO.Beni Mellal | 0.6501 | 0.0479 | 13.5745 | 2.8e-41 | *** | 0.2248 |
cityMO.Meknes | 0.5856 | 0.0461 | 12.7047 | 1.9e-36 | *** | 0.2241 |
cityTN.Sousse | 0.4698 | 0.0501 | 9.3833 | 9.3e-21 | *** | 0.1511 |
cityTN.Tunis | 0.2958 | 0.0533 | 5.5449 | 3.1e-08 | *** | 0.0938 |
cityTZ.Daressalaam | 0.6800 | 0.0486 | 13.9812 | 1.2e-43 | *** | 0.2574 |
cityTZ.Morogoro | 0.6860 | 0.0500 | 13.7336 | 3.3e-42 | *** | 0.2597 |
cityUG.Kalerwe | 0.4751 | 0.0467 | 10.1801 | 4.0e-24 | *** | 0.1818 |
cityUG.Kampala | 0.5162 | 0.0475 | 10.8557 | 3.6e-27 | *** | 0.1982 |
cityUG.Kapeeka | 0.4219 | 0.0472 | 8.9377 | 5.4e-19 | *** | 0.1630 |
age | 0.0017 | 0.0007 | 2.2735 | 0.0230 | * | 0.0291 |
educ3Primary | -0.0136 | 0.0353 | -0.3861 | 0.6994 | -0.0080 | |
educ3Secondary or more | 0.0525 | 0.0352 | 1.4926 | 0.1356 | 0.0333 | |
income_avgsomewhat lower than average | 0.0480 | 0.0257 | 1.8679 | 0.0618 | . | 0.0305 |
income_avgabout average | 0.0798 | 0.0321 | 2.4909 | 0.0128 | * | 0.0383 |
income_avgsomewhat higher than average | 0.1289 | 0.0356 | 3.6185 | 3.0e-04 | *** | 0.0566 |
income_avghigher than average | 0.0930 | 0.0405 | 2.2954 | 0.0217 | * | 0.0397 |
hh_salary | 0.0141 | 0.0100 | 1.4140 | 0.1574 | 0.0175 | |
hh_head_employ_3self.employed | 0.0658 | 0.0244 | 2.6963 | 0.0070 | ** | 0.0422 |
hh_head_employ_3Clerk.Regular.Manager | 0.0275 | 0.0251 | 1.0931 | 0.2744 | 0.0172 | |
income_foodLess than half (from 25% to 50%) | 0.0757 | 0.0337 | 2.2434 | 0.0249 | * | 0.0416 |
income_foodAbout half (50%) | 0.0611 | 0.0319 | 1.9140 | 0.0557 | . | 0.0386 |
income_foodMore than half (from 50% to 75%) | -0.0062 | 0.0339 | -0.1834 | 0.8545 | -0.0034 | |
income_foodAlmost all (from 75% to 100%). | 0.0020 | 0.0423 | 0.0479 | 0.9618 | 0.0007 | |
HDDS12.Tot | 0.0237 | 0.0043 | 5.5088 | 3.8e-08 | *** | 0.0687 |
meet_food_needs | 0.0866 | 0.0093 | 9.3168 | 1.7e-20 | *** | 0.1244 |
imp_availability | 0.0143 | 0.0083 | 1.7258 | 0.0844 | . | 0.0224 |
imp_provider | 0.0226 | 0.0080 | 2.8331 | 0.0046 | ** | 0.0379 |
imp_price | 0.0380 | 0.0093 | 4.0662 | 4.8e-05 | *** | 0.0518 |
imp_envfriend | 0.0202 | 0.0079 | 2.5656 | 0.0103 | * | 0.0368 |
imp_divers | 0.0550 | 0.0087 | 6.2958 | 3.3e-10 | *** | 0.0841 |
imp_tradition | 0.0121 | 0.0073 | 1.6534 | 0.0983 | . | 0.0246 |
imp_local | 0.0160 | 0.0072 | 2.2299 | 0.0258 | * | 0.0303 |
imp_product | 0.0644 | 0.0085 | 7.6060 | 3.3e-14 | *** | 0.0965 |
healty_diet | 0.0898 | 0.0091 | 9.8627 | 9.5e-23 | *** | 0.1268 |
innov_food_interest | 0.1408 | 0.0543 | 2.5906 | 0.0096 | ** | 0.1200 |
Obstacle.habits | -0.2355 | 0.0565 | -4.1645 | 3.2e-05 | *** | -0.2514 |
Obstacle.healthy | 0.2243 | 0.0850 | 2.6394 | 0.0083 | ** | 0.2180 |
Obstacle.price | 0.0689 | 0.0466 | 1.4797 | 0.1390 | 0.0705 | |
Obstacle.taste | -0.2602 | 0.1011 | -2.5727 | 0.0101 | * | -0.2731 |
Obstacle.trust | 0.2245 | 0.0428 | 5.2484 | 1.6e-07 | *** | 0.2331 |
Reason.culture | 0.4920 | 0.1731 | 2.8418 | 0.0045 | ** | 0.4556 |
Reason.farmers | -0.2228 | 0.0902 | -2.4706 | 0.0135 | * | -0.1992 |
Reason.status | -0.0233 | 0.0124 | -1.8795 | 0.0602 | . | -0.0447 |
Reason.trust | -0.2791 | 0.0888 | -3.1427 | 0.0017 | ** | -0.2263 |
Reason.wellness | -0.2003 | 0.0822 | -2.4360 | 0.0149 | * | -0.1420 |
r.squared | 0.2920 | |||||
adj.r.squared | 0.2857 | |||||
fstatistic | 46.5759 | 47.0000 | 5,308.0000 | 0.0e+00 | ||
n.obs | 5,356.0000 |
variable | Sum Sq | Df | F value | p.value | signif |
city | 203.3872 | 11 | 44.7853 | 3.8e-94 | *** |
age | 2.1339 | 1 | 5.1687 | 0.0230 | * |
educ3 | 3.8295 | 2 | 4.6378 | 0.0097 | ** |
income_avg | 5.7121 | 4 | 3.4589 | 0.0079 | ** |
hh_salary | 0.8255 | 1 | 1.9994 | 0.1574 | |
hh_head_employ_3 | 3.1779 | 2 | 3.8487 | 0.0214 | * |
income_food | 6.2359 | 4 | 3.7761 | 0.0045 | ** |
HDDS12.Tot | 12.5288 | 1 | 30.3468 | 3.8e-08 | *** |
meet_food_needs | 35.8366 | 1 | 86.8023 | 1.7e-20 | *** |
imp_availability | 1.2296 | 1 | 2.9784 | 0.0844 | . |
imp_provider | 3.3137 | 1 | 8.0263 | 0.0046 | ** |
imp_price | 6.8262 | 1 | 16.5343 | 4.8e-05 | *** |
imp_envfriend | 2.7175 | 1 | 6.5822 | 0.0103 | * |
imp_divers | 16.3643 | 1 | 39.6370 | 3.3e-10 | *** |
imp_tradition | 1.1286 | 1 | 2.7337 | 0.0983 | . |
imp_local | 2.0528 | 1 | 4.9723 | 0.0258 | * |
imp_product | 23.8838 | 1 | 57.8507 | 3.3e-14 | *** |
healty_diet | 40.1596 | 1 | 97.2733 | 9.5e-23 | *** |
innov_food_interest | 2.7707 | 1 | 6.7112 | 0.0096 | ** |
Obstacle.habits | 7.1603 | 1 | 17.3434 | 3.2e-05 | *** |
Obstacle.healthy | 2.8761 | 1 | 6.9665 | 0.0083 | ** |
Obstacle.price | 0.9040 | 1 | 2.1896 | 0.1390 | |
Obstacle.taste | 2.7325 | 1 | 6.6187 | 0.0101 | * |
Obstacle.trust | 11.3725 | 1 | 27.5462 | 1.6e-07 | *** |
Reason.culture | 3.3341 | 1 | 8.0758 | 0.0045 | ** |
Reason.farmers | 2.5200 | 1 | 6.1039 | 0.0135 | * |
Reason.status | 1.4585 | 1 | 3.5327 | 0.0602 | . |
Reason.trust | 4.0776 | 1 | 9.8767 | 0.0017 | ** |
Reason.wellness | 2.4499 | 1 | 5.9340 | 0.0149 | * |
Residuals | 2,191.4245 | 5,308 |
Variables | Tolerance | VIF |
cityKE.Kitui | 0.431474824 | 2.317632 |
cityKE.Nyeri | 0.438477158 | 2.280621 |
cityMO.Beni Mellal | 0.486386032 | 2.055980 |
cityMO.Meknes | 0.428654247 | 2.332883 |
cityTN.Sousse | 0.514335558 | 1.944256 |
cityTN.Tunis | 0.465932015 | 2.146236 |
cityTZ.Daressalaam | 0.393442947 | 2.541665 |
cityTZ.Morogoro | 0.373057779 | 2.680550 |
cityUG.Kalerwe | 0.418177994 | 2.391326 |
cityUG.Kampala | 0.399979929 | 2.500125 |
cityUG.Kapeeka | 0.400829508 | 2.494826 |
age | 0.815035414 | 1.226941 |
educ3Primary | 0.308754424 | 3.238820 |
educ3Secondary or more | 0.268489362 | 3.724542 |
income_avgsomewhat lower than average | 0.501462942 | 1.994165 |
income_avgabout average | 0.563540348 | 1.774496 |
income_avgsomewhat higher than average | 0.545050154 | 1.834694 |
income_avghigher than average | 0.446726374 | 2.238507 |
hh_salary | 0.871129283 | 1.147935 |
hh_head_employ_3self.employed | 0.545507774 | 1.833154 |
hh_head_employ_3Clerk.Regular.Manager | 0.536351578 | 1.864449 |
income_foodLess than half (from 25% to 50%) | 0.387503468 | 2.580622 |
income_foodAbout half (50%) | 0.328399822 | 3.045069 |
income_foodMore than half (from 50% to 75%) | 0.379486540 | 2.635140 |
income_foodAlmost all (from 75% to 100%). | 0.576579860 | 1.734365 |
HDDS12.Tot | 0.857075070 | 1.166759 |
meet_food_needs | 0.748233364 | 1.336481 |
imp_availability | 0.794103764 | 1.259281 |
imp_provider | 0.745072860 | 1.342151 |
imp_price | 0.822095790 | 1.216403 |
imp_envfriend | 0.648694858 | 1.541557 |
imp_divers | 0.747312541 | 1.338128 |
imp_tradition | 0.604998091 | 1.652898 |
imp_local | 0.720318857 | 1.388274 |
imp_product | 0.827942051 | 1.207814 |
healty_diet | 0.807225823 | 1.238811 |
innov_food_interest | 0.062204365 | 16.076042 |
Obstacle.habits | 0.036609206 | 27.315534 |
Obstacle.healthy | 0.019547052 | 51.158609 |
Obstacle.price | 0.058832823 | 16.997315 |
Obstacle.taste | 0.011835305 | 84.492964 |
Obstacle.trust | 0.067625347 | 14.787355 |
Reason.culture | 0.005190089 | 192.674920 |
Reason.farmers | 0.020527726 | 48.714602 |
Reason.status | 0.235306001 | 4.249785 |
Reason.trust | 0.025734666 | 38.858091 |
Reason.wellness | 0.039253103 | 25.475693 |
variable | Estimate | Std.Error | t.value | p.value | signif | Std.Estimate |
(Intercept) | 1.2945 | 0.0852 | 15.1869 | 5.0e-51 | *** | |
cityKE.Kitui | 0.1805 | 0.0442 | 4.0871 | 4.4e-05 | *** | 0.0638 |
cityKE.Nyeri | -0.0511 | 0.0448 | -1.1423 | 0.2534 | -0.0174 | |
cityMO.Beni Mellal | 0.6404 | 0.0451 | 14.1859 | 7.3e-45 | *** | 0.2215 |
cityMO.Meknes | 0.5742 | 0.0429 | 13.3936 | 2.9e-40 | *** | 0.2198 |
cityTN.Sousse | 0.5108 | 0.0467 | 10.9345 | 1.5e-27 | *** | 0.1643 |
cityTN.Tunis | 0.3411 | 0.0473 | 7.2133 | 6.2e-13 | *** | 0.1082 |
cityTZ.Daressalaam | 0.7198 | 0.0422 | 17.0536 | 1.5e-63 | *** | 0.2725 |
cityTZ.Morogoro | 0.7080 | 0.0420 | 16.8689 | 3.1e-62 | *** | 0.2680 |
cityUG.Kalerwe | 0.4592 | 0.0426 | 10.7847 | 7.7e-27 | *** | 0.1757 |
cityUG.Kampala | 0.5213 | 0.0423 | 12.3135 | 2.2e-34 | *** | 0.2002 |
cityUG.Kapeeka | 0.3868 | 0.0423 | 9.1530 | 7.7e-20 | *** | 0.1495 |
HDDS12.Tot | 0.0270 | 0.0043 | 6.3489 | 2.3e-10 | *** | 0.0784 |
meet_food_needs | 0.1069 | 0.0089 | 12.0689 | 4.1e-33 | *** | 0.1536 |
imp_provider | 0.0278 | 0.0078 | 3.5482 | 3.9e-04 | *** | 0.0465 |
imp_price | 0.0387 | 0.0091 | 4.2248 | 2.4e-05 | *** | 0.0527 |
imp_divers | 0.0670 | 0.0084 | 7.9709 | 1.9e-15 | *** | 0.1025 |
imp_local | 0.0207 | 0.0069 | 2.9757 | 0.0029 | ** | 0.0391 |
imp_product | 0.0640 | 0.0084 | 7.6094 | 3.2e-14 | *** | 0.0959 |
healty_diet | 0.0974 | 0.0089 | 10.9471 | 1.3e-27 | *** | 0.1376 |
Obstacle.trust | 0.0419 | 0.0122 | 3.4204 | 6.3e-04 | *** | 0.0435 |
Reason.availability | 0.0520 | 0.0159 | 3.2731 | 0.0011 | ** | 0.0436 |
r.squared | 0.2774 | |||||
adj.r.squared | 0.2746 | |||||
fstatistic | 97.5148 | 21.0000 | 5,334.0000 | 0.0e+00 | ||
n.obs | 5,356.0000 |
variable | Sum Sq | Df | F value | p.value | signif |
city | 293.1749 | 11 | 63.5638 | 6.7e-134 | *** |
HDDS12.Tot | 16.9014 | 1 | 40.3086 | 2.3e-10 | *** |
meet_food_needs | 61.0748 | 1 | 145.6593 | 4.1e-33 | *** |
imp_provider | 5.2789 | 1 | 12.5898 | 3.9e-04 | *** |
imp_price | 7.4842 | 1 | 17.8493 | 2.4e-05 | *** |
imp_divers | 26.6401 | 1 | 63.5349 | 1.9e-15 | *** |
imp_local | 3.7129 | 1 | 8.8550 | 0.0029 | ** |
imp_product | 24.2784 | 1 | 57.9024 | 3.2e-14 | *** |
healty_diet | 50.2481 | 1 | 119.8383 | 1.3e-27 | *** |
Obstacle.trust | 4.9053 | 1 | 11.6989 | 6.3e-04 | *** |
Reason.availability | 4.4920 | 1 | 10.7131 | 0.0011 | ** |
Residuals | 2,236.5419 | 5,334 |
Variables | Tolerance | VIF |
cityKE.Kitui | 0.5554114 | 1.800467 |
cityKE.Nyeri | 0.5852324 | 1.708723 |
cityMO.Beni Mellal | 0.5558054 | 1.799191 |
cityMO.Meknes | 0.5031800 | 1.987360 |
cityTN.Sousse | 0.6000489 | 1.666531 |
cityTN.Tunis | 0.6020112 | 1.661099 |
cityTZ.Daressalaam | 0.5306197 | 1.884589 |
cityTZ.Morogoro | 0.5367021 | 1.863231 |
cityUG.Kalerwe | 0.5102412 | 1.959857 |
cityUG.Kampala | 0.5124539 | 1.951395 |
cityUG.Kapeeka | 0.5080161 | 1.968441 |
HDDS12.Tot | 0.8891691 | 1.124645 |
meet_food_needs | 0.8368602 | 1.194943 |
imp_provider | 0.7883718 | 1.268437 |
imp_price | 0.8714325 | 1.147536 |
imp_divers | 0.8187437 | 1.221383 |
imp_local | 0.7829002 | 1.277302 |
imp_product | 0.8522193 | 1.173407 |
healty_diet | 0.8577242 | 1.165876 |
Obstacle.trust | 0.8382984 | 1.192893 |
Reason.availability | 0.7617986 | 1.312683 |
Test | Statistic | df | p.value | Signif |
One-sample Kolmogorov-Smirnov test | 0.13 | 0 | *** |