# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Calculate and visualize your portfolio’s beta.

Choose your stocks and the baseline market.

from 2012-12-31 to present

1 Import stock prices

symbols <- c("AMZN", "MSFT", "HD", "WMT")

prices <- tq_get(x    = symbols, 
                 get  = "stock.prices", 
                 from = "2012-12-31",
                 to   = "2022-11-01")
prices
## # A tibble: 9,908 × 8
##    symbol date        open  high   low close   volume adjusted
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 AMZN   2012-12-31  12.2  12.6  12.1  12.5 68380000     12.5
##  2 AMZN   2013-01-02  12.8  12.9  12.7  12.9 65420000     12.9
##  3 AMZN   2013-01-03  12.9  13.0  12.8  12.9 55018000     12.9
##  4 AMZN   2013-01-04  12.9  13.0  12.8  13.0 37484000     13.0
##  5 AMZN   2013-01-07  13.1  13.5  13.1  13.4 98200000     13.4
##  6 AMZN   2013-01-08  13.4  13.4  13.2  13.3 60214000     13.3
##  7 AMZN   2013-01-09  13.4  13.5  13.3  13.3 45312000     13.3
##  8 AMZN   2013-01-10  13.4  13.4  13.1  13.3 57268000     13.3
##  9 AMZN   2013-01-11  13.3  13.4  13.2  13.4 48266000     13.4
## 10 AMZN   2013-01-14  13.4  13.7  13.4  13.6 85500000     13.6
## # … with 9,898 more rows

2 Convert prices to returns (monthly)

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>% 
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly", 
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 472 × 3
##    asset date        returns
##    <chr> <date>        <dbl>
##  1 AMZN  2013-01-31  0.0567 
##  2 AMZN  2013-02-28 -0.00464
##  3 AMZN  2013-03-28  0.00837
##  4 AMZN  2013-04-30 -0.0488 
##  5 AMZN  2013-05-31  0.0589 
##  6 AMZN  2013-06-28  0.0311 
##  7 AMZN  2013-07-31  0.0813 
##  8 AMZN  2013-08-30 -0.0696 
##  9 AMZN  2013-09-30  0.107  
## 10 AMZN  2013-10-31  0.152  
## # … with 462 more rows

3 Assign a weight to each asset (change the weigting scheme)

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull() 
symbols
## [1] "AMZN" "HD"   "MSFT" "WMT"
# weights
weights <- c(0.30, 0.30, 0.15, 0.25)
weights
## [1] 0.30 0.30 0.15 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AMZN       0.3 
## 2 HD         0.3 
## 3 MSFT       0.15
## 4 WMT        0.25

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col   = asset, 
                 returns_col  = returns, 
                 weights      = w_tbl, 
                 rebalance_on = "months",
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 118 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0510 
##  2 2013-02-28  0.0117 
##  3 2013-03-28  0.0295 
##  4 2013-04-30  0.0317 
##  5 2013-05-31  0.0397 
##  6 2013-06-28  0.00350
##  7 2013-07-31  0.0295 
##  8 2013-08-30 -0.0453 
##  9 2013-09-30  0.0418 
## 10 2013-10-31  0.0722 
## # … with 108 more rows

5 Calculate CAPM Beta

5.1 Get market returns

market_returns_tbl <- tq_get(x    = "SPY", 
       get  = "stock.prices", 
       from = "2012-12-31", 
       to   = "2022-11-01") %>%
    
    # Convert prices to return
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly", 
                 type       = "log", 
                 col_rename = "returns") %>%
    
    slice(-1)

market_returns_tbl
## # A tibble: 118 × 2
##    date       returns
##    <date>       <dbl>
##  1 2013-01-31  0.0499
##  2 2013-02-28  0.0127
##  3 2013-03-28  0.0373
##  4 2013-04-30  0.0190
##  5 2013-05-31  0.0233
##  6 2013-06-28 -0.0134
##  7 2013-07-31  0.0504
##  8 2013-08-30 -0.0305
##  9 2013-09-30  0.0312
## 10 2013-10-31  0.0453
## # … with 108 more rows

5.2 Join returns

portfolio_market_returns_tbl <- left_join(market_returns_tbl, 
                                  portfolio_returns_tbl, 
                                  by = "date") %>% 
    
    set_names("date", "market_returns", "portfolio_returns")

portfolio_market_returns_tbl
## # A tibble: 118 × 3
##    date       market_returns portfolio_returns
##    <date>              <dbl>             <dbl>
##  1 2013-01-31         0.0499           0.0510 
##  2 2013-02-28         0.0127           0.0117 
##  3 2013-03-28         0.0373           0.0295 
##  4 2013-04-30         0.0190           0.0317 
##  5 2013-05-31         0.0233           0.0397 
##  6 2013-06-28        -0.0134           0.00350
##  7 2013-07-31         0.0504           0.0295 
##  8 2013-08-30        -0.0305          -0.0453 
##  9 2013-09-30         0.0312           0.0418 
## 10 2013-10-31         0.0453           0.0722 
## # … with 108 more rows

5.3 CAPM Beta

portfolio_market_returns_tbl %>%
    
    tq_performance(Ra = portfolio_returns, 
                   Rb = market_returns, 
                   performance_fun = CAPM.beta)
## # A tibble: 1 × 1
##   CAPM.beta.1
##         <dbl>
## 1       0.927
portfolio_market_returns_tbl
## # A tibble: 118 × 3
##    date       market_returns portfolio_returns
##    <date>              <dbl>             <dbl>
##  1 2013-01-31         0.0499           0.0510 
##  2 2013-02-28         0.0127           0.0117 
##  3 2013-03-28         0.0373           0.0295 
##  4 2013-04-30         0.0190           0.0317 
##  5 2013-05-31         0.0233           0.0397 
##  6 2013-06-28        -0.0134           0.00350
##  7 2013-07-31         0.0504           0.0295 
##  8 2013-08-30        -0.0305          -0.0453 
##  9 2013-09-30         0.0312           0.0418 
## 10 2013-10-31         0.0453           0.0722 
## # … with 108 more rows

6 Plot: Scatter with regression line

portfolio_market_returns_tbl %>%
    
    ggplot(aes(x = market_returns,
               y = portfolio_returns)) + 
    geom_point(color = "cornflowerblue") + 
    geom_smooth(method = "lm", se = FALSE, size = 1.5, color = "purple") + 
    
    labs(y = "Portfolio Returns", 
         x = "Market Returns")

How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?

My Portfolio is very similar to the market, The beta coefficient I calculated is 0.927, which is very close to the market beta of 1.00. The plot confirms this because there is a strong linear relationship between my portfolio and the market. The relationship is a one to one relationship, which means when the market return is 10%, my portfolio return will also be 10%.