A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1,+1)
C <- c(rep(-1,4),rep(1,4),rep(-1,4),rep(1,4))
D <- c(rep(-1,8),rep(1,8))
obs <- c(12,18,13,16,17,15,20,15,10,25,13,24,19,21,17,23)
data <- data.frame(A,B,C,D,obs)
library(DoE.base)
model <- lm(obs~A*B*C*D,data = data)
halfnormal(model)
Factors A, D and interactions AC and AD appear to be significant (\(\alpha=0.05\)).
anova_mod <- aov(obs~A+C+D+A*C+A*D,data = data)
summary(anova_mod)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 81.00 81.00 49.846 3.46e-05 ***
## C 1 16.00 16.00 9.846 0.010549 *
## D 1 42.25 42.25 26.000 0.000465 ***
## A:C 1 72.25 72.25 44.462 5.58e-05 ***
## A:D 1 64.00 64.00 39.385 9.19e-05 ***
## Residuals 10 16.25 1.62
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
All effects that seemed significant in the half-normal plot are significant here too (\(\alpha<0.001\)). Additionally, the factor C is shown the be significant too with a comparatively higher p-value (\(\alpha<0.05\))