Halo Investor dan Trader,
Halaman ini berisi Raw Information dari Technical Analysis ala Muhamad Makky Dandytra, CFTe untuk MMD Charts.
## [1] "Based on Trading Date 08 November 2022"
Untuk informasi lengkap, silahkan kunjungi website https://www.mmdcharts.com.
Semoga berguna dan bermanfaat.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik Super Quadrant Stocks ini menampilkan Trend dan Sinyal dibagi per Sektor.
Grafik Super Quadrant Stocks ini menampilkan Trend dan sinyal Buy dibagi per Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Outperform Trend dan Uptrend - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Outperform Trend dan Uptrend dengan sinyal Buy - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Champion Quadrant dan Uptrend - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Champion Quadrant dan Uptrend dengan sinyal Buy - dibagi berdasarkan Sektor.
# TPT.IDX
#
# TPT %>%
# filter(KairiMABB20 > 0, KairiMABB60 > 0, KairiMABB200 > 0) %>%
# arrange(DateTime, Ticker) %>%
# select(Ticker, Close, Ch1D, Ch5D, Ch20D, YTDRet) %>%
# ggplot(aes(x = DateTime))+
# geom_bar(aes(y = Ch1D))+
# facet_wrap(~ Ticker, ncol = 5)
Table dan Grafik ini menggolongkan saham pada return 1, 5, 20 hari dan YTD (dari sejak awal tahun 2020).
head(TPT)
## Ticker Close DateTime Trend SO SOSignal Ch1D YestCh Ch5D Ch20D
## 1 MYOR 2360 2022-11-08 Uptrend 66.67 Sell Now -2.48 0.00 2.61 17.41
## 2 HEAL 1500 2022-11-08 Downtrend 14.81 Alert Buy 0.33 -1.97 -1.64 -0.99
## 3 BFIN 1110 2022-11-08 Uptrend 66.93 Sell Now -1.77 3.67 3.74 4.23
## 4 UNVR 4630 2022-11-08 Downtrend 82.84 Warning Sell 0.22 1.76 2.21 -2.11
## 5 ICBP 9750 2022-11-08 Uptrend 93.87 Warning Sell 0.00 1.04 2.63 8.33
## 6 INTP 10250 2022-11-08 Uptrend 56.60 Sell Now -2.61 0.48 0.49 9.63
## Ch60D YTDRet Volume ChTurnover ChTurnover5D AvgCondition RCTrend
## 1 26.54 15.69 --- -0.66 -0.96 Low TO O/P Trend
## 2 13.64 40.19 --- -0.10 -0.88 Low TO U/P Trend
## 3 -8.64 -5.53 --- -0.56 -0.86 Low TO O/P Trend
## 4 -2.73 12.65 --- -0.17 -0.82 Low TO U/P Trend
## 5 9.86 12.07 --- -0.75 -0.81 Low TO O/P Trend
## 6 7.33 -15.29 --- -0.41 -0.80 High TO O/P Trend
## RCMomentum RCTrendSignal RCMomentumSignal KairiMABB20 KairiMABB60
## 1 U/P Momentum --- --- 0.98 18.04
## 2 O/P Momentum --- O/P Momentum Signal -1.40 1.42
## 3 U/P Momentum --- U/P Momentum Signal 4.63 -0.17
## 4 O/P Momentum --- --- -6.82 -2.57
## 5 O/P Momentum --- O/P Momentum Signal 2.76 9.58
## 6 U/P Momentum --- --- 6.60 8.20
## KairiMABB200 Prev.KairiMABB200 OP.Trend.Start BB Bandwidth F1D F2D
## 1 25.45 27.73 --- 57.56 23.68 -1.05 -1.96
## 2 8.94 7.90 --- 39.10 5.02 -1.68 -3.08
## 3 -7.39 -6.56 --- 78.61 19.18 -0.24 -0.94
## 4 3.98 2.99 --- 27.72 26.96 1.38 1.74
## 5 12.44 11.64 --- 73.42 15.37 2.02 30.20
## 6 1.84 3.73 --- 85.87 20.87 -13.94 -41.68
## F1Wk F1Mo MTTrend WkESOValue WkESO PriceVolumeCond Last1DPVCond
## 1 -0.52 17.44 Uptrend 86.38 Still Sell fake - ---
## 2 12.31 13.68 Uptrend 28.70 Buy Now Fake + fake -
## 3 -10.56 -11.02 Downtrend 72.46 Warning Sell fake - Real +
## 4 -46.56 -17.17 Downtrend 18.34 Alert Buy Fake + Real +
## 5 86.35 623.07 Uptrend 85.96 Still Buy --- Real +
## 6 -44.30 -131.74 Uptrend 69.26 Warning Sell fake - Fake +
## Last2DPVCond RC.JKSE MA.RC RC.BB PrevRC.BB Corr20D Corr60D Corr5D KairiMA20
## 1 --- 334.75 331.49 54.94 65.29 0.79 -0.58 0.76 1.76
## 2 fake - 212.76 215.78 31.21 15.12 -0.02 -0.42 -0.84 -0.55
## 3 Real + 157.44 150.47 79.48 88.45 0.72 0.74 0.71 5.20
## 4 Real + 656.73 704.77 25.33 20.92 -0.05 -0.44 0.77 -6.39
## 5 Real + 1382.95 1345.76 76.25 71.83 0.94 -0.39 0.74 3.47
## 6 Fake + 1453.87 1363.88 84.87 100.40 0.45 0.29 0.80 6.96
## KairiMA60 KairiMA200 MA20Direction MA60Direction MA200Direction LTTrend
## 1 14.82 21.20 17.50 8.25 1.20 Uptrend
## 2 0.77 9.13 -0.75 3.00 1.85 Uptrend
## 3 -0.90 -6.80 2.25 -1.75 -1.45 Uptrend
## 4 -3.28 4.89 -5.00 -2.17 1.50 Uptrend
## 5 8.17 12.09 37.50 14.58 5.00 Uptrend
## 6 6.96 2.93 45.00 11.67 -3.75 Downtrend
## MoESOValue MoESO MarketCap Turnover AvgMOTurnover TurnoverRatio
## 1 71.97 Warning Sell 52766.54 2.14 25.25 0.00
## 2 61.84 Alert Buy 22335.00 5.43 15.58 0.02
## 3 48.05 Alert Buy 17723.50 5.64 21.43 0.03
## 4 37.73 Alert Buy 176634.50 71.76 150.22 0.04
## 5 80.03 Warning Sell 113703.60 19.00 72.13 0.02
## 6 26.77 Still Buy 37732.63 44.53 46.54 0.12
## AvgMOTurnoverRatio IDXSector IDXIndustry
## 1 0.05 Barang Konsumen Primer Makanan Olahan
## 2 0.07 Kesehatan Penyedia Jasa Kesehatan
## 3 NA Keuangan Pembiayaan Konsumen
## 4 0.08 Barang Konsumen Primer Produk Perawatan Tubuh
## 5 0.06 Barang Konsumen Primer Makanan Olahan
## 6 0.13 Barang Baku Material Konstruksi
## Candle MA200
## 1 Marubozu - Opening Black Above MA200
## 2 Marubozu - Opening White Above MA200
## 3 Marubozu - Closing Black Below MA200
## 4 Black Candle Above MA200
## 5 Hanging Man Above MA200
## 6 Marubozu - Closing Black Above MA200
# value : SO, Ch1D, Ch5D, Ch20D, YTDRet, ChTurnover, KairiMABB20, KairiMABB60, KairiMABB200, BB, Bandwidth, F1D, F2D, F1Wk, F1Mo,KairiMA20, KairiMA60, KairiMA200, MA20Direction, MA60Direction, MA200Direction
# Discrete : Ticker, Trend, SOSignal, Volume, AvgCondition, RCTrend, RCMomentum, RCTrendSignal, RCMomentumSignal, PriceVolumeCond, MA200
TPT.value <- TPT %>%
select(c("SO", "Ch1D", "Ch5D", "Ch20D", "YTDRet", "ChTurnover", "KairiMABB20", "KairiMABB60", "KairiMABB200", "BB", "Bandwidth", "F1D", "F2D", "F1Wk", "F1Mo","KairiMA20", "KairiMA60", "KairiMA200", "MA20Direction", "MA60Direction", "MA200Direction"))
TPT.Discrete <- TPT %>%
select(c("Trend", "SOSignal", "Volume", "AvgCondition", "RCTrend", "RCMomentum", "RCTrendSignal", "RCMomentumSignal", "PriceVolumeCond", "MA200"))
library(DataExplorer)
##
## Attaching package: 'DataExplorer'
## The following object is masked from 'package:expss':
##
## split_columns
plot_intro(TPT)
plot_intro(TPT.Discrete)
plot_intro(TPT.value)
plot_missing(TPT)
plot_missing(TPT.Discrete)
plot_missing(TPT.value)
plot_bar(TPT.Discrete)
plot_histogram(TPT.value)
single.stock <- "JSMR"
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Close)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Ch1D, .smooth = F)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_seasonal_diagnostics(DateTime, Ch1D, .feature_set = "wday.lbl")
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_stl_diagnostics(DateTime, Close, .feature_set = c("observed", "season", "trend"))
## .date_var is missing. Using: DateTime
## frequency = 5 observations per 1 week
## trend = 65 observations per 3 months
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_stl_diagnostics(DateTime, Ch1D, .feature_set = c("observed", "season", "trend"))
## .date_var is missing. Using: DateTime
## frequency = 5 observations per 1 week
## trend = 65 observations per 3 months
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_acf_diagnostics(DateTime, Ch1D, .lags = 20)
## .date_var is missing. Using: DateTime
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## Please use `gather()` instead.
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM")) %>%
arrange(Ticker, DateTime) %>%
select(Ticker, DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Close, .facet_vars = Ticker)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM")) %>%
arrange(Ticker, DateTime) %>%
select(Ticker, DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
pivot_wider(names_from = Ticker, values_from = c(Close, Ch1D)) %>%
drop_na() %>%
mutate(across(Close_ASII:Ch1D_TLKM, .fns = standardize_vec)) %>%
pivot_longer(Close_ASII:Ch1D_TLKM) %>%
filter(name == c("Close_ASII", "Close_TLKM")) %>%
plot_time_series(DateTime, value, .color_var = name, .smooth = FALSE)
## .date_var is missing. Using: DateTime
## Standardization Parameters
## mean: 6515.25
## standard deviation: 544.8409822874
## Standardization Parameters
## mean: 4367.4
## standard deviation: 194.593352569716
## Standardization Parameters
## mean: 0.08315
## standard deviation: 1.88360596587327
## Standardization Parameters
## mean: 0.02585
## standard deviation: 1.5774297768855
# unique(dandy.rotation$IDXSector)
# head(dandy.rotation)
# selected.date <- print("2022-02-09")
# Date.Signs2 <- "Based on Trading Date 09 Februari 2022"
#
# TPT <- TPT.IDX %>%
# filter(DateTime == selected.date)
#
# dandy.rotation <- TPT %>%
# mutate(RCBB = RC.BB - PrevRC.BB,
# kairiRC = round(((RC.JKSE - MA.RC)/MA.RC*100),2))
#
# dandy.rotation %>%
# filter(Ticker == "ENRG")
# library(gganimate)
#
# # head(airquality)
#
# TPT.IDX %>%
# na.omit() %>%
# filter(DateTime >= max(DateTime) %-time% "20 day") %>%
# arrange(DateTime) %>%
# filter(IDXSector == "Kesehatan") %>%
# ggplot(aes(x = KairiMABB200, y = KairiMABB20, label = Ticker, color = Trend))+
# # geom_text_repel(aes(size = ChTurnover))+
# geom_text_repel(max.overlaps = 20)+
# geom_point(aes(shape = SOSignal))+
# theme_bw() +
# theme(panel.border = element_blank(), panel.grid.major = element_blank(),panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
# # facet_wrap(~ IDXSector, ncol = 2, scales = "free")+
# scale_shape_manual(values=SOSignal.shape,name = "Signal")+
# scale_size(range = c(2, 6), name = "%Ch in Turnover")+
# scale_y_continuous("Momentum Performance")+
# scale_x_continuous("Trend Performance")+
# scale_color_manual(values=Trend.color)+
# geom_vline(xintercept = 0, linetype="dotted")+
# geom_hline(yintercept = 0, linetype="dotted")+
# annotate("text", x = max(dandy.rotation.consumer.interest$KairiMABB200), y = max(dandy.rotation.consumer.interest$KairiMABB20), label = "Champion", hjust = "top")+
# annotate("text", x = min(dandy.rotation.consumer.interest$KairiMABB200), y = min(dandy.rotation.consumer.interest$KairiMABB20), label = "Loser", hjust = "bottom")+
# annotate("text", x = max(dandy.rotation.consumer.interest$KairiMABB200), y = min(dandy.rotation.consumer.interest$KairiMABB20), label = "Recharge", hjust = "top")+
# annotate("text", x = min(dandy.rotation.consumer.interest$KairiMABB200), y = max(dandy.rotation.consumer.interest$KairiMABB20), label = "Quick", hjust = "bottom")+
# labs(title = "{DateTime}", subtitle = Date.Signs2, caption = "IG : @superquadrant")+
# watermark(show = TRUE, lab = "Super Quadrant Stocks")+
# # ggtitle("Now showing {DateTime}")+
# # transition_time(DateTime)
# transition_states(DateTime, transition_length = 5, state_length = 2)
range(TPT.IDX$DateTime)
## [1] "2022-01-13" "2022-11-08"
min_max_norm <- function(x) {
(x - min(x)) / (max(x) - min(x))
}
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM", "JSMR", "BBCA", "GGRM")) %>%
filter(DateTime >= max(TPT.IDX$DateTime) %-time% "20 day") %>%
arrange(DateTime) %>%
select(DateTime, Ticker, Close) %>%
pivot_wider(names_from = Ticker, values_from = Close) %>%
# mutate(across(-DateTime, .fns = standardize_vec)) %>%
mutate(across(-DateTime, .fns = normalize_vec)) %>%
# mutate(across(-DateTime, .fns = min_max_norm)) %>%
pivot_longer(-DateTime) %>%
plot_time_series(.date_var = DateTime, .color_var = name, .value = value, .smooth = F)
## Normalization Parameters
## min: 6375
## max: 6700
## Normalization Parameters
## min: 4130
## max: 4450
## Normalization Parameters
## min: 22200
## max: 25475
## Normalization Parameters
## min: 8275
## max: 8900
## Normalization Parameters
## min: 3300
## max: 3480