Let’s skim through the data to see if it looks correct. Let me know if you think there’s anything off

##    Participant.code Executive.Networks Anxiety Depression Stress ADHD
## 1            SADP01             149.55      14         18     18   35
## 2            SADP05             187.46      25         23     26   56
## 3            SADP09             125.05      28         31     41   60
## 4            SADP11             124.16      16         22     27   62
## 5            SADP13             182.02      38         40     47   63
## 6            SADP14             218.83      28         20     26   49
## 7            SADP15             152.98      15         14     14   48
## 8            SADP18             179.28      14         14     20   54
## 9            SADP25             116.82      18         42     27   36
## 10           SADP27             216.76      44         48     42   53
## 11           SADP29             287.74      28         25     31   57
## 12           SADP30             170.71      16         19     15   36
## 13           SADP36              78.94      19         15     21   40
## 14           SADP37             216.64      18         18     22   31
## 15           SADP40              78.42      14         14     14   36
## 16           SADP42             160.49      25         34     29   38
## 17           SADP43             136.10      16         14     16   36
## 18           SADP44             363.52      46         23     51   73
## 19           SADP45             242.28      34         33     45   68
## 20           SADP46              88.30      15         11     18   53
## 21           SADP47             146.93       7          9     11   67
## 22           SADP49             266.71      28         18     17   58
## 23           SADP50             102.96      24         17     22   70
## 24           SADP51             150.27      22         17     26   65
## 25           SADP52             156.36      35         37     37   67
## 26           SADP53             235.12      21         16     24   75
## 27           SADP54             -38.92       6          8      5   53
## 28           SADP55             298.51      29         34     28   51
## 29           SADP56             -10.14      15         10     12   45
## 30           SADP57             174.66       9         17     14   64
## 31           SADP58             224.30       9          8      6   33
## 32           SADP59             183.41      20         17     19   54
## 33           SADP60             143.33      13          8     10   58
## 34           SADP61             204.91       8         17     11   45
## 35           SADP62             227.43      11          0      8   33
## 36           SADP63             281.91       8         16     23   57
## 37           SADP65             189.78       7          2      5   39
## 38           SADP67             108.24      12          7     14   56
## 39           SADP69             201.20       9          1      5   31
## 40           SADP70             206.99      17         13     23   60
## 41           SADP71             240.47       4          1     10   62
## 42           SADP72             218.00      25         28     26   78
## 43           SADP73             114.94       4          8     21   42
## 44           SADP74             266.21       1          2      9   37
## 45           SADP75             101.80      12         16      8   59
## 46           SADP76             193.02      18         13     28   57
## 47           SADP77              64.52      29         10     29   66
## 48           SADP78             193.88      10          3     17   43
## 49           SADP80              35.83       6          5     10   53
## 50           SADP82             130.55      20         18     23   63
## 51           SADP83             293.04      17         16     20   62
## 52           SADP81             205.33       1          3      4   44
## 53           SADP85             160.77      25         22     18   53
## 54           SADP66             158.42       5          4      3   39
## 55           SADP68              16.19      10          4      8   27

Correlation

Correlation Matrix

##                    Executive.Networks Anxiety Depression Stress ADHD
## Executive.Networks               1.00    0.29       0.20   0.31 0.19
## Anxiety                          0.29    1.00       0.79   0.88 0.46
## Depression                       0.20    0.79       1.00   0.80 0.31
## Stress                           0.31    0.88       0.80   1.00 0.50
## ADHD                             0.19    0.46       0.31   0.50 1.00

The Significance (p-value) of the correlation matrix

##                    Executive.Networks      Anxiety   Depression       Stress
## Executive.Networks         0.00000000 3.470147e-02 1.406429e-01 1.927158e-02
## Anxiety                    0.03470147 0.000000e+00 5.794143e-13 7.337602e-19
## Depression                 0.14064292 5.794143e-13 0.000000e+00 2.020561e-13
## Stress                     0.01927158 7.337602e-19 2.020561e-13 0.000000e+00
## ADHD                       0.17231945 4.484795e-04 2.009350e-02 9.250119e-05
##                            ADHD
## Executive.Networks 1.723195e-01
## Anxiety            4.484795e-04
## Depression         2.009350e-02
## Stress             9.250119e-05
## ADHD               0.000000e+00

Correlation Plot (Heat Map) showing the significance pair only

NOTE: The significance pairs are being colored.

They are:

In this plot, the darker shade of blue indicated a stronger relationship.

Therefore, I think we should focus on: Anxiety, ADHD, Stress, and Depression

Multilinear regression against Anxiety

## 
## Call:
## lm(formula = Anxiety ~ Depression + ADHD + Stress, data = df[, 
##     -1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.7677  -2.9800   0.2037   2.5421  11.6059 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.31265    2.74910  -0.114    0.910    
## Depression   0.23621    0.09922   2.381    0.021 *  
## ADHD         0.04030    0.05942   0.678    0.501    
## Stress       0.59514    0.10684   5.570 9.58e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.775 on 51 degrees of freedom
## Multiple R-squared:  0.7988, Adjusted R-squared:  0.7869 
## F-statistic: 67.48 on 3 and 51 DF,  p-value: < 2.2e-16

Based on the result, there are significant relationship between:

Since only Stress - Anxiety pair is significance in the multi-linear regression, I think we should visualize the relationship for each pairs without the other variables.
The equation shown in the visualization is the simple linear regression equation between Anxiety and Stress.

Visualization for Anxiety and Stress

Visualization for Anxiety and Depression

Multilinear Regression against Stress

## 
## Call:
## lm(formula = Stress ~ Depression + ADHD + Anxiety, data = df[, 
##     -1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.9510  -2.9353  -0.5047   1.9573  13.3733 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.70024    2.81605  -0.959  0.34214    
## Depression   0.30274    0.09942   3.045  0.00368 ** 
## ADHD         0.12768    0.05904   2.163  0.03527 *  
## Anxiety      0.63558    0.11410   5.570 9.58e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.935 on 51 degrees of freedom
## Multiple R-squared:  0.8212, Adjusted R-squared:  0.8107 
## F-statistic: 78.08 on 3 and 51 DF,  p-value: < 2.2e-16

Based on the result, there are a significant relationship between:

Since we already visualize the relationship between stress and anxiety, we just need to do it for Stress and Depression now.
Again the equation shown in the visualization is the simple linear regression equation between the pairs without other variables.

Visualization for Stress - Depression

Visualization for Stress - ADHD

Multilinear regression model agaisn Depression.

## 
## Call:
## lm(formula = Depression ~ Stress + ADHD + Anxiety, data = df[, 
##     -1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -18.8143  -3.4080  -0.5757   3.0481  20.1398 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   4.5054     3.6268   1.242  0.21983   
## Stress        0.5082     0.1669   3.045  0.00368 **
## ADHD         -0.1108     0.0784  -1.413  0.16372   
## Anxiety       0.4234     0.1779   2.381  0.02105 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.394 on 51 degrees of freedom
## Multiple R-squared:  0.6876, Adjusted R-squared:  0.6692 
## F-statistic: 37.42 on 3 and 51 DF,  p-value: 6.3e-13

This model confirmed the relationship we discussed in previous model:

Multilinear regression against ADHD

## 
## Call:
## lm(formula = ADHD ~ Stress + Depression + Anxiety, data = df[, 
##     -1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.637  -9.214   0.879   6.842  24.579 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  40.2910     3.1258  12.890   <2e-16 ***
## Stress        0.6580     0.3042   2.163   0.0353 *  
## Depression   -0.3401     0.2407  -1.413   0.1637    
## Anxiety       0.2218     0.3270   0.678   0.5007    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.2 on 51 degrees of freedom
## Multiple R-squared:  0.2816, Adjusted R-squared:  0.2393 
## F-statistic: 6.663 on 3 and 51 DF,  p-value: 0.0006981

Only Stress has a positive relationship with ADHD (positive slope, beta = 0.6580, p < 0.05)
This means that for an increase of 1 unit of stress, ADHD will increase by 0.6580 unit.

This model confirmed the relationship we discussed in previous model.

Conclusion Note:

Of course, we can see the redundant when running correlation test and regression because they only confirm the relationship.
What make them different is that regression can help us with making prediction.

What we have so far for these model:

Although all four models show a linear trend, Anxiety and Stress model is the most reliable model to make prediction regarding the relationship between the two variables.
Stress and ADHD model is somewhat the least reliable. We can see that they did not really form a linear trend. This confirms their relationship is weaker, and more difficult to predict.

Executive - Depression - Anxiety - Stress (11/13)

Multilinear Regression against Excutive.Networks is NOT SIGNIFICANT*

## 
## Call:
## lm(formula = Executive.Networks ~ Depression + Anxiety + Stress, 
##     data = df[, -1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -172.029  -45.247    5.318   50.822  123.678 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 125.5093    21.2453   5.908 2.86e-07 ***
## Depression   -1.1736     1.6358  -0.717    0.476    
## Anxiety       0.7605     2.2227   0.342    0.734    
## Stress        2.4851     2.0678   1.202    0.235    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 76.14 on 51 degrees of freedom
## Multiple R-squared:  0.1083, Adjusted R-squared:  0.05589 
## F-statistic: 2.066 on 3 and 51 DF,  p-value: 0.1163

Simple Linear Regression Exc.Networks - Depression is NOT SIGNIFICANT

## 
## Call:
## lm(formula = Executive.Networks ~ Depression, data = df[, -1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -196.487  -45.267    2.449   47.068  184.674 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 146.2176    18.7511   7.798 2.36e-10 ***
## Depression    1.4186     0.9484   1.496    0.141    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 77.48 on 53 degrees of freedom
## Multiple R-squared:  0.0405, Adjusted R-squared:  0.0224 
## F-statistic: 2.237 on 1 and 53 DF,  p-value: 0.1406

Simple Linear Regression Exc.Networks - Anxiety is SIGNIFICANT (p <0.05)

## 
## Call:
## lm(formula = Executive.Networks ~ Anxiety, data = df[, -1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -183.356  -46.655    1.956   48.273  133.152 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 131.4666    20.3101   6.473 3.17e-08 ***
## Anxiety       2.1615     0.9972   2.168   0.0347 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 75.81 on 53 degrees of freedom
## Multiple R-squared:  0.08143,    Adjusted R-squared:  0.0641 
## F-statistic: 4.698 on 1 and 53 DF,  p-value: 0.0347

Simple Linear Regression Exc.Networks - Stress is SIGNIFICANT (p<0.05)

## 
## Call:
## lm(formula = Executive.Networks ~ Stress, data = df[, -1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -175.653  -49.010    5.063   54.088  126.760 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 125.8609    20.7230   6.073 1.38e-07 ***
## Stress        2.1745     0.9008   2.414   0.0193 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 75.08 on 53 degrees of freedom
## Multiple R-squared:  0.09905,    Adjusted R-squared:  0.08205 
## F-statistic: 5.827 on 1 and 53 DF,  p-value: 0.01927

MEDIATION MODEL: Excutive.Networks (IV) - Stress (Mediator) - Anxiety (DV)

Here is a step by step procedure I perform

Prerequisite of significance must exist in these simple linear regressions:

Effect of Executive.Networks (IV) on Stress (Mediator) — SIGNIFICANT p<0.05

## 
## Call:
## lm(formula = Stress ~ Executive.Networks, data = df[, -1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -17.704  -6.003  -1.164   5.081  26.357 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        12.35148    3.51830   3.511 0.000922 ***
## Executive.Networks  0.04555    0.01887   2.414 0.019272 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.87 on 53 degrees of freedom
## Multiple R-squared:  0.09905,    Adjusted R-squared:  0.08205 
## F-statistic: 5.827 on 1 and 53 DF,  p-value: 0.01927

Effect of Executive.Networks (IV) on Anxiety (DV) —- SIGNIFICANT p<0.05

## 
## Call:
## lm(formula = Anxiety ~ Executive.Networks, data = df[, -1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20.2431  -7.5410  -0.4858   6.2429  24.6199 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)   
## (Intercept)        11.21392    3.24051   3.461  0.00107 **
## Executive.Networks  0.03767    0.01738   2.168  0.03470 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.01 on 53 degrees of freedom
## Multiple R-squared:  0.08143,    Adjusted R-squared:  0.0641 
## F-statistic: 4.698 on 1 and 53 DF,  p-value: 0.0347

Effect of Stress (Mediator) on Anxiety (DV) - SIGNIFICANT p<0.001

## 
## Call:
## lm(formula = Anxiety ~ Executive.Networks + Stress, data = df[, 
##     -1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.278  -3.339   0.721   3.122  12.746 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.320100   1.792770   0.736    0.465    
## Executive.Networks 0.001187   0.009125   0.130    0.897    
## Stress             0.801023   0.063045  12.706   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.987 on 52 degrees of freedom
## Multiple R-squared:  0.7762, Adjusted R-squared:  0.7676 
## F-statistic: 90.18 on 2 and 52 DF,  p-value: < 2.2e-16

The result suggest a possibility of a COMPLETE MEDIATION, however it does not guarantee if the mediation is significant

A Causal Mediation Model with Bootstraping technique.

This step is to assess whether the mediation is significant

## 
## Causal Mediation Analysis 
## 
## Nonparametric Bootstrap Confidence Intervals with the Percentile Method
## 
##                Estimate 95% CI Lower 95% CI Upper p-value  
## ACME            0.03649      0.00288         0.06   0.034 *
## ADE             0.00119     -0.01697         0.02   0.914  
## Total Effect    0.03767     -0.00206         0.07   0.060 .
## Prop. Mediated  0.96850      0.03785         2.73   0.049 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 55 
## 
## 
## Simulations: 10000

Based on the result:

  • The indirect effect of Executive.Networks (IV) on Anxiety (DV) is significant at alpha = 0.05 (ACME = 0.036487, p < 0.05)
  • The direct effect of Executive.Networks (IV) on Anxiety (DV) is NOT significant (ADE = 0.001187, p = 0.92)
  • The total effect of Executive.Networks (IV) on Anxiety (DV) is significant at alpha = 0.1 but NOT SIGNIFICANT at alpha = 0.05 (Total Effect = 0.968497, p = 0.06)

Since the result shows that the indirect effect ACME is significant, We can conclude that the relationship between Executive Networks and Anxiety is completely mediated by stress.