Praktikum 10 APG : Korespondensi dan Biplot

Terkadang Ambisi Tinggi dapat Menjatuhkan ke Jurang Terdalam, Lakukan versi terbaik dan Tetaplah Bersyukur

My Image

Pengantar

Materi 1 Summary Analisis Korespondensi dan Biplot

!! Password is required to open pdf.

Chat me untuk Pasword

Penerapan 1

1. Load Dataset

kores = matrix(c(5,5,30,5,25,5,15,5,5,15,5,0),nrow = 4,byrow = TRUE)
dimnames(kores)=list(c("MerkA","MerkB","MerkC","MerkD"),c("Region1","Region2","Region3"))
names(dimnames(kores))=c("Pasta Gigi","Daerah")
kores
##           Daerah
## Pasta Gigi Region1 Region2 Region3
##      MerkA       5       5      30
##      MerkB       5      25       5
##      MerkC      15       5       5
##      MerkD      15       5       0

2. Melihat Chi-Square

chisq.test(kores)
## 
##  Pearson's Chi-squared test
## 
## data:  kores
## X-squared = 79.607, df = 6, p-value = 4.307e-15

3. Matriks Profil Baris

prop.table(kores,1)
##           Daerah
## Pasta Gigi   Region1   Region2   Region3
##      MerkA 0.1250000 0.1250000 0.7500000
##      MerkB 0.1428571 0.7142857 0.1428571
##      MerkC 0.6000000 0.2000000 0.2000000
##      MerkD 0.7500000 0.2500000 0.0000000

4. Matriks Profil Kolom

prop.table(kores,2)
##           Daerah
## Pasta Gigi Region1 Region2 Region3
##      MerkA   0.125   0.125   0.750
##      MerkB   0.125   0.625   0.125
##      MerkC   0.375   0.125   0.125
##      MerkD   0.375   0.125   0.000

5. Hasil Inersia

library(ca)
fit=ca(kores)
fit
## 
##  Principal inertias (eigenvalues):
##            1        2       
## Value      0.410259 0.253134
## Percentage 61.84%   38.16%  
## 
## 
##  Rows:
##             MerkA     MerkB    MerkC    MerkD
## Mass     0.333333  0.291667 0.208333 0.166667
## ChiDist  0.883883  0.808122 0.565685 0.935414
## Inertia  0.260417  0.190476 0.066667 0.145833
## Dim. 1  -1.370161  0.496387 0.529432 1.209854
## Dim. 2   0.208974 -1.476672 0.899927 1.041319
## 
## 
##  Columns:
##          Region1   Region2   Region3
## Mass    0.333333  0.333333  0.333333
## ChiDist 0.786890  0.744923  0.903367
## Inertia 0.206399  0.184970  0.272024
## Dim. 1  0.847773  0.556400 -1.404173
## Dim. 2  1.131937 -1.300161  0.168224

6. Analisis Tabel Kontingensi

7. Kontribusi Baris

8. Kontribusi Kolom

summary(fit)
## 
## Principal inertias (eigenvalues):
## 
##  dim    value      %   cum%   scree plot               
##  1      0.410259  61.8  61.8  ***************          
##  2      0.253134  38.2 100.0  **********               
##         -------- -----                                 
##  Total: 0.663393 100.0                                 
## 
## 
## Rows:
##     name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  
## 1 | MrkA |  333 1000  393 | -878 986 626 |  105  14  15 |
## 2 | MrkB |  292 1000  287 |  318 155  72 | -743 845 636 |
## 3 | MrkC |  208 1000  100 |  339 359  58 |  453 641 169 |
## 4 | MrkD |  167 1000  220 |  775 686 244 |  524 314 181 |
## 
## Columns:
##     name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  
## 1 | Rgn1 |  333 1000  311 |  543 476 240 |  570 524 427 |
## 2 | Rgn2 |  333 1000  279 |  356 229 103 | -654 771 563 |
## 3 | Rgn3 |  333 1000  410 | -899 991 657 |   85   9   9 |

9. Plot Analisis Korespondensi

plot(fit, mass = TRUE, contrib = "absolute", map="rowgreen")

Penerapan 2

1. Prosedur Biplot

Saat ini sudah banyak bank indonesia.Semakin banyak yang beroperasi,akan meningkatkan suatu persaingan di antara mereka.Persaingan untuk menarik pasar dilakukan dengan berbagai cara baik dalam bentuk fasilitas yang diberikan,hadiah,pelayan,lokasi,dan penggunan ATM.Untuk mengantisipasi persaingan ini pihak bank terkait perlu mengetahui posisi pesaing mereka.Berikut ini adalah rata-rata nilai yang diberikan responden :

2. Matriks X data

library(readxl)
Data1 <- read_excel("Data10.xlsx")
Data1
## # A tibble: 8 x 6
##   ...1      Fasilitas Hadiah Pelayanan Lokasi   ATM
##   <chr>         <dbl>  <dbl>     <dbl>  <dbl> <dbl>
## 1 BCA            9.88   9.16      7.13   9.69  9.2 
## 2 BNI            6.32   7.5       7.71   7.49  7.89
## 3 MANDIRI        4.2    5.94      5.18   6.72  4.25
## 4 BI             7.79   8.22      7.24   7.69  7.09
## 5 MEGA           7.79   7.27      6.95   5.34  6.59
## 6 UNIVERSAL      5.42   5.06      9.11   5.61  7.25
## 7 MUAMALAT       6.18   5.69      6.25   6.01  6.26
## 8 SYARIAH        7.36   6.98      6.08   7.41  6.99
mdata1 = matrix(c(Data1$Fasilitas,Data1$Hadiah,Data1$Pelayanan,Data1$Lokasi,Data1$ATM),8,5)
mdata1
##      [,1] [,2] [,3] [,4] [,5]
## [1,] 9.88 9.16 7.13 9.69 9.20
## [2,] 6.32 7.50 7.71 7.49 7.89
## [3,] 4.20 5.94 5.18 6.72 4.25
## [4,] 7.79 8.22 7.24 7.69 7.09
## [5,] 7.79 7.27 6.95 5.34 6.59
## [6,] 5.42 5.06 9.11 5.61 7.25
## [7,] 6.18 5.69 6.25 6.01 6.26
## [8,] 7.36 6.98 6.08 7.41 6.99

3. Transformasi nilai X terhadap nilai tengahnya

Cara 1

rata = matrix(c(colMeans(mdata1)),5,1)
rata
##         [,1]
## [1,] 6.86750
## [2,] 6.97750
## [3,] 6.95625
## [4,] 6.99500
## [5,] 6.94000
satu = matrix(c(rep(1,8)),1,8)
satu
##      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,]    1    1    1    1    1    1    1    1
mrat = rata %*% satu
X = mdata1 - t(mrat)
X
##         [,1]    [,2]     [,3]   [,4]  [,5]
## [1,]  3.0125  2.1825  0.17375  2.695  2.26
## [2,] -0.5475  0.5225  0.75375  0.495  0.95
## [3,] -2.6675 -1.0375 -1.77625 -0.275 -2.69
## [4,]  0.9225  1.2425  0.28375  0.695  0.15
## [5,]  0.9225  0.2925 -0.00625 -1.655 -0.35
## [6,] -1.4475 -1.9175  2.15375 -1.385  0.31
## [7,] -0.6875 -1.2875 -0.70625 -0.985 -0.68
## [8,]  0.4925  0.0025 -0.87625  0.415  0.05

Cara 2

biplot1=scale(mdata1,center = TRUE, scale = FALSE)
biplot1
##         [,1]    [,2]     [,3]   [,4]  [,5]
## [1,]  3.0125  2.1825  0.17375  2.695  2.26
## [2,] -0.5475  0.5225  0.75375  0.495  0.95
## [3,] -2.6675 -1.0375 -1.77625 -0.275 -2.69
## [4,]  0.9225  1.2425  0.28375  0.695  0.15
## [5,]  0.9225  0.2925 -0.00625 -1.655 -0.35
## [6,] -1.4475 -1.9175  2.15375 -1.385  0.31
## [7,] -0.6875 -1.2875 -0.70625 -0.985 -0.68
## [8,]  0.4925  0.0025 -0.87625  0.415  0.05
## attr(,"scaled:center")
## [1] 6.86750 6.97750 6.95625 6.99500 6.94000

4. Matrix X’X

sq = t(X) %*% X
sq
##           [,1]      [,2]      [,3]     [,4]    [,5]
## [1,] 21.002950 14.134250  2.041325 10.58200 13.3226
## [2,] 14.134250 13.076550 -0.256075 10.73020  8.5849
## [3,]  2.041325 -0.256075  9.739187 -1.11355  7.0357
## [4,] 10.582000 10.730200 -1.113550 13.86640  8.2454
## [5,] 13.322600  8.584900  7.035700  8.24540 13.9522

5. Nilai eigen dari sq

eigen(sq)
## eigen() decomposition
## $values
## [1] 49.5634638 14.3119212  5.6099251  1.7274341  0.4245434
## 
## $vectors
##             [,1]        [,2]        [,3]       [,4]       [,5]
## [1,] -0.61259089  0.01267564  0.62791476  0.2649402 -0.4001268
## [2,] -0.47036883  0.26344316  0.06105456 -0.7821383  0.3064032
## [3,] -0.09783043 -0.78006818 -0.19392846 -0.3905949 -0.4378929
## [4,] -0.42632532  0.35141752 -0.72899711  0.1751783 -0.3641816
## [5,] -0.46060991 -0.44546200 -0.18152235  0.3671710  0.6493360

6. Menentukan matriks L, A, dan U dengan metode Singular Value Decomposition (SVD)

# Matriks L

L = diag(sqrt(eigen(sq)$values))
L
##          [,1]    [,2]     [,3]     [,4]      [,5]
## [1,] 7.040132 0.00000 0.000000 0.000000 0.0000000
## [2,] 0.000000 3.78311 0.000000 0.000000 0.0000000
## [3,] 0.000000 0.00000 2.368528 0.000000 0.0000000
## [4,] 0.000000 0.00000 0.000000 1.314319 0.0000000
## [5,] 0.000000 0.00000 0.000000 0.000000 0.6515699
# Matriks A

A = matrix(c(eigen(sq)$vectors),5,5)
A
##             [,1]        [,2]        [,3]       [,4]       [,5]
## [1,] -0.61259089  0.01267564  0.62791476  0.2649402 -0.4001268
## [2,] -0.47036883  0.26344316  0.06105456 -0.7821383  0.3064032
## [3,] -0.09783043 -0.78006818 -0.19392846 -0.3905949 -0.4378929
## [4,] -0.42632532  0.35141752 -0.72899711  0.1751783 -0.3641816
## [5,] -0.46060991 -0.44546200 -0.18152235  0.3671710  0.6493360
# Matriks U
U = X%*%A%*%solve(L)
U
##             [,1]        [,2]        [,3]       [,4]       [,5]
## [1,] -0.72142581  0.11047506 -0.16201538  0.2473995 -0.1944701
## [2,] -0.08987393 -0.18675230 -0.41855350 -0.3139324  0.7454344
## [3,]  0.51876088  0.57627574 -0.29768362 -0.1805721 -0.1831142
## [4,] -0.21912874  0.07800274  0.02795117 -0.5032311 -0.4118804
## [5,]  0.02339379 -0.08777394  0.78882111 -0.3046117  0.1514737
## [6,]  0.28772566 -0.74763318 -0.20699062  0.1112411 -0.3771979
## [7,]  0.25979540  0.04223866  0.19765870  0.5162274  0.1642576
## [8,] -0.05924726  0.21516722  0.07081214  0.4274793  0.1054970

G = U
G
##             [,1]        [,2]        [,3]       [,4]       [,5]
## [1,] -0.72142581  0.11047506 -0.16201538  0.2473995 -0.1944701
## [2,] -0.08987393 -0.18675230 -0.41855350 -0.3139324  0.7454344
## [3,]  0.51876088  0.57627574 -0.29768362 -0.1805721 -0.1831142
## [4,] -0.21912874  0.07800274  0.02795117 -0.5032311 -0.4118804
## [5,]  0.02339379 -0.08777394  0.78882111 -0.3046117  0.1514737
## [6,]  0.28772566 -0.74763318 -0.20699062  0.1112411 -0.3771979
## [7,]  0.25979540  0.04223866  0.19765870  0.5162274  0.1642576
## [8,] -0.05924726  0.21516722  0.07081214  0.4274793  0.1054970
H = A %*% L
H
##            [,1]        [,2]       [,3]       [,4]       [,5]
## [1,] -4.3127209  0.04795332  1.4872337  0.3482159 -0.2607106
## [2,] -3.3114588  0.99663445  0.1446094 -1.0279791  0.1996431
## [3,] -0.6887392 -2.95108373 -0.4593250 -0.5133663 -0.2853178
## [4,] -3.0013867  1.32945111 -1.7266501  0.2302402 -0.2372898
## [5,] -3.2427548 -1.68523173 -0.4299408  0.4825798  0.4230878

7. Mengambil 2 kolom pertama dari masing-masing matriks G dan H

G = G[,1:2]
G
##             [,1]        [,2]
## [1,] -0.72142581  0.11047506
## [2,] -0.08987393 -0.18675230
## [3,]  0.51876088  0.57627574
## [4,] -0.21912874  0.07800274
## [5,]  0.02339379 -0.08777394
## [6,]  0.28772566 -0.74763318
## [7,]  0.25979540  0.04223866
## [8,] -0.05924726  0.21516722
H = H[,1:2]
H
##            [,1]        [,2]
## [1,] -4.3127209  0.04795332
## [2,] -3.3114588  0.99663445
## [3,] -0.6887392 -2.95108373
## [4,] -3.0013867  1.32945111
## [5,] -3.2427548 -1.68523173

8. Keragaman yang diterangkan oleh biplot

9. Membuat biplot dengan menggunakan princomp (PCA)

model1 = princomp(mdata1,cor = T)
summary(model1)
## Importance of components:
##                           Comp.1    Comp.2     Comp.3     Comp.4     Comp.5
## Standard deviation     1.7856835 1.1415977 0.58910957 0.36227759 0.17260909
## Proportion of Variance 0.6377331 0.2606491 0.06941002 0.02624901 0.00595878
## Cumulative Proportion  0.6377331 0.8983822 0.96779221 0.99404122 1.00000000
biplot(model1)

model2 = princomp(mdata1,scale = T)
summary(model2)
## Importance of components:
##                           Comp.1    Comp.2     Comp.3     Comp.4      Comp.5
## Standard deviation     2.4890627 1.3375314 0.83740112 0.46468189 0.230364760
## Proportion of Variance 0.6918668 0.1997831 0.07831013 0.02411362 0.005926291
## Cumulative Proportion  0.6918668 0.8916500 0.96996009 0.99407371 1.000000000
biplot(model2)

10. Dengan fungsi svd

y = svd(biplot1)
y
## $d
## [1] 7.0401324 3.7831100 2.3685280 1.3143189 0.6515699
## 
## $u
##             [,1]        [,2]        [,3]       [,4]       [,5]
## [1,] -0.72142581  0.11047506  0.16201538  0.2473995  0.1944701
## [2,] -0.08987393 -0.18675230  0.41855350 -0.3139324 -0.7454344
## [3,]  0.51876088  0.57627574  0.29768362 -0.1805721  0.1831142
## [4,] -0.21912874  0.07800274 -0.02795117 -0.5032311  0.4118804
## [5,]  0.02339379 -0.08777394 -0.78882111 -0.3046117 -0.1514737
## [6,]  0.28772566 -0.74763318  0.20699062  0.1112411  0.3771979
## [7,]  0.25979540  0.04223866 -0.19765870  0.5162274 -0.1642576
## [8,] -0.05924726  0.21516722 -0.07081214  0.4274793 -0.1054970
## 
## $v
##             [,1]        [,2]        [,3]       [,4]       [,5]
## [1,] -0.61259089  0.01267564 -0.62791476  0.2649402  0.4001268
## [2,] -0.47036883  0.26344316 -0.06105456 -0.7821383 -0.3064032
## [3,] -0.09783043 -0.78006818  0.19392846 -0.3905949  0.4378929
## [4,] -0.42632532  0.35141752  0.72899711  0.1751783  0.3641816
## [5,] -0.46060991 -0.44546200  0.18152235  0.3671710 -0.6493360
L = diag(y$d)
L
##          [,1]    [,2]     [,3]     [,4]      [,5]
## [1,] 7.040132 0.00000 0.000000 0.000000 0.0000000
## [2,] 0.000000 3.78311 0.000000 0.000000 0.0000000
## [3,] 0.000000 0.00000 2.368528 0.000000 0.0000000
## [4,] 0.000000 0.00000 0.000000 1.314319 0.0000000
## [5,] 0.000000 0.00000 0.000000 0.000000 0.6515699
A = y$v
A
##             [,1]        [,2]        [,3]       [,4]       [,5]
## [1,] -0.61259089  0.01267564 -0.62791476  0.2649402  0.4001268
## [2,] -0.47036883  0.26344316 -0.06105456 -0.7821383 -0.3064032
## [3,] -0.09783043 -0.78006818  0.19392846 -0.3905949  0.4378929
## [4,] -0.42632532  0.35141752  0.72899711  0.1751783  0.3641816
## [5,] -0.46060991 -0.44546200  0.18152235  0.3671710 -0.6493360
U = y$u
U
##             [,1]        [,2]        [,3]       [,4]       [,5]
## [1,] -0.72142581  0.11047506  0.16201538  0.2473995  0.1944701
## [2,] -0.08987393 -0.18675230  0.41855350 -0.3139324 -0.7454344
## [3,]  0.51876088  0.57627574  0.29768362 -0.1805721  0.1831142
## [4,] -0.21912874  0.07800274 -0.02795117 -0.5032311  0.4118804
## [5,]  0.02339379 -0.08777394 -0.78882111 -0.3046117 -0.1514737
## [6,]  0.28772566 -0.74763318  0.20699062  0.1112411  0.3771979
## [7,]  0.25979540  0.04223866 -0.19765870  0.5162274 -0.1642576
## [8,] -0.05924726  0.21516722 -0.07081214  0.4274793 -0.1054970
G = U
H = A %*%L
H
##            [,1]        [,2]       [,3]       [,4]       [,5]
## [1,] -4.3127209  0.04795332 -1.4872337  0.3482159  0.2607106
## [2,] -3.3114588  0.99663445 -0.1446094 -1.0279791 -0.1996431
## [3,] -0.6887392 -2.95108373  0.4593250 -0.5133663  0.2853178
## [4,] -3.0013867  1.32945111  1.7266501  0.2302402  0.2372898
## [5,] -3.2427548 -1.68523173  0.4299408  0.4825798 -0.4230878
G2 = G[,1:2]
H2 = H[,1:2]
G2
##             [,1]        [,2]
## [1,] -0.72142581  0.11047506
## [2,] -0.08987393 -0.18675230
## [3,]  0.51876088  0.57627574
## [4,] -0.21912874  0.07800274
## [5,]  0.02339379 -0.08777394
## [6,]  0.28772566 -0.74763318
## [7,]  0.25979540  0.04223866
## [8,] -0.05924726  0.21516722
H2
##            [,1]        [,2]
## [1,] -4.3127209  0.04795332
## [2,] -3.3114588  0.99663445
## [3,] -0.6887392 -2.95108373
## [4,] -3.0013867  1.32945111
## [5,] -3.2427548 -1.68523173
biplot(G2,H2)

Penerapan 3

library(readxl)
jatim <- read_excel("Data Modul 10.xlsx", sheet = "Contoh")
jatim
## # A tibble: 38 x 7
##    Kab         Density PddkKota Depend  Gini Miskin KapitaNMkn
##    <chr>         <dbl>    <dbl>  <dbl> <dbl>  <dbl>      <dbl>
##  1 Pacitan         422     21.8   49.3  0.35  14.5        47.3
##  2 Ponorogo        727     34.7   46.6  0.38   9.95       55.0
##  3 Trenggalek      637     35.8   45.5  0.38  11.6        50.9
##  4 Tulungagung    1032     53.0   47.9  0.34   7.33       51.2
##  5 Blitar          916     45     49.2  0.35   9.33       52.7
##  6 Kediri         1180     52.5   47.0  0.33  11.4        49.0
##  7 Malang          752     54.8   45.7  0.37  10.2        53.0
##  8 Lumajang        625     35.1   43.4  0.3    9.83       42.7
##  9 Jember          820     50.8   45.4  0.32  10.1        44.9
## 10 Banyuwangi      295     60.2   46.3  0.32   8.06       49.6
## # ... with 28 more rows
jatim2 <- jatim[,-1] #membuang variable yang bukan numeric di kolom 1

library(psych)
library(GPArotation)

1. Analisis Faktor metode Komponen Utama

fa1 <- fa(jatim2, nfactors=2, fm="pa", scores=TRUE) # factor analysis 2 common factor
fa1
## Factor Analysis using method =  pa
## Call: fa(r = jatim2, nfactors = 2, scores = TRUE, fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##              PA1   PA2   h2    u2 com
## Density     0.88 -0.02 0.75 0.246 1.0
## PddkKota    0.91  0.09 0.93 0.070 1.0
## Depend     -0.67  0.13 0.37 0.635 1.1
## Gini       -0.18  0.85 0.58 0.418 1.1
## Miskin     -0.48 -0.51 0.76 0.243 2.0
## KapitaNMkn  0.32  0.76 0.96 0.041 1.3
## 
##                        PA1  PA2
## SS loadings           2.59 1.75
## Proportion Var        0.43 0.29
## Cumulative Var        0.43 0.72
## Proportion Explained  0.60 0.40
## Cumulative Proportion 0.60 1.00
## 
##  With factor correlations of 
##      PA1  PA2
## PA1 1.00 0.57
## PA2 0.57 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  15  and the objective function was  4.86 with Chi Square of  166.21
## The degrees of freedom for the model are 4  and the objective function was  0.24 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic number of observations is  38 with the empirical chi square  0.79  with prob <  0.94 
## The total number of observations was  38  with Likelihood Chi Square =  7.81  with prob <  0.099 
## 
## Tucker Lewis Index of factoring reliability =  0.901
## RMSEA index =  0.156  and the 90 % confidence intervals are  0 0.328
## BIC =  -6.74
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    PA1  PA2
## Correlation of (regression) scores with factors   0.97 0.97
## Multiple R square of scores with factors          0.95 0.94
## Minimum correlation of possible factor scores     0.89 0.88

2. Biplot

biplot(fa1, labels=rownames(jatim2))

3. Biplot Analisis Korespondensi

library(FactoMineR)
library(factoextra)
library(ggplot2)

data(housetasks)
housetasks
##            Wife Alternating Husband Jointly
## Laundry     156          14       2       4
## Main_meal   124          20       5       4
## Dinner       77          11       7      13
## Breakfeast   82          36      15       7
## Tidying      53          11       1      57
## Dishes       32          24       4      53
## Shopping     33          23       9      55
## Official     12          46      23      15
## Driving      10          51      75       3
## Finances     13          13      21      66
## Insurance     8           1      53      77
## Repairs       0           3     160       2
## Holidays      0           1       6     153

4. Plot data

library(gplots)
# 1. convert data "housetasks" menjadi sebuah tabel
data1 <- as.table(as.matrix(housetasks))
# 2. membuat plot
balloonplot(t(data1), main ="Tugas Rumah", xlab ="", ylab="",
            label = FALSE, show.margins = FALSE,dotsize=4, text.size=0.5)

5. Analisis Korespondensi

an.ca <- CA(housetasks, graph = FALSE)
print(an.ca)
## **Results of the Correspondence Analysis (CA)**
## The row variable has  13  categories; the column variable has 4 categories
## The chi square of independence between the two variables is equal to 1944.456 (p-value =  0 ).
## *The results are available in the following objects:
## 
##    name              description                   
## 1  "$eig"            "eigenvalues"                 
## 2  "$col"            "results for the columns"     
## 3  "$col$coord"      "coord. for the columns"      
## 4  "$col$cos2"       "cos2 for the columns"        
## 5  "$col$contrib"    "contributions of the columns"
## 6  "$row"            "results for the rows"        
## 7  "$row$coord"      "coord. for the rows"         
## 8  "$row$cos2"       "cos2 for the rows"           
## 9  "$row$contrib"    "contributions of the rows"   
## 10 "$call"           "summary called parameters"   
## 11 "$call$marge.col" "weights of the columns"      
## 12 "$call$marge.row" "weights of the rows"
summary(an.ca)
## 
## Call:
## CA(X = housetasks, graph = FALSE) 
## 
## The chi square of independence between the two variables is equal to 1944.456 (p-value =  0 ).
## 
## Eigenvalues
##                        Dim.1   Dim.2   Dim.3
## Variance               0.543   0.445   0.127
## % of var.             48.692  39.913  11.395
## Cumulative % of var.  48.692  88.605 100.000
## 
## Rows (the 10 first)
##               Iner*1000     Dim.1     ctr    cos2     Dim.2     ctr    cos2  
## Laundry     |   134.160 |  -0.992  18.287   0.740 |   0.495   5.564   0.185 |
## Main_meal   |    90.692 |  -0.876  12.389   0.742 |   0.490   4.736   0.232 |
## Dinner      |    38.246 |  -0.693   5.471   0.777 |   0.308   1.321   0.154 |
## Breakfeast  |    41.124 |  -0.509   3.825   0.505 |   0.453   3.699   0.400 |
## Tidying     |    24.667 |  -0.394   1.998   0.440 |  -0.434   2.966   0.535 |
## Dishes      |    19.587 |  -0.189   0.426   0.118 |  -0.442   2.844   0.646 |
## Shopping    |    14.970 |  -0.118   0.176   0.064 |  -0.403   2.515   0.748 |
## Official    |    53.300 |   0.227   0.521   0.053 |   0.254   0.796   0.066 |
## Driving     |   101.509 |   0.742   8.078   0.432 |   0.653   7.647   0.335 |
## Finances    |    29.564 |   0.271   0.875   0.161 |  -0.618   5.559   0.837 |
##               Dim.3     ctr    cos2  
## Laundry      -0.317   7.968   0.075 |
## Main_meal    -0.164   1.859   0.026 |
## Dinner       -0.207   2.097   0.070 |
## Breakfeast    0.220   3.069   0.095 |
## Tidying      -0.094   0.489   0.025 |
## Dishes        0.267   3.634   0.236 |
## Shopping      0.203   2.223   0.189 |
## Official      0.923  36.940   0.881 |
## Driving       0.544  18.596   0.233 |
## Finances      0.035   0.062   0.003 |
## 
## Columns
##               Iner*1000     Dim.1     ctr    cos2     Dim.2     ctr    cos2  
## Wife        |   301.019 |  -0.838  44.462   0.802 |   0.365  10.312   0.152 |
## Alternating |   117.824 |  -0.062   0.104   0.005 |   0.292   2.783   0.105 |
## Husband     |   381.373 |   1.161  54.234   0.772 |   0.602  17.787   0.208 |
## Jointly     |   314.725 |   0.149   1.200   0.021 |  -1.027  69.118   0.977 |
##               Dim.3     ctr    cos2  
## Wife         -0.200  10.822   0.046 |
## Alternating   0.849  82.549   0.890 |
## Husband      -0.189   6.133   0.020 |
## Jointly      -0.046   0.495   0.002 |

6. Nilai Kritis (Chi-square tabel)

df1 <- (nrow(housetasks) - 1) * (ncol(housetasks) - 1)
qchisq(1-0.05,df=df1)
## [1] 50.99846

7. Scree Plot (menentukan banyaknya dimensi)

fviz_screeplot(an.ca,addlabels = TRUE) +
  geom_hline(yintercept=33.33, linetype=2, color="red")

8. Biplot Simetris

library(Rcpp)
# repel= TRUE untuk menghindari text tumpang tindih(running lambat jika titiknya banyak)
fviz_ca_biplot(an.ca, repel = F)

9. Biplot Asimetris Baris

#"rowprincipal": kolom direpresentasikan dalam ruang baris
fviz_ca_biplot(an.ca, 
               map ="rowprincipal", arrow = c(TRUE, TRUE), repel = F)

10. Biplot Asimetris Kolom

#"colprincipal": baris direpresentasikan dalam ruang kolom
fviz_ca_biplot(an.ca, 
               map ="colprincipal", arrow = c(TRUE, TRUE), repel = F)

11. Biplot Kontribusi Baris

#Biplot kontribusi setiap kategori Baris terhadap pembentukan Dimensi
fviz_ca_biplot(an.ca, map ="colgreen", arrow = c(TRUE, FALSE), repel = F)

12. Biplot Kontribusi Kolom

#Biplot kontribusi setiap kategori Kolom terhadap Dimensi
fviz_ca_biplot(an.ca, map ="rowgreen", arrow = c(FALSE, TRUE), repel = F)

13. Nilai Kontribusi Setiap Dimensi

# Dimension description
deskripsi.dimensi <- dimdesc(an.ca, axes = c(1,2))
deskripsi.dimensi
## $`Dim 1`
## $`Dim 1`$row
##                 coord
## Laundry    -0.9918368
## Main_meal  -0.8755855
## Dinner     -0.6925740
## Breakfeast -0.5086002
## Tidying    -0.3938084
## Dishes     -0.1889641
## Shopping   -0.1176813
## Official    0.2266324
## Holidays    0.2524863
## Finances    0.2707669
## Insurance   0.6470759
## Driving     0.7417696
## Repairs     1.5287787
## 
## $`Dim 1`$col
##                   coord
## Wife        -0.83762154
## Alternating -0.06218462
## Jointly      0.14942609
## Husband      1.16091847

Penugasan Modul Praktikum

Nomor 1

Data

library(psych)
library(GPArotation)
library(readxl)
papua <- read_excel("Data Modul 10.xlsx", sheet = "Penugasan 1")
papua
## # A tibble: 29 x 5
##    Kab             Miskin   IPM   TPT  Gini
##    <chr>            <dbl> <dbl> <dbl> <dbl>
##  1 Merauke           10.0  70.1  2.61 0.38 
##  2 Jayawijaya        37.2  58.0  2.39 0.342
##  3 Jayapura          12.4  71.7  9.68 0.432
##  4 Nabire            24.2  68.8  6.31 0.349
##  5 Kepulauan Yapen   26.3  67.7  5.78 0.4  
##  6 Biak Numfor       24.6  72.2 10.4  0.401
##  7 Paniai            36.7  56.3  0.66 0.38 
##  8 Puncak Jaya       34.7  48.4  1.78 0.376
##  9 Mimika            14.3  74.2  7.51 0.339
## 10 Boven Digoel      19.4  61.5  3.08 0.448
## # ... with 19 more rows
papua <- papua[,-1]

Summary data

summary(papua)
##      Miskin           IPM             TPT              Gini      
##  Min.   :10.03   Min.   :31.55   Min.   : 0.000   Min.   :0.187  
##  1st Qu.:24.15   1st Qu.:48.37   1st Qu.: 0.710   1st Qu.:0.326  
##  Median :29.54   Median :56.31   Median : 2.390   Median :0.362  
##  Mean   :28.21   Mean   :57.29   Mean   : 3.279   Mean   :0.355  
##  3rd Qu.:36.72   3rd Qu.:66.40   3rd Qu.: 4.680   3rd Qu.:0.400  
##  Max.   :41.76   Max.   :79.94   Max.   :12.370   Max.   :0.448

Analisis Faktor

fac <- fa(papua, nfactors = 2, fm = "pa", scores = TRUE)
fac
## Factor Analysis using method =  pa
## Call: fa(r = papua, nfactors = 2, scores = TRUE, fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##          PA1   PA2   h2   u2 com
## Miskin -0.70 -0.29 0.70 0.30 1.3
## IPM     0.87  0.16 0.87 0.13 1.1
## TPT     0.98 -0.18 0.88 0.12 1.1
## Gini    0.11  0.53 0.33 0.67 1.1
## 
##                        PA1  PA2
## SS loadings           2.30 0.49
## Proportion Var        0.57 0.12
## Cumulative Var        0.57 0.70
## Proportion Explained  0.82 0.18
## Cumulative Proportion 0.82 1.00
## 
##  With factor correlations of 
##      PA1  PA2
## PA1 1.00 0.32
## PA2 0.32 1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  6  and the objective function was  2.27 with Chi Square of  58.61
## The degrees of freedom for the model are -1  and the objective function was  0 
## 
## The root mean square of the residuals (RMSR) is  0 
## The df corrected root mean square of the residuals is  NA 
## 
## The harmonic number of observations is  29 with the empirical chi square  0  with prob <  NA 
## The total number of observations was  29  with Likelihood Chi Square =  0  with prob <  NA 
## 
## Tucker Lewis Index of factoring reliability =  1.121
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    PA1  PA2
## Correlation of (regression) scores with factors   0.97 0.75
## Multiple R square of scores with factors          0.94 0.56
## Minimum correlation of possible factor scores     0.88 0.13

Biplot

biplot(fac, labels = rownames(papua))

Nomor 2

library(FactoMineR)
library(factoextra)
library(ggplot2)

jateng <- as.data.frame(read_excel("Data Modul 10.xlsx", sheet = "Penugasan 2"))
rownames(jateng) <- jateng$Pendidikan
jateng <- jateng[,-1]
jateng
##           Tani_Tambang Industri Listrik_Air_Gas Konstruksi Dagang Transport
## No_Ijazah          127       38               2          8     28         5
## SD                 177       86               1         45     76        13
## SMP                 54       60               4         32     57         6
## SMA                 60       50               4         22     96        11
## PT                   6        0               0          2     10         1
##           Akomodasi Jasa
## No_Ijazah         5   17
## SD               19   23
## SMP              23   35
## SMA              24   62
## PT                1   67

Plot data

library(gplots)
# 1. convert data "jateng" menjadi sebuah tabel
data1 <- as.table(as.matrix(jateng))
# 2. membuat plot
balloonplot(t(data1), main ="Pekerjaan dan Pendidikan", xlab ="", ylab="",
            label = FALSE, show.margins = FALSE,dotsize=4, text.size=0.5)

Analisis Korespondensi

an.ca <- CA(jateng, graph = FALSE)
print(an.ca)
## **Results of the Correspondence Analysis (CA)**
## The row variable has  5  categories; the column variable has 8 categories
## The chi square of independence between the two variables is equal to 449.4398 (p-value =  1.615109e-77 ).
## *The results are available in the following objects:
## 
##    name              description                   
## 1  "$eig"            "eigenvalues"                 
## 2  "$col"            "results for the columns"     
## 3  "$col$coord"      "coord. for the columns"      
## 4  "$col$cos2"       "cos2 for the columns"        
## 5  "$col$contrib"    "contributions of the columns"
## 6  "$row"            "results for the rows"        
## 7  "$row$coord"      "coord. for the rows"         
## 8  "$row$cos2"       "cos2 for the rows"           
## 9  "$row$contrib"    "contributions of the rows"   
## 10 "$call"           "summary called parameters"   
## 11 "$call$marge.col" "weights of the columns"      
## 12 "$call$marge.row" "weights of the rows"
summary(an.ca)
## 
## Call:
## CA(X = jateng, graph = FALSE) 
## 
## The chi square of independence between the two variables is equal to 449.4398 (p-value =  1.615109e-77 ).
## 
## Eigenvalues
##                        Dim.1   Dim.2   Dim.3   Dim.4
## Variance               0.244   0.072   0.012   0.004
## % of var.             73.532  21.877   3.483   1.108
## Cumulative % of var.  73.532  95.409  98.892 100.000
## 
## Rows
##                   Iner*1000     Dim.1     ctr    cos2     Dim.2     ctr    cos2
## No_Ijazah       |    50.319 |  -0.328   7.505   0.363 |  -0.421  41.461   0.597
## SD              |    35.072 |  -0.308  12.640   0.878 |  -0.067   2.021   0.042
## SMP             |    20.338 |  -0.006   0.003   0.000 |   0.284  22.266   0.793
## SMA             |    30.472 |   0.197   3.867   0.309 |   0.252  21.192   0.504
## PT              |   195.000 |   1.699  75.986   0.949 |  -0.384  13.060   0.049
##                     Dim.3     ctr    cos2  
## No_Ijazah       |  -0.081   9.548   0.022 |
## SD              |   0.063  11.223   0.037 |
## SMP             |   0.124  26.425   0.150 |
## SMA             |  -0.152  48.796   0.185 |
## PT              |   0.085   4.007   0.002 |
## 
## Columns
##                   Iner*1000     Dim.1     ctr    cos2     Dim.2     ctr    cos2
## Tani_Tambang    |    73.028 |  -0.356  16.278   0.543 |  -0.326  45.860   0.455
## Industri        |    15.468 |  -0.255   4.610   0.726 |   0.125   3.705   0.174
## Listrik_Air_Gas |     3.470 |  -0.037   0.004   0.003 |   0.417   1.944   0.406
## Konstruksi      |    13.036 |  -0.166   0.911   0.170 |   0.255   7.189   0.400
## Dagang          |    19.297 |   0.023   0.041   0.005 |   0.273  20.245   0.760
## Transport       |     1.385 |  -0.102   0.114   0.200 |   0.115   0.481   0.252
## Akomodasi       |    11.434 |  -0.034   0.025   0.005 |   0.455  15.136   0.959
## Jasa            |   194.083 |   1.124  78.017   0.979 |  -0.162   5.440   0.020
##                     Dim.3     ctr    cos2  
## Tani_Tambang    |  -0.022   1.345   0.002 |
## Industri        |   0.086  11.093   0.083 |
## Listrik_Air_Gas |  -0.181   2.291   0.076 |
## Konstruksi      |   0.254  44.801   0.397 |
## Dagang          |  -0.146  36.429   0.218 |
## Transport       |  -0.112   2.864   0.239 |
## Akomodasi       |   0.009   0.035   0.000 |
## Jasa            |   0.030   1.143   0.001 |

Nilai Kritis (Chi-square tabel)

df1 <- (nrow(jateng) - 1) * (ncol(jateng) - 1)
qchisq(1-0.05,df=df1)
## [1] 41.33714

Scree Plot (menentukan banyaknya dimensi)

fviz_screeplot(an.ca,addlabels = TRUE) +
  geom_hline(yintercept=25, linetype=2, color="red")

Biplot Simetris

library(Rcpp)
# repel= TRUE untuk menghindari text tumpang tindih(running lambat jika titiknya banyak)
fviz_ca_biplot(an.ca, repel = F)

Biplot Asimetris Baris

#"rowprincipal": kolom direpresentasikan dalam ruang baris
fviz_ca_biplot(an.ca, 
               map ="rowprincipal", arrow = c(TRUE, TRUE), repel = F)

Biplot Asimetris Kolom

#"colprincipal": baris direpresentasikan dalam ruang kolom
fviz_ca_biplot(an.ca, 
               map ="colprincipal", arrow = c(TRUE, TRUE), repel = F)

Biplot Kontribusi Baris

#Biplot kontribusi setiap kategori Baris terhadap pembentukan Dimensi
fviz_ca_biplot(an.ca, map ="colgreen", arrow = c(TRUE, FALSE), repel = F)

Biplot Kontribusi Kolom

#Biplot kontribusi setiap kategori Kolom terhadap Dimensi
fviz_ca_biplot(an.ca, map ="rowgreen", arrow = c(FALSE, TRUE), repel = F)

Nilai Kontribusi Setiap Dimensi

# Dimension description
deskripsi.dimensi <- dimdesc(an.ca, axes = c(1,2))
deskripsi.dimensi
## $`Dim 1`
## $`Dim 1`$row
##                  coord
## No_Ijazah -0.328378314
## SD        -0.308121933
## SMP       -0.005726466
## SMA        0.197093697
## PT         1.698950677
## 
## $`Dim 1`$col
##                       coord
## Tani_Tambang    -0.35619612
## Industri        -0.25516251
## Konstruksi      -0.16623151
## Transport       -0.10215373
## Listrik_Air_Gas -0.03673402
## Akomodasi       -0.03373645
## Dagang           0.02255728
## Jasa             1.12422676