Questions 3, 8, 9

Ginni Index, Classification Error, and Entropy Plot

  1. Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of ˆpm1. The x-axis should display ˆpm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy. Hint: In a setting with two classes, ˆpm1 = 1 − ˆpm2. You could make this plot by hand, but it will be much easier to make in R.
p = seq(0, 1, 0.01)
gini = p * (1 - p) * 2
entropy = -(p * log(p) + (1 - p) * log(1 - p))
class.err = 1 - pmax(p, 1 - p)
matplot(p, cbind(gini, entropy, class.err), col = c("purple", "blue", "hotpink"))

Carseats Data Set

  1. In the lab, a classification tree was applied to the Carseats data set after converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches, treating the response as a quantitative variable.
library(ISLR2)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6      ✔ purrr   0.3.5 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.1      ✔ stringr 1.4.1 
## ✔ readr   2.1.3      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(tree)
## Warning: package 'tree' was built under R version 4.2.2
library(randomForest)
## Warning: package 'randomForest' was built under R version 4.2.2
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## 
## The following object is masked from 'package:dplyr':
## 
##     combine
## 
## The following object is masked from 'package:ggplot2':
## 
##     margin
library(BART)
## Warning: package 'BART' was built under R version 4.2.2
## Loading required package: nlme
## 
## Attaching package: 'nlme'
## 
## The following object is masked from 'package:dplyr':
## 
##     collapse
## 
## Loading required package: nnet
## Loading required package: survival
str(Carseats)
## 'data.frame':    400 obs. of  11 variables:
##  $ Sales      : num  9.5 11.22 10.06 7.4 4.15 ...
##  $ CompPrice  : num  138 111 113 117 141 124 115 136 132 132 ...
##  $ Income     : num  73 48 35 100 64 113 105 81 110 113 ...
##  $ Advertising: num  11 16 10 4 3 13 0 15 0 0 ...
##  $ Population : num  276 260 269 466 340 501 45 425 108 131 ...
##  $ Price      : num  120 83 80 97 128 72 108 120 124 124 ...
##  $ ShelveLoc  : Factor w/ 3 levels "Bad","Good","Medium": 1 2 3 3 1 1 3 2 3 3 ...
##  $ Age        : num  42 65 59 55 38 78 71 67 76 76 ...
##  $ Education  : num  17 10 12 14 13 16 15 10 10 17 ...
##  $ Urban      : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 2 2 1 1 ...
##  $ US         : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 2 1 2 1 2 ...
attach(Carseats)
  1. Split the data set into a training set and a test set.
set.seed(13)
train =  sample(nrow(Carseats), nrow(Carseats) / 2)
test = Carseats[-train, "Sales"]
Carseats.train =  Carseats[train, ]
Carseats.test =  Carseats[-train, ]
  1. Fit a regression tree to the training set. Plot the tree, and interpret the results. What test MSE do you obtain?

The test MSE is 5.20.

tree.carseats = tree(Sales~.,
                     data = Carseats.train)
summary(tree.carseats)
## 
## Regression tree:
## tree(formula = Sales ~ ., data = Carseats.train)
## Variables actually used in tree construction:
## [1] "ShelveLoc"   "Price"       "Age"         "US"          "Advertising"
## [6] "Income"      "Education"   "CompPrice"  
## Number of terminal nodes:  18 
## Residual mean deviance:  1.925 = 350.4 / 182 
## Distribution of residuals:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -3.58600 -0.91000 -0.05472  0.00000  0.89790  3.39300
plot(tree.carseats)
text(tree.carseats,
     pretty = 0,
     cex = 0.5)

pred.carseats = predict(tree.carseats,
                        Carseats.test)
mean((Carseats.test$Sales - pred.carseats)^2)
## [1] 5.20011
  1. Use cross-validation in order to determine the optimal level of tree complexity. Does pruning the tree improve the test MSE?

The pruned test MSE is 5.07 which is lower than the unpruned test MSE.

cv.carseats = cv.tree(tree.carseats,
                      FUN = prune.tree)
par(mfrow=c(1, 2))
plot(cv.carseats$size,
     cv.carseats$dev,
     type="b")
plot(cv.carseats$k,
     cv.carseats$dev,
     type="b")

par(mfrow=c(1, 1))

pruned.carseats = prune.tree(tree.carseats,
                             best = which.min(cv.carseats$dev))
plot(pruned.carseats)
text(pruned.carseats,
     pretty = 0,
     cex = 0.5)

pruned.pred = predict(pruned.carseats,
                      Carseats[-train,])
mean((Carseats.test$Sales - pruned.pred)^2)
## [1] 5.070617
  1. Use the bagging approach in order to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important.

The test MSE is 2.55. Price, ShelveLoc, and Advertising are the three most important predictors of Sale, with Age and CompPrice very close to Advertising.

bag.carseats = randomForest(Sales~ . ,
                            data = Carseats.train,
                            mtry = 10,
                            ntree = 500,
                            importance = T)
bag.carseats
## 
## Call:
##  randomForest(formula = Sales ~ ., data = Carseats.train, mtry = 10,      ntree = 500, importance = T) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 10
## 
##           Mean of squared residuals: 2.682855
##                     % Var explained: 65.87
bag.pred = predict(bag.carseats,
                   Carseats.test)
mean((Carseats.test$Sales - bag.pred)^2)
## [1] 2.552914
importance(bag.carseats)
##               %IncMSE IncNodePurity
## CompPrice   18.781855    120.392667
## Income       7.957625     81.100990
## Advertising 19.443155    181.749528
## Population  -1.612994     51.633694
## Price       39.837359    375.449738
## ShelveLoc   59.511466    498.075210
## Age         18.564966    149.439259
## Education    2.344270     53.687163
## Urban       -2.898076      6.863003
## US           3.987577      7.525822
varImpPlot(bag.carseats)

  1. Use random forests to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important. Describe the effect of m, the number of variables considered at each split, on the error rate obtained.

When mtry = 5, the MSE is 2.82. When mtry = 3, the MSE is 3.11.

set.seed(13)
rf3.cs = randomForest(Sales~.,
                      data = Carseats,
                      mtry = 3,
                      subset = train,
                      importance = T)

rf3.cs
## 
## Call:
##  randomForest(formula = Sales ~ ., data = Carseats, mtry = 3,      importance = T, subset = train) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 3
## 
##           Mean of squared residuals: 3.04104
##                     % Var explained: 61.31
yhat3.rf = predict(rf3.cs,
                   newdata = Carseats.test)
mean((yhat3.rf - Carseats.test$Sales)^2)
## [1] 3.116101
importance(rf3.cs)
##                %IncMSE IncNodePurity
## CompPrice   10.8606149     126.80587
## Income       4.0653258     112.37187
## Advertising 16.0861095     169.83726
## Population  -1.3661221      96.40981
## Price       26.8233313     305.66725
## ShelveLoc   42.3662156     393.63513
## Age         16.3863741     172.83321
## Education    1.8358305      75.44495
## Urban       -0.9296608      13.78110
## US           5.0078433      27.46319
rf5.cs = randomForest(Sales~.,
                      data = Carseats,
                      mtry = 5,
                      subset = train,
                      importance = T)
rf5.cs
## 
## Call:
##  randomForest(formula = Sales ~ ., data = Carseats, mtry = 5,      importance = T, subset = train) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##           Mean of squared residuals: 2.80131
##                     % Var explained: 64.36
yhat5.rf = predict(rf5.cs,
                   newdata = Carseats.test)
mean((yhat5.rf - Carseats.test$Sales)^2)
## [1] 2.822125
importance(rf5.cs)
##               %IncMSE IncNodePurity
## CompPrice   15.141167    123.057203
## Income       7.039337     93.414493
## Advertising 16.805976    185.378840
## Population  -2.468590     73.583879
## Price       36.384216    337.217243
## ShelveLoc   51.825201    441.881588
## Age         17.735338    165.979160
## Education    3.804356     65.282405
## Urban       -1.083013      8.802437
## US           5.848327     20.676322
par(mfrow = c(2,2))
varImpPlot(rf5.cs)

varImpPlot(rf3.cs)

par(mfrow = c(1,1))
  1. Now analyze the data using BART, and report your results.

The test MSE was 0.54.

x = Carseats[, 2:11]
y = Carseats[, "Sales"]
xtrain = x[train,]
ytrain = y[train]
xtest = x[test, ]
ytest = y[test]
set.seed(1)
bartfit = gbart(xtrain,
                ytrain,
                x.test = xtest)
## *****Calling gbart: type=1
## *****Data:
## data:n,p,np: 200, 14, 196
## y1,yn: -4.098800, 0.641200
## x1,x[n*p]: 108.000000, 1.000000
## xp1,xp[np*p]: 132.000000, 0.000000
## *****Number of Trees: 200
## *****Number of Cut Points: 61 ... 1
## *****burn,nd,thin: 100,1000,1
## *****Prior:beta,alpha,tau,nu,lambda,offset: 2,0.95,0.271529,3,0.198733,7.5688
## *****sigma: 1.010068
## *****w (weights): 1.000000 ... 1.000000
## *****Dirichlet:sparse,theta,omega,a,b,rho,augment: 0,0,1,0.5,1,14,0
## *****printevery: 100
## 
## MCMC
## done 0 (out of 1100)
## done 100 (out of 1100)
## done 200 (out of 1100)
## done 300 (out of 1100)
## done 400 (out of 1100)
## done 500 (out of 1100)
## done 600 (out of 1100)
## done 700 (out of 1100)
## done 800 (out of 1100)
## done 900 (out of 1100)
## done 1000 (out of 1100)
## time: 3s
## trcnt,tecnt: 1000,1000
yhat.bart = bartfit$yhat.test.mean
mean((ytest - yhat.bart)^2)
## [1] 0.5364448
detach(Carseats)
rm(list = ls()) # clear all variables from this problem

OJ Data Set

  1. This problem involves the OJ data set which is part of the ISLR2 package.
oj = OJ
str(oj)
## 'data.frame':    1070 obs. of  18 variables:
##  $ Purchase      : Factor w/ 2 levels "CH","MM": 1 1 1 2 1 1 1 1 1 1 ...
##  $ WeekofPurchase: num  237 239 245 227 228 230 232 234 235 238 ...
##  $ StoreID       : num  1 1 1 1 7 7 7 7 7 7 ...
##  $ PriceCH       : num  1.75 1.75 1.86 1.69 1.69 1.69 1.69 1.75 1.75 1.75 ...
##  $ PriceMM       : num  1.99 1.99 2.09 1.69 1.69 1.99 1.99 1.99 1.99 1.99 ...
##  $ DiscCH        : num  0 0 0.17 0 0 0 0 0 0 0 ...
##  $ DiscMM        : num  0 0.3 0 0 0 0 0.4 0.4 0.4 0.4 ...
##  $ SpecialCH     : num  0 0 0 0 0 0 1 1 0 0 ...
##  $ SpecialMM     : num  0 1 0 0 0 1 1 0 0 0 ...
##  $ LoyalCH       : num  0.5 0.6 0.68 0.4 0.957 ...
##  $ SalePriceMM   : num  1.99 1.69 2.09 1.69 1.69 1.99 1.59 1.59 1.59 1.59 ...
##  $ SalePriceCH   : num  1.75 1.75 1.69 1.69 1.69 1.69 1.69 1.75 1.75 1.75 ...
##  $ PriceDiff     : num  0.24 -0.06 0.4 0 0 0.3 -0.1 -0.16 -0.16 -0.16 ...
##  $ Store7        : Factor w/ 2 levels "No","Yes": 1 1 1 1 2 2 2 2 2 2 ...
##  $ PctDiscMM     : num  0 0.151 0 0 0 ...
##  $ PctDiscCH     : num  0 0 0.0914 0 0 ...
##  $ ListPriceDiff : num  0.24 0.24 0.23 0 0 0.3 0.3 0.24 0.24 0.24 ...
##  $ STORE         : num  1 1 1 1 0 0 0 0 0 0 ...
attach(oj)
  1. Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
set.seed(13)
train = sample(1:nrow(oj), 800)
oj.train = oj[train,]
oj.test = oj[-train,]
  1. Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?

The tree uses 5 variables: “LoyalCH”, “PriceDiff”, “WeekofPurchase”, “ListPriceDiff”, and “DiscMM”. The misclassification error (training error) is 0.16. The tree has 9 terminal nodes.

oj.tree = tree(Purchase ~ .,
               oj.train)
summary(oj.tree)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = oj.train)
## Variables actually used in tree construction:
## [1] "LoyalCH"        "PriceDiff"      "WeekofPurchase" "ListPriceDiff" 
## [5] "DiscMM"        
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7313 = 578.5 / 791 
## Misclassification error rate: 0.1562 = 125 / 800
  1. Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.

Terminal node ‘4)’ shows variable LoyalCH. The splitting value of this node is 0.05. There are 57 observations in the subtree below this node. The deviance for all points contained in the region below this node is 10.07. A star in this line determines it is a terminal node.

oj.tree
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1061.00 CH ( 0.62250 0.37750 )  
##    2) LoyalCH < 0.5036 344  416.50 MM ( 0.29360 0.70640 )  
##      4) LoyalCH < 0.051325 57   10.07 MM ( 0.01754 0.98246 ) *
##      5) LoyalCH > 0.051325 287  371.10 MM ( 0.34843 0.65157 )  
##       10) PriceDiff < 0.065 117  110.10 MM ( 0.17949 0.82051 ) *
##       11) PriceDiff > 0.065 170  234.80 MM ( 0.46471 0.53529 )  
##         22) WeekofPurchase < 249 73   89.35 MM ( 0.30137 0.69863 ) *
##         23) WeekofPurchase > 249 97  131.50 CH ( 0.58763 0.41237 )  
##           46) LoyalCH < 0.430291 70   96.98 MM ( 0.48571 0.51429 ) *
##           47) LoyalCH > 0.430291 27   22.65 CH ( 0.85185 0.14815 ) *
##    3) LoyalCH > 0.5036 456  351.30 CH ( 0.87061 0.12939 )  
##      6) LoyalCH < 0.764572 201  225.50 CH ( 0.75124 0.24876 )  
##       12) ListPriceDiff < 0.235 78  108.10 CH ( 0.51282 0.48718 )  
##         24) DiscMM < 0.15 40   47.05 CH ( 0.72500 0.27500 ) *
##         25) DiscMM > 0.15 38   45.73 MM ( 0.28947 0.71053 ) *
##       13) ListPriceDiff > 0.235 123   78.64 CH ( 0.90244 0.09756 ) *
##      7) LoyalCH > 0.764572 255   77.87 CH ( 0.96471 0.03529 ) *
  1. Create a plot of the tree, and interpret the results.
plot(oj.tree)
text(oj.tree,
     pretty = 0,
     cex = 0.5)

  1. Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate?
oj.pred = predict(oj.tree,
                  oj.test,
                  type = "class")
table(oj.test$Purchase,
      oj.pred)
##     oj.pred
##       CH  MM
##   CH 126  29
##   MM  20  95
mean(oj.test$Purchase == oj.pred)
## [1] 0.8185185
1 - mean(oj.test$Purchase == oj.pred)
## [1] 0.1814815
  1. Apply the cv.tree() function to the training set in order to determine the optimal tree size.
oj.cv = cv.tree(oj.tree,
                FUN = prune.misclass)
oj.cv
## $size
## [1] 9 8 5 2 1
## 
## $dev
## [1] 149 149 158 158 302
## 
## $k
## [1]       -Inf   2.000000   5.333333   5.666667 142.000000
## 
## $method
## [1] "misclass"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"
  1. Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.
plot(oj.cv$size,
     oj.cv$dev, 
     type = "b",
     xlab = "Tree Size",
     ylab = "CV Error Rate")

  1. Which tree size corresponds to the lowest cross-validated classification error rate?

A tree size of 8 gives the lowest cv error.

  1. Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.
oj.pruned = prune.tree(oj.tree, best=8)
  1. Compare the training error rates between the pruned and unpruned trees. Which is higher?
summary(oj.tree)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = oj.train)
## Variables actually used in tree construction:
## [1] "LoyalCH"        "PriceDiff"      "WeekofPurchase" "ListPriceDiff" 
## [5] "DiscMM"        
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7313 = 578.5 / 791 
## Misclassification error rate: 0.1562 = 125 / 800
summary(oj.pruned)
## 
## Classification tree:
## snip.tree(tree = oj.tree, nodes = 23L)
## Variables actually used in tree construction:
## [1] "LoyalCH"        "PriceDiff"      "WeekofPurchase" "ListPriceDiff" 
## [5] "DiscMM"        
## Number of terminal nodes:  8 
## Residual mean deviance:  0.7454 = 590.3 / 792 
## Misclassification error rate: 0.1588 = 127 / 800
  1. Compare the test error rates between the pruned and unpruned trees. Which is higher?

Pruned is higher but not by much.

pred.unpruned = predict(oj.tree,
                        oj.test,
                        type="class")
misclass.unpruned = sum(oj.test$Purchase != pred.unpruned)
misclass.unpruned / length(pred.unpruned)
## [1] 0.1814815
pred.pruned = predict(oj.pruned,
                      oj.test,
                      type="class")
misclass.pruned = sum(oj.test$Purchase != pred.pruned)
misclass.pruned / length(pred.pruned)
## [1] 0.2074074