Halo Investor dan Trader,
Halaman ini berisi Raw Information dari Technical Analysis ala Muhamad Makky Dandytra, CFTe untuk MMD Charts.
## [1] "Based on Trading Date 07 November 2022"
Untuk informasi lengkap, silahkan kunjungi website https://www.mmdcharts.com.
Semoga berguna dan bermanfaat.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik Super Quadrant Stocks ini menampilkan Trend dan Sinyal dibagi per Sektor.
Grafik Super Quadrant Stocks ini menampilkan Trend dan sinyal Buy dibagi per Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Outperform Trend dan Uptrend - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Outperform Trend dan Uptrend dengan sinyal Buy - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Champion Quadrant dan Uptrend - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Champion Quadrant dan Uptrend dengan sinyal Buy - dibagi berdasarkan Sektor.
# TPT.IDX
#
# TPT %>%
# filter(KairiMABB20 > 0, KairiMABB60 > 0, KairiMABB200 > 0) %>%
# arrange(DateTime, Ticker) %>%
# select(Ticker, Close, Ch1D, Ch5D, Ch20D, YTDRet) %>%
# ggplot(aes(x = DateTime))+
# geom_bar(aes(y = Ch1D))+
# facet_wrap(~ Ticker, ncol = 5)
Table dan Grafik ini menggolongkan saham pada return 1, 5, 20 hari dan YTD (dari sejak awal tahun 2020).
head(TPT)
## Ticker Close DateTime Trend SO SOSignal Ch1D YestCh Ch5D Ch20D
## 1 ISAT 6800 2022-11-07 Uptrend 52.95 Alert Buy 1.49 -1.83 0.37 -0.73
## 2 MIKA 2750 2022-11-07 Downtrend 56.39 Still Buy 0.00 3.00 -0.36 -1.43
## 3 CMRY 4750 2022-11-07 Uptrend 21.50 Still Sell 0.85 -1.88 2.81 8.20
## 4 UNVR 4620 2022-11-07 Downtrend 55.90 Still Buy 1.76 0.67 -0.43 -3.75
## 5 MYOR 2420 2022-11-07 Uptrend 84.44 Still Buy 0.00 3.42 0.83 17.48
## 6 BBTN 1535 2022-11-07 Uptrend 62.50 Warning Sell 0.00 0.66 -0.65 2.68
## Ch60D YTDRet Volume ChTurnover ChTurnover5D AvgCondition RCTrend
## 1 -7.48 9.68 Above Previous 0.05 -0.82 Low TO O/P Trend
## 2 5.36 21.68 --- -0.61 -0.82 High TO U/P Trend
## 3 11.76 39.71 Above Previous 0.56 -0.77 Low TO O/P Trend
## 4 -3.14 12.41 Above Previous 0.03 -0.77 High TO U/P Trend
## 5 29.07 18.63 --- -0.34 -0.74 Low TO O/P Trend
## 6 -5.54 -11.27 --- -0.21 -0.67 Low TO U/P Trend
## RCMomentum RCTrendSignal RCMomentumSignal KairiMABB20 KairiMABB60
## 1 O/P Momentum --- O/P Momentum Signal 1.51 -2.75
## 2 U/P Momentum --- U/P Momentum Signal -4.19 1.20
## 3 U/P Momentum --- --- 2.81 7.53
## 4 O/P Momentum --- --- -7.87 -3.53
## 5 U/P Momentum --- U/P Momentum Signal 3.49 20.66
## 6 U/P Momentum U/P Trend Signal U/P Momentum Signal -0.16 0.62
## KairiMABB200 Prev.KairiMABB200 OP.Trend.Start BB Bandwidth F1D F2D
## 1 6.33 5.65 --- 73.45 13.67 0 -0.99
## 2 5.70 6.65 --- 29.83 12.74 0 -21.94
## 3 17.50 17.60 --- 80.33 14.87 0 -1.08
## 4 2.99 2.05 --- 26.32 26.63 0 1.38
## 5 27.73 28.79 --- 69.53 26.48 0 -1.00
## 6 -5.64 -4.96 --- 68.16 8.29 0 1.33
## F1Wk F1Mo MTTrend WkESOValue WkESO PriceVolumeCond Last1DPVCond
## 1 -8.83 -76.68 Downtrend 33.77 Still Buy Real + Real -
## 2 -76.24 -157.75 Uptrend 31.27 Alert Buy --- Fake +
## 3 -3.02 21.94 Uptrend 40.00 Still Buy Real + fake -
## 4 -143.66 -35.21 Downtrend 18.34 Alert Buy Real + Real +
## 5 21.65 17.04 Uptrend 86.38 Still Sell --- Fake +
## 6 0.03 38.35 Uptrend 73.41 Still Sell --- Real +
## Last2DPVCond RC.JKSE MA.RC RC.BB PrevRC.BB Corr20D Corr60D Corr5D KairiMA20
## 1 Real - 957.42 943.18 62.23 55.56 0.43 0.67 -0.32 3.11
## 2 Fake + 387.19 404.13 19.81 23.43 -0.02 -0.62 0.77 -2.64
## 3 fake - 668.79 650.53 73.66 75.78 0.68 -0.33 -0.30 4.32
## 4 Real + 650.48 706.02 20.92 15.74 0.00 -0.45 0.98 -6.73
## 5 Fake + 340.73 329.23 65.29 70.65 0.75 -0.58 0.57 4.92
## 6 Real + 216.12 216.47 46.04 66.91 0.92 0.70 0.19 1.48
## KairiMA60 KairiMA200 MA20Direction MA60Direction MA200Direction LTTrend
## 1 -2.81 7.58 -2.5 -9.17 4.25 Uptrend
## 2 1.30 7.10 -2.0 2.33 3.00 Uptrend
## 3 7.08 16.37 18.0 8.33 6.35 ---
## 4 -3.55 4.72 -9.0 -2.50 2.20 Uptrend
## 5 17.27 23.21 18.0 9.08 1.25 Uptrend
## 6 0.66 -4.01 2.0 -1.50 -0.82 Downtrend
## MoESOValue MoESO MarketCap Turnover AvgMOTurnover TurnoverRatio
## 1 68.47 Still Sell 54826.38 10.71 27.03 0.02
## 2 51.66 Alert Buy 39177.46 23.18 49.65 0.06
## 3 81.13 Buy Now 37689.74 2.74 6.20 0.01
## 4 37.73 Alert Buy 176253.02 86.57 149.19 0.05
## 5 71.97 Warning Sell 54108.05 6.30 25.51 0.01
## 6 42.58 Warning Sell 16093.09 8.05 17.97 0.05
## AvgMOTurnoverRatio IDXSector IDXIndustry
## 1 0.05 Infrastruktur Jasa Telekomunikasi Nirkabel
## 2 0.12 Kesehatan Penyedia Jasa Kesehatan
## 3 0.02 Barang Konsumen Primer Produk Susu Olahan
## 4 0.08 Barang Konsumen Primer Produk Perawatan Tubuh
## 5 0.05 Barang Konsumen Primer Makanan Olahan
## 6 0.11 Keuangan Bank
## Candle MA200
## 1 Harami - Bullish Above MA200
## 2 Marubozu - Opening Black Above MA200
## 3 Spinning Top - Whaite Above MA200
## 4 Marubozu - Closing White Above MA200
## 5 Hanging Man Above MA200
## 6 Hammer Below MA200
# value : SO, Ch1D, Ch5D, Ch20D, YTDRet, ChTurnover, KairiMABB20, KairiMABB60, KairiMABB200, BB, Bandwidth, F1D, F2D, F1Wk, F1Mo,KairiMA20, KairiMA60, KairiMA200, MA20Direction, MA60Direction, MA200Direction
# Discrete : Ticker, Trend, SOSignal, Volume, AvgCondition, RCTrend, RCMomentum, RCTrendSignal, RCMomentumSignal, PriceVolumeCond, MA200
TPT.value <- TPT %>%
select(c("SO", "Ch1D", "Ch5D", "Ch20D", "YTDRet", "ChTurnover", "KairiMABB20", "KairiMABB60", "KairiMABB200", "BB", "Bandwidth", "F1D", "F2D", "F1Wk", "F1Mo","KairiMA20", "KairiMA60", "KairiMA200", "MA20Direction", "MA60Direction", "MA200Direction"))
TPT.Discrete <- TPT %>%
select(c("Trend", "SOSignal", "Volume", "AvgCondition", "RCTrend", "RCMomentum", "RCTrendSignal", "RCMomentumSignal", "PriceVolumeCond", "MA200"))
library(DataExplorer)
##
## Attaching package: 'DataExplorer'
## The following object is masked from 'package:expss':
##
## split_columns
plot_intro(TPT)
plot_intro(TPT.Discrete)
plot_intro(TPT.value)
plot_missing(TPT)
plot_missing(TPT.Discrete)
plot_missing(TPT.value)
plot_bar(TPT.Discrete)
plot_histogram(TPT.value)
single.stock <- "JSMR"
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Close)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Ch1D, .smooth = F)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_seasonal_diagnostics(DateTime, Ch1D, .feature_set = "wday.lbl")
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_stl_diagnostics(DateTime, Close, .feature_set = c("observed", "season", "trend"))
## .date_var is missing. Using: DateTime
## frequency = 5 observations per 1 week
## trend = 65 observations per 3 months
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_stl_diagnostics(DateTime, Ch1D, .feature_set = c("observed", "season", "trend"))
## .date_var is missing. Using: DateTime
## frequency = 5 observations per 1 week
## trend = 65 observations per 3 months
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_acf_diagnostics(DateTime, Ch1D, .lags = 20)
## .date_var is missing. Using: DateTime
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## Please use `gather()` instead.
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM")) %>%
arrange(Ticker, DateTime) %>%
select(Ticker, DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Close, .facet_vars = Ticker)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM")) %>%
arrange(Ticker, DateTime) %>%
select(Ticker, DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
pivot_wider(names_from = Ticker, values_from = c(Close, Ch1D)) %>%
drop_na() %>%
mutate(across(Close_ASII:Ch1D_TLKM, .fns = standardize_vec)) %>%
pivot_longer(Close_ASII:Ch1D_TLKM) %>%
filter(name == c("Close_ASII", "Close_TLKM")) %>%
plot_time_series(DateTime, value, .color_var = name, .smooth = FALSE)
## .date_var is missing. Using: DateTime
## Standardization Parameters
## mean: 6511.25
## standard deviation: 547.698186979015
## Standardization Parameters
## mean: 4366.85
## standard deviation: 195.166666309057
## Standardization Parameters
## mean: 0.08345
## standard deviation: 1.88365825979621
## Standardization Parameters
## mean: 0.0353
## standard deviation: 1.57450348239704
# unique(dandy.rotation$IDXSector)
# head(dandy.rotation)
# selected.date <- print("2022-02-09")
# Date.Signs2 <- "Based on Trading Date 09 Februari 2022"
#
# TPT <- TPT.IDX %>%
# filter(DateTime == selected.date)
#
# dandy.rotation <- TPT %>%
# mutate(RCBB = RC.BB - PrevRC.BB,
# kairiRC = round(((RC.JKSE - MA.RC)/MA.RC*100),2))
#
# dandy.rotation %>%
# filter(Ticker == "ENRG")
# library(gganimate)
# TPT.IDX %>%
# na.omit() %>%
# filter(DateTime >= max(DateTime) %-time% "3 day") %>%
# arrange(DateTime) %>%
# filter(IDXSector == "Kesehatan") %>%
# ggplot(aes(x = KairiMABB200, y = KairiMABB20, label = Ticker, color = Trend))+
# # geom_text_repel(aes(size = ChTurnover))+
# geom_text_repel(max.overlaps = 20)+
# geom_point(aes(shape = SOSignal))+
# theme_bw() +
# theme(panel.border = element_blank(), panel.grid.major = element_blank(),panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))+
# # facet_wrap(~ IDXSector, ncol = 2, scales = "free")+
# scale_shape_manual(values=SOSignal.shape,name = "Signal")+
# scale_size(range = c(2, 6), name = "%Ch in Turnover")+
# scale_y_continuous("Momentum Performance")+
# scale_x_continuous("Trend Performance")+
# scale_color_manual(values=Trend.color)+
# geom_vline(xintercept = 0, linetype="dotted")+
# geom_hline(yintercept = 0, linetype="dotted")+
# annotate("text", x = max(dandy.rotation.consumer.interest$KairiMABB200), y = max(dandy.rotation.consumer.interest$KairiMABB20), label = "Champion", hjust = "top")+
# annotate("text", x = min(dandy.rotation.consumer.interest$KairiMABB200), y = min(dandy.rotation.consumer.interest$KairiMABB20), label = "Loser", hjust = "bottom")+
# annotate("text", x = max(dandy.rotation.consumer.interest$KairiMABB200), y = min(dandy.rotation.consumer.interest$KairiMABB20), label = "Recharge", hjust = "top")+
# annotate("text", x = min(dandy.rotation.consumer.interest$KairiMABB200), y = max(dandy.rotation.consumer.interest$KairiMABB20), label = "Quick", hjust = "bottom")+
# labs(title = "Date : {frame_time}", subtitle = Date.Signs2, caption = "IG : @superquadrant")+
# watermark(show = TRUE, lab = "Super Quadrant Stocks")+
# transition_time(DateTime)
range(TPT.IDX$DateTime)
## [1] "2022-01-12" "2022-11-07"
min_max_norm <- function(x) {
(x - min(x)) / (max(x) - min(x))
}
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM", "JSMR", "BBCA", "GGRM")) %>%
filter(DateTime >= max(TPT.IDX$DateTime) %-time% "20 day") %>%
arrange(DateTime) %>%
select(DateTime, Ticker, Close) %>%
pivot_wider(names_from = Ticker, values_from = Close) %>%
# mutate(across(-DateTime, .fns = standardize_vec)) %>%
mutate(across(-DateTime, .fns = normalize_vec)) %>%
# mutate(across(-DateTime, .fns = min_max_norm)) %>%
pivot_longer(-DateTime) %>%
plot_time_series(.date_var = DateTime, .color_var = name, .value = value, .smooth = F)
## Normalization Parameters
## min: 22125
## max: 25475
## Normalization Parameters
## min: 4130
## max: 4450
## Normalization Parameters
## min: 6350
## max: 6700
## Normalization Parameters
## min: 8275
## max: 8900
## Normalization Parameters
## min: 3300
## max: 3480