library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help.
FeedRate <- c(rep("0.20",12),rep("0.25",12),rep("0.30",12))
DoC <- c("0.15","0.18","0.20","0.25")
DepthofCut <- c(rep(DoC,9))
SurfaceFinish <- c(74,79,82,99,
64,68,88,104,
60,73,92,96,
92,98,99,104,
86,104,108,110,
88,88,95,99,
99,104,108,114,
98,99,110,111,
102,95,99,107)
dat5.4 <- data.frame(FeedRate,DepthofCut,SurfaceFinish)
Model equation :
\(y_{ij}\) = \(\mu\) + \(\alpha_{i}\) + \(\beta_{j}\) + \(\alpha\beta_{ij}\) + \(\epsilon_{ijk}\)
Interaction Hypothesis :
Null Hypothesis : \(\alpha\beta_{ij}\) = 0 \(\forall\) i
Alternate Hypothesis : \(\alpha\beta_{ij}\) \(\neq\) 0 \(\exists\) i
Main effect Hypothesis :
Null Hypothesis : \(\alpha_{i}\) = 0 \(\forall\) i
Alternate Hypothesis : \(\alpha_{i}\) \(\neq\) 0 \(\exists\) i
Null Hypothesis : \(\beta_{j}\) = 0 \(\forall\) j
Alternate Hypothesis : \(\beta_{j}\) \(\neq\) 0 \(\exists\) j
Manipulating the data:
dat5.4$FeedRate <- as.fixed(dat5.4$FeedRate)
dat5.4$DepthofCut <- as.fixed(dat5.4$DepthofCut)
model5.4 <- aov(dat5.4$SurfaceFinish ~ dat5.4$FeedRate + dat5.4$DepthofCut + dat5.4$FeedRate*dat5.4$DepthofCut)
gad(model5.4)
## Analysis of Variance Table
##
## Response: dat5.4$SurfaceFinish
## Df Sum Sq Mean Sq F value Pr(>F)
## dat5.4$FeedRate 2 3160.50 1580.25 55.0184 1.086e-09 ***
## dat5.4$DepthofCut 3 2125.11 708.37 24.6628 1.652e-07 ***
## dat5.4$FeedRate:dat5.4$DepthofCut 6 557.06 92.84 3.2324 0.01797 *
## Residual 24 689.33 28.72
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(x.factor = dat5.4$FeedRate, trace.factor = dat5.4$DepthofCut,response = dat5.4$SurfaceFinish, col = c("red", "blue"),type = "b")
p-value for interactions is 0.01797 < 0.05, we reject H0 and we can conclude that the interaction between FeedRate and DepthofCut is significant.
As the interaction is significant we don’t check significance for individual factors (Main effects).
plot(model5.4,1:2)
From the normal probability plot and the residual plot we can observe that the data has constant variance and is normally distributed, so the model is adequate.
mean(dat5.4$SurfaceFinish[1:12])
## [1] 81.58333
mean(dat5.4$SurfaceFinish[13:24])
## [1] 97.58333
mean(dat5.4$SurfaceFinish[25:36])
## [1] 103.8333
The mean surface finish at “0.20”Feed Rate is 81.58333
The mean surface finish at “0.25”Feed Rate is 97.58333
The mean surface finish at “0.30”Feed Rate is 103.8333
The p-value for Feed Rate in part a is 1.086e-09.
The p-value for Depth of Cut in part a is 1.652e-07.
The p-value for interaction between Feed Rate and Depth of Cut is 0.01797.
library(GAD)
bl <- c(rep("block1",4),rep("block2",4),rep("block3",4))
block <- c(rep(bl,3))
dat5.34 <- data.frame(FeedRate,DepthofCut,block,SurfaceFinish)
Model equation :
\(y_{ij}\) = \(\mu\) + \(\alpha_{i}\) + \(\beta_{j}\) +\(\gamma_{k}\) \(\alpha\beta_{ij}\) + \(\epsilon_{ijkl}\)
Interaction Hypothesis :
Null Hypothesis : \(\alpha\beta_{ij}\) = 0 \(\forall\) i
Alternate Hypothesis : \(\alpha\beta_{ij}\) \(\neq\) 0 \(\exists\) i
Main effect Hypothesis :
Null Hypothesis : \(\alpha_{i}\) = 0 \(\forall\) i
Alternate Hypothesis : \(\alpha_{i}\) \(\neq\) 0 \(\exists\) i
Null Hypothesis : \(\beta_{j}\) = 0 \(\forall\) j
Alternate Hypothesis : \(\beta_{j}\) \(\neq\) 0 \(\exists\) j
manipulating the data:
dat5.34$FeedRate <- as.fixed(dat5.34$FeedRate)
dat5.34$DepthofCut <- as.fixed(dat5.34$DepthofCut)
model5.34 <- aov(dat5.34$SurfaceFinish ~ dat5.34$FeedRate + dat5.34$DepthofCut + dat5.34$block + dat5.34$FeedRate*dat5.34$DepthofCut)
summary(model5.34)
## Df Sum Sq Mean Sq F value Pr(>F)
## dat5.34$FeedRate 2 3160.5 1580.2 68.346 3.64e-10 ***
## dat5.34$DepthofCut 3 2125.1 708.4 30.637 4.89e-08 ***
## dat5.34$block 2 180.7 90.3 3.907 0.03532 *
## dat5.34$FeedRate:dat5.34$DepthofCut 6 557.1 92.8 4.015 0.00726 **
## Residuals 22 508.7 23.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The p-value of the blocks is 0.035322.
The p value for the interaction of is 0.007258 < 0.05. So, we reject H0 and conclude that there is significant interaction between feed rate and depth of cut .
It doesn’t appear that blocking was useful(effective) in this experiment.
library(GAD)
position <- c(rep("1",9),rep("2",9))
tem <- c("800","825","850")
temp <- c(rep(tem,6))
bdensity <- c(570,1063,565,
565,1080,510,
583,1043,590,
528,988,526,
547,988,526,
521,1004,532)
dat13.5 <- data.frame(position,temp,bdensity)
Manipulating the data
dat13.5$position <- as.random(dat13.5$position)
dat13.5$temp <- as.fixed(dat13.5$temp)
model13.5 <- aov(dat13.5$bdensity ~ dat13.5$position + dat13.5$temp + dat13.5$position*dat13.5$temp)
gad(model13.5)
## Analysis of Variance Table
##
## Response: dat13.5$bdensity
## Df Sum Sq Mean Sq F value Pr(>F)
## dat13.5$position 1 9293 9293 23.4025 0.0004067 ***
## dat13.5$temp 2 924834 462417 683.3190 0.0014613 **
## dat13.5$position:dat13.5$temp 2 1353 677 1.7041 0.2231370
## Residual 12 4765 397
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The p-value of interaction is 0.2231370 > 0.05. SO, the interaction is insignificant.
The p-value of position is 0.0004067 < 0.05. So, the effect of position is significant.
The p-value of temperature is 0.0014613 < 0.05. So, the temperature have a significant effect in this experiment.
library(GAD)
part <- c(rep(1,6),rep(2,6),rep(3,6),rep(4,6),rep(5,6),rep(6,6),rep(7,6),rep(8,6),rep(9,6),rep(10,6))
op1 <- c(rep("op1",3),rep("op2",3))
op <- c(rep(op1,10))
units <- c(50,49,50,50,48,51,
52,52,51,51,51,51,
53,50,50,54,52,51,
49,51,50,48,50,51,
48,49,48,48,49,48,
52,50,50,52,50,50,
51,51,51,51,50,50,
52,50,49,53,48,50,
50,51,50,51,48,49,
47,46,49,46,47,48)
dat13.6 <- data.frame(part,op,units)
Model equation :
\(y_{ij}\) = \(\mu\) + \(\alpha_{i}\) + \(\beta_{j}\) + \(\alpha\beta_{ij}\) + \(\epsilon_{ijk}\)
Interaction Hypothesis :
Null Hypothesis : \(\alpha\beta_{ij}\) = 0 \(\forall\) i
Alternate Hypothesis : \(\alpha\beta_{ij}\) \(\neq\) 0 \(\exists\) i
Main effect Hypothesis :
Null Hypothesis : \(\alpha_{i}\) = 0 \(\forall\) i
Alternate Hypothesis : \(\alpha_{i}\) \(\neq\) 0 \(\exists\) i
Null Hypothesis : \(\beta_{j}\) = 0 \(\forall\) j
Alternate Hypothesis : \(\beta_{j}\) \(\neq\) 0 \(\exists\) j
Manipulating the data:
dat13.6$op <- as.fixed(dat13.6$op)
dat13.6$part <- as.random(dat13.6$part)
model13.6 <- aov(dat13.6$units ~ dat13.6$part + dat13.6$op + dat13.6$part*dat13.6$op)
gad(model13.6)
## Analysis of Variance Table
##
## Response: dat13.6$units
## Df Sum Sq Mean Sq F value Pr(>F)
## dat13.6$part 9 99.017 11.0019 7.3346 3.216e-06 ***
## dat13.6$op 1 0.417 0.4167 0.6923 0.4269
## dat13.6$part:dat13.6$op 9 5.417 0.6019 0.4012 0.9270
## Residual 40 60.000 1.5000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
p-value of interaction is 0.9270 > 0.05. So the interaction between part number and operator is insignificant.
p-value of operator is 0.4269 > 0.05. So, the effect of operator is insignificant in this experiment.
P-value of part is 3.216e-06 < 0.05. So, the part selected is significant i this experiment.