Vehicle speed and braking distance

I am creating a simple model to show if there is a direct correlation between vehicle speed and braking distance to stop using the cars dataset.
head(cars)
##   speed dist
## 1     4    2
## 2     4   10
## 3     7    4
## 4     7   22
## 5     8   16
## 6     9   10
summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00
plot(cars[,'speed'],cars[,'dist'],main="Stopping Distance by speed",xlab="Speed (mph)",ylab="Distance (ft)")

After creating a simple plot of the distance by the vehicle speed, one will notice the right upward trend of distance as vehicle speed increases.
(cars_lm <- lm(dist ~ speed, data = cars))
## 
## Call:
## lm(formula = dist ~ speed, data = cars)
## 
## Coefficients:
## (Intercept)        speed  
##     -17.579        3.932
Use the linear model function to calculate the y-intercept, the slope and the residuals. We fit the plot with an abline to illustrate if the data fits the model well.
plot(dist ~ speed, data = cars)
abline(cars_lm, col='red')

summary(cars_lm)
## 
## Call:
## lm(formula = dist ~ speed, data = cars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -29.069  -9.525  -2.272   9.215  43.201 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -17.5791     6.7584  -2.601   0.0123 *  
## speed         3.9324     0.4155   9.464 1.49e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared:  0.6511, Adjusted R-squared:  0.6438 
## F-statistic: 89.57 on 1 and 48 DF,  p-value: 1.49e-12
The t-value ratio of 9.464 and a very small p-value of 1.49e-12 there is strong evidence of a correlation between the speed of a vehicle and the braking distance that it travels.