Halo Investor dan Trader,
Halaman ini berisi Raw Information dari Technical Analysis ala Muhamad Makky Dandytra, CFTe untuk MMD Charts.
## [1] "Based on Trading Date 04 November 2022"
Untuk informasi lengkap, silahkan kunjungi website https://www.mmdcharts.com.
Semoga berguna dan bermanfaat.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik Super Quadrant Stocks ini menampilkan Trend dan Sinyal dibagi per Sektor.
Grafik Super Quadrant Stocks ini menampilkan Trend dan sinyal Buy dibagi per Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Outperform Trend dan Uptrend - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Outperform Trend dan Uptrend dengan sinyal Buy - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Champion Quadrant dan Uptrend - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Champion Quadrant dan Uptrend dengan sinyal Buy - dibagi berdasarkan Sektor.
# TPT.IDX
#
# TPT %>%
# filter(KairiMABB20 > 0, KairiMABB60 > 0, KairiMABB200 > 0) %>%
# arrange(DateTime, Ticker) %>%
# select(Ticker, Close, Ch1D, Ch5D, Ch20D, YTDRet) %>%
# ggplot(aes(x = DateTime))+
# geom_bar(aes(y = Ch1D))+
# facet_wrap(~ Ticker, ncol = 5)
Table dan Grafik ini menggolongkan saham pada return 1, 5, 20 hari dan YTD (dari sejak awal tahun 2020).
head(TPT)
## Ticker Close DateTime Trend SO SOSignal Ch1D YestCh Ch5D
## 1 INCO 6750 2022-11-04 New Uptrend 90.74 Still Buy 1.89 0.00 3.85
## 2 CMRY 4710 2022-11-04 Uptrend 33.29 Still Sell -1.88 0.00 5.84
## 3 BACA 133 2022-11-04 Downtrend 13.42 Still Buy 0.76 -1.49 -8.90
## 4 ASRI 168 2022-11-04 Downtrend 24.29 Alert Buy -2.33 1.18 -5.08
## 5 ISAT 6700 2022-11-04 Uptrend 60.97 Still Sell -1.83 -1.44 5.51
## 6 ADHI 550 2022-11-04 Downtrend 29.29 Sell Now -0.90 -0.89 -0.90
## Ch20D Ch60D YTDRet Volume ChTurnover ChTurnover5D AvgCondition
## 1 -0.74 -2.53 44.23 Above Previous 1.18 -0.74 Low TO
## 2 7.53 7.53 38.53 --- -0.37 -0.73 High TO
## 3 12.71 -12.50 -50.00 --- -0.14 -0.71 Low TO
## 4 -2.89 -4.00 3.70 Abv Prev&Avg 1.40 -0.69 High TO
## 5 -1.83 -6.62 8.06 Above Previous 0.19 -0.68 Low TO
## 6 -25.17 -27.15 -38.55 --- -0.39 -0.68 High TO
## RCTrend RCMomentum RCTrendSignal RCMomentumSignal KairiMABB20
## 1 O/P Trend O/P Momentum O/P Trend Signal O/P Momentum Signal 0.65
## 2 O/P Trend U/P Momentum --- --- 3.09
## 3 U/P Trend U/P Momentum --- --- -7.09
## 4 U/P Trend U/P Momentum --- U/P Momentum Signal -2.39
## 5 O/P Trend U/P Momentum --- --- 0.71
## 6 U/P Trend O/P Momentum --- --- -13.61
## KairiMABB60 KairiMABB200 Prev.KairiMABB200 OP.Trend.Start BB Bandwidth
## 1 5.03 7.11 5.45 --- 74.28 6.67
## 2 7.69 17.60 20.20 --- 77.67 14.61
## 3 -2.61 -22.42 -23.17 --- 27.35 27.26
## 4 -4.23 0.33 2.87 --- 28.24 6.74
## 5 -3.53 5.65 7.80 --- 61.93 13.82
## 6 -24.85 -28.08 -27.51 --- 19.54 41.69
## F1D F2D F1Wk F1Mo MTTrend WkESOValue WkESO PriceVolumeCond
## 1 2.89 -4.40 14.11 25.52 Uptrend 46.67 Still Buy Real +
## 2 -1.08 -3.07 2.66 17.42 Uptrend 40.91 Alert Buy fake -
## 3 0.01 0.00 -0.37 -1.09 New Downtrend 47.62 Buy Now Fake +
## 4 0.40 0.73 0.58 -4.16 New Downtrend 49.32 Still Sell Real -
## 5 -0.99 -6.26 -7.20 -73.69 Downtrend 17.74 Still Buy Real -
## 6 2.21 2.19 6.78 11.95 Downtrend 1.89 Still Buy fake -
## Last1DPVCond Last2DPVCond RC.JKSE MA.RC RC.BB PrevRC.BB Corr20D Corr60D
## 1 --- --- 958.05 951.82 57.23 37.92 -0.15 -0.36
## 2 --- --- 668.51 648.47 75.78 96.09 0.63 -0.35
## 3 Real - Real - 18.88 20.32 25.95 28.15 -0.33 -0.03
## 4 Fake + Fake + 23.84 24.43 10.81 48.85 0.50 0.83
## 5 fake - fake - 950.96 944.28 55.56 70.37 0.39 0.67
## 6 fake - fake - 78.06 90.36 20.16 19.08 -0.71 0.63
## Corr5D KairiMA20 KairiMA60 KairiMA200 MA20Direction MA60Direction
## 1 -0.57 1.59 4.11 7.40 -2.50 -2.92
## 2 -0.75 3.89 6.47 15.79 16.50 5.50
## 3 0.88 -6.58 -3.43 -27.20 0.75 -0.32
## 4 0.54 -1.49 -5.25 1.29 -0.25 -0.12
## 5 -0.42 1.62 -4.48 6.27 -6.25 -7.92
## 6 -0.32 -14.55 -34.23 -37.44 -9.25 -3.42
## MA200Direction LTTrend MoESOValue MoESO MarketCap Turnover
## 1 11.20 Uptrend 49.32 Still Buy 67070.29 57.96
## 2 6.50 --- 81.13 Buy Now 37372.36 1.75
## 3 -0.58 Downtrend 33.10 Buy Now 932.02 1.46
## 4 0.03 New Downtrend 47.93 Still Sell 3301.10 4.08
## 5 2.50 Uptrend 68.47 Still Sell 54020.11 10.22
## 6 -1.88 Downtrend 10.43 Alert Buy 1958.47 13.25
## AvgMOTurnover TurnoverRatio AvgMOTurnoverRatio IDXSector
## 1 71.96 0.09 0.11 Barang Baku
## 2 6.21 0.00 0.02 Barang Konsumen Primer
## 3 14.83 0.16 1.40 Keuangan
## 4 3.02 0.12 0.09 Properti & Real Estat
## 5 28.43 0.02 0.05 Infrastruktur
## 6 16.50 0.68 0.78 Infrastruktur
## IDXIndustry Candle MA200
## 1 Logam & Mineral Lainnya Marubozu - Closing White Above MA200
## 2 Produk Susu Olahan Hammer - Inverted Above MA200
## 3 Bank Harami - Bullish Below MA200
## 4 Pengembang & Operator Real Estat Black Candle Above MA200
## 5 Jasa Telekomunikasi Nirkabel Marubozu - Opening Black Above MA200
## 6 Konstruksi Bangunan Marubozu - Black Below MA200
# value : SO, Ch1D, Ch5D, Ch20D, YTDRet, ChTurnover, KairiMABB20, KairiMABB60, KairiMABB200, BB, Bandwidth, F1D, F2D, F1Wk, F1Mo,KairiMA20, KairiMA60, KairiMA200, MA20Direction, MA60Direction, MA200Direction
# Discrete : Ticker, Trend, SOSignal, Volume, AvgCondition, RCTrend, RCMomentum, RCTrendSignal, RCMomentumSignal, PriceVolumeCond, MA200
TPT.value <- TPT %>%
select(c("SO", "Ch1D", "Ch5D", "Ch20D", "YTDRet", "ChTurnover", "KairiMABB20", "KairiMABB60", "KairiMABB200", "BB", "Bandwidth", "F1D", "F2D", "F1Wk", "F1Mo","KairiMA20", "KairiMA60", "KairiMA200", "MA20Direction", "MA60Direction", "MA200Direction"))
TPT.Discrete <- TPT %>%
select(c("Trend", "SOSignal", "Volume", "AvgCondition", "RCTrend", "RCMomentum", "RCTrendSignal", "RCMomentumSignal", "PriceVolumeCond", "MA200"))
library(DataExplorer)
##
## Attaching package: 'DataExplorer'
## The following object is masked from 'package:expss':
##
## split_columns
plot_intro(TPT)
plot_intro(TPT.Discrete)
plot_intro(TPT.value)
plot_missing(TPT)
plot_missing(TPT.Discrete)
plot_missing(TPT.value)
plot_bar(TPT.Discrete)
plot_histogram(TPT.value)
single.stock <- "JSMR"
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Close)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Ch1D, .smooth = F)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_seasonal_diagnostics(DateTime, Ch1D, .feature_set = "wday.lbl")
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_stl_diagnostics(DateTime, Close, .feature_set = c("observed", "season", "trend"))
## .date_var is missing. Using: DateTime
## frequency = 5 observations per 1 week
## trend = 65 observations per 3 months
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_stl_diagnostics(DateTime, Ch1D, .feature_set = c("observed", "season", "trend"))
## .date_var is missing. Using: DateTime
## frequency = 5 observations per 1 week
## trend = 65 observations per 3 months
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_acf_diagnostics(DateTime, Ch1D, .lags = 20)
## .date_var is missing. Using: DateTime
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## Please use `gather()` instead.
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM")) %>%
arrange(Ticker, DateTime) %>%
select(Ticker, DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Close, .facet_vars = Ticker)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM")) %>%
arrange(Ticker, DateTime) %>%
select(Ticker, DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
pivot_wider(names_from = Ticker, values_from = c(Close, Ch1D)) %>%
drop_na() %>%
mutate(across(Close_ASII:Ch1D_TLKM, .fns = standardize_vec)) %>%
pivot_longer(Close_ASII:Ch1D_TLKM) %>%
filter(name == c("Close_ASII", "Close_TLKM")) %>%
plot_time_series(DateTime, value, .color_var = name, .smooth = FALSE)
## .date_var is missing. Using: DateTime
## Standardization Parameters
## mean: 6502.98507462687
## standard deviation: 552.633282363738
## Standardization Parameters
## mean: 4364.57711442786
## standard deviation: 196.45850776597
## Standardization Parameters
## mean: 0.0772139303482587
## standard deviation: 1.87944119328192
## Standardization Parameters
## mean: 0.0173134328358209
## standard deviation: 1.5710610256348
# unique(dandy.rotation$IDXSector)
# head(dandy.rotation)
# selected.date <- print("2022-02-09")
# Date.Signs2 <- "Based on Trading Date 09 Februari 2022"
#
# TPT <- TPT.IDX %>%
# filter(DateTime == selected.date)
#
# dandy.rotation <- TPT %>%
# mutate(RCBB = RC.BB - PrevRC.BB,
# kairiRC = round(((RC.JKSE - MA.RC)/MA.RC*100),2))
#
# dandy.rotation %>%
# filter(Ticker == "ENRG")
range(TPT.IDX$DateTime)
## [1] "2022-01-10" "2022-11-04"
min_max_norm <- function(x) {
(x - min(x)) / (max(x) - min(x))
}
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM", "JSMR", "BBCA", "GGRM")) %>%
filter(DateTime >= max(TPT.IDX$DateTime) %-time% "20 day") %>%
arrange(DateTime) %>%
select(DateTime, Ticker, Close) %>%
pivot_wider(names_from = Ticker, values_from = Close) %>%
# mutate(across(-DateTime, .fns = standardize_vec)) %>%
mutate(across(-DateTime, .fns = normalize_vec)) %>%
# mutate(across(-DateTime, .fns = min_max_norm)) %>%
pivot_longer(-DateTime) %>%
plot_time_series(.date_var = DateTime, .color_var = name, .value = value, .smooth = F)
## Normalization Parameters
## min: 3270
## max: 3480
## Normalization Parameters
## min: 8250
## max: 8900
## Normalization Parameters
## min: 4130
## max: 4450
## Normalization Parameters
## min: 22100
## max: 25475
## Normalization Parameters
## min: 6350
## max: 6700