Pengantar Sains Data - Laporan Individu P08 & P09

Dicky Girsang - G1401201074

11/4/2022

Tinjauan Pustaka

Regresi Linear

Regresi linier sederhana merupakan suatu metode statistik yang digunakan untuk menguji hubungan sebab akibat yang terjadi pada variabel faktor penyebab terhadap variabel akibatnya. Dalam penerapannya, regresi linier sederhana bisa dimanfaatkan untuk menentukan prediksi tentang kualitas maupun kuantitas.

Regresi Polinomial

Regresi polinomial merupakan regresi linier berganda yang dibentuk dengan menjumlahkan pengaruh variabel prediktor (X) yang dipangkatkan secara meningkat sampai orde ke-k. Model regresi polinomial, struktur analisisnya sama dengan model regresi linier berganda. Artinya, setiap pangkat atau orde variabel prediktor (X) pada model polinomial, merupakan transformasi variabel awal dan dipandang sebagai sebuah variabel prediktor (X) baru dalam linier berganda.

Mean Square Error (MSE)

Mean Squared Error (MSE) adalah Rata-rata Kesalahan kuadrat diantara nilai aktual dan nilai peramalan. Metode Mean Squared Error secara umum digunakan untuk mengecek estimasi berapa nilai kesalahan pada peramalan. Nilai Mean Squared Error yang rendah atau nilai mean squared error mendekati nol menunjukkan bahwa hasil peramalan sesuai dengan data aktual dan bisa dijadikan untuk perhitungan peramalan di periode mendatang

Library dan Dataset Triceps

library(MatrixModels)
library(MultiKink)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.2 --
## v ggplot2 3.3.6      v purrr   0.3.4 
## v tibble  3.1.8      v dplyr   1.0.10
## v tidyr   1.2.1      v stringr 1.4.1 
## v readr   2.1.2      v forcats 0.5.2 
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(dplyr)
library(purrr)
library(rsample)
library(DT)
library(mlr3measures)
## In order to avoid name clashes, do not attach 'mlr3measures'. Instead, only load the namespace with `requireNamespace("mlrmeasures")` and access the measures directly via `::`, e.g. `mlr3measures::auc()`.
library(splines)

Data Triceps yang digunakan untuk ilustrasi berasal dari studi antropometri terhadap 892 perempuan di bawah 50 tahun di tiga desa Gambia di Afrika Barat. Data terdiri dari 3 Kolom yaitu Age, Intriceps dan tricepts. Berikut adalah penjelasannya pada masing-masing kolom:

  • age : umur responden
  • Intriceps : logaritma dari ketebalan lipatan kulit triceps
  • triceps: ketebalan lipatan kulit triceps

sumber: 1. Cole T.J., Green P.J. (1992). Smoothing reference centile curves: the LMS method and penalized likelihood. Statistics in medicine, 11(10): 1305-1319. 2. Perperoglou A, Sauerbrei W, Abrahamowicz M, et al (2019). A review of spline function procedures in R. BMC medical research methodology, 19(1): 46-52.

Tabel data Triceps

data("triceps", package="MultiKink")
datatable(triceps, class = 'cell-border stripe')

Sebaran data (n=892)

ggplot(triceps,aes(x=age, y=triceps)) +
                 geom_point(alpha=0.55, color="brown") + 
                 theme_bw() 

Non Linear Regression - Part 1 (P08)

Regresi Linear

mod_linear = lm(triceps~age,data=triceps)
summary(mod_linear)
## 
## Call:
## lm(formula = triceps ~ age, data = triceps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12.9512  -2.3965  -0.5154   1.5822  25.1233 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.19717    0.21244   29.17   <2e-16 ***
## age          0.21584    0.01014   21.28   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.007 on 890 degrees of freedom
## Multiple R-squared:  0.3372, Adjusted R-squared:  0.3365 
## F-statistic: 452.8 on 1 and 890 DF,  p-value: < 2.2e-16
ringkasan_linear <- summary(mod_linear)
ringkasan_linear$r.squared
## [1] 0.3372092
AIC(mod_linear)
## [1] 5011.515

Bentuk plot garis regresi linear mengikuti sebaran data Triceps

ggplot(triceps,aes(x=age, y=triceps)) +
   geom_point(alpha=0.55, color="red") +
   stat_smooth(method = "lm", 
               formula = y~x,lty = 1,
               col = "black",se = F)+
  theme_grey()

Regresi Polinomial Derajat 2

mod_polinomial2 = lm(triceps ~ poly(age,2,raw = T),
                     data=triceps)
summary(mod_polinomial2)
## 
## Call:
## lm(formula = triceps ~ poly(age, 2, raw = T), data = triceps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12.5677  -2.4401  -0.4587   1.6368  24.9961 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             6.0229191  0.3063806  19.658  < 2e-16 ***
## poly(age, 2, raw = T)1  0.2434733  0.0364403   6.681 4.17e-11 ***
## poly(age, 2, raw = T)2 -0.0006257  0.0007926  -0.789     0.43    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.008 on 889 degrees of freedom
## Multiple R-squared:  0.3377, Adjusted R-squared:  0.3362 
## F-statistic: 226.6 on 2 and 889 DF,  p-value: < 2.2e-16
AIC(mod_polinomial2)
## [1] 5012.89
ggplot(triceps,aes(x=age, y=triceps)) + 
  geom_point(alpha=0.55, color="black") +
  stat_smooth(method = "lm", 
               formula = y~poly(x,2,raw=T), 
               lty = 1, col = "blue",se = F)+
  theme_grey()

Secara observatif, plot polinomial dengan ordo 2 yang ditunjukkan cenderung menyerupai plot regresi dari data Triceps yang digunakan.

ggplot(triceps,aes(x=age, y=triceps)) + 
  geom_point(alpha=0.55, color="black") +
  stat_smooth(method = "lm", 
               formula = y~poly(x,2,raw=T), 
               lty = 1, col = "blue",se = T)+
  theme_grey()

Regresi Polinomial Derajat 3

mod_polinomial3 = lm(triceps ~ poly(age,3,raw = T),data=triceps)
summary(mod_polinomial3)
## 
## Call:
## lm(formula = triceps ~ poly(age, 3, raw = T), data = triceps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.5832  -1.9284  -0.5415   1.3283  24.4440 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             8.004e+00  3.831e-01  20.893  < 2e-16 ***
## poly(age, 3, raw = T)1 -3.157e-01  7.721e-02  -4.089 4.73e-05 ***
## poly(age, 3, raw = T)2  3.101e-02  3.964e-03   7.824 1.45e-14 ***
## poly(age, 3, raw = T)3 -4.566e-04  5.612e-05  -8.135 1.38e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.868 on 888 degrees of freedom
## Multiple R-squared:  0.3836, Adjusted R-squared:  0.3815 
## F-statistic: 184.2 on 3 and 888 DF,  p-value: < 2.2e-16
ggplot(triceps,aes(x=age, y=triceps)) + 
  geom_point(alpha=0.55, color="green") +
  stat_smooth(method = "lm", 
               formula = y~poly(x,3,raw=T), 
               lty = 1, col = "black",se = T)+
  theme_grey()

### Regresi Fungsi Tangga (5)

mod_tangga5 = lm(triceps ~ cut(age,5),data=triceps)
summary(mod_tangga5)
## 
## Call:
## lm(formula = triceps ~ cut(age, 5), data = triceps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.5474  -2.0318  -0.4465   1.3682  23.3759 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              7.2318     0.1994  36.260  < 2e-16 ***
## cut(age, 5)(10.6,20.9]   1.6294     0.3244   5.023 6.16e-07 ***
## cut(age, 5)(20.9,31.2]   5.9923     0.4222  14.192  < 2e-16 ***
## cut(age, 5)(31.2,41.5]   7.5156     0.4506  16.678  < 2e-16 ***
## cut(age, 5)(41.5,51.8]   7.4561     0.5543  13.452  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.939 on 887 degrees of freedom
## Multiple R-squared:  0.3617, Adjusted R-squared:  0.3588 
## F-statistic: 125.7 on 4 and 887 DF,  p-value: < 2.2e-16
ggplot(triceps,aes(x=age, y=triceps)) +
       geom_point(alpha=0.55, color="darkblue") +
       stat_smooth(method = "lm", 
               formula = y~cut(x,5), 
               lty = 1, col = "orange",se = F)+
  theme_grey()

Regresi Fungsi Tangga (7)

mod_tangga7 = lm(triceps ~ cut(age,7),data=triceps)
summary(mod_tangga7)
## 
## Call:
## lm(formula = triceps ~ cut(age, 7), data = triceps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.8063  -1.7592  -0.4366   1.2894  23.1461 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              7.5592     0.2219  34.060  < 2e-16 ***
## cut(age, 7)(7.62,15]    -0.6486     0.3326  -1.950   0.0515 .  
## cut(age, 7)(15,22.3]     3.4534     0.4239   8.146 1.27e-15 ***
## cut(age, 7)(22.3,29.7]   5.8947     0.4604  12.804  < 2e-16 ***
## cut(age, 7)(29.7,37]     7.8471     0.5249  14.949  < 2e-16 ***
## cut(age, 7)(37,44.4]     6.9191     0.5391  12.835  < 2e-16 ***
## cut(age, 7)(44.4,51.8]   6.3013     0.6560   9.606  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.805 on 885 degrees of freedom
## Multiple R-squared:  0.4055, Adjusted R-squared:  0.4014 
## F-statistic: 100.6 on 6 and 885 DF,  p-value: < 2.2e-16
ggplot(triceps,aes(x=age, y=triceps)) +
       geom_point(alpha=0.55, color="black") +
       stat_smooth(method = "lm", 
               formula = y~cut(x,7), 
               lty = 1, col = "blue",se = F)+
  theme_grey()

Perbandingan setiap model Regresi

MSE = function(pred,actual){
  mean((pred-actual)^2)
}
nilai_MSE <- rbind(MSE(predict(mod_linear),triceps$triceps),
              MSE(predict(mod_polinomial2),triceps$triceps),
              MSE(predict(mod_polinomial3),triceps$triceps),
              MSE(predict(mod_tangga5),triceps$triceps),
              MSE(predict(mod_tangga7),triceps$triceps))
nama_model <- c("Regresi Linear","Regresi Poly (ordo=2)", "Regresi Poly (ordo=3)",
                "Regresi Tangga (breaks=5)", "Regresi Tangga (breaks=7)")
data.frame(nama_model,nilai_MSE)

Berdasarkan matriks nilai MSE dari ke-5 model di atas, diperoleh bahwa model regresi dengan nilai MSE terkecil, yakni model Regresi Tangga dengan breaks = 7, sehingga model tersebut dinyatakan sebagai model regresi terbaik.

Evaluasi Model secara Empirik - dengan Cross-validation (P08)

Regresi Linear

set.seed(123)
cross_val <- vfold_cv(triceps,v=10,strata = "triceps")
metric_linear <- map_dfr(cross_val$splits,
    function(x){
    mod <- lm(triceps ~ age,data=triceps[x$in_id,])
    pred <- predict(mod,newdata=triceps[-x$in_id,])
    truth <- triceps[-x$in_id,]$triceps
    rmse <- mlr3measures::rmse(truth = truth,response = pred)
    mae <- mlr3measures::mae(truth = truth,response = pred)
    metric <- c(rmse,mae)
    names(metric) <- c("rmse","mae")
    return(metric)
  }
)

Dari fungsi yang dibangun di atas, akan diperoleh 10 folds nilai MSE dan RMSE. Oleh karena itu, dihitung rata-rata dari ke-10 folds tersebut

mean_metric_linear <- colMeans(metric_linear)
mean_metric_linear
##     rmse      mae 
## 3.973249 2.833886

Regresi Polinomial Derajat 2

set.seed(123)
cross_val <- vfold_cv(triceps,v=10,strata = "triceps")
metric_poly2 <- map_dfr(cross_val$splits,
function(x){
  mod <- lm(triceps ~ poly(age,2,raw = T),data=triceps[x$in_id,])
  pred <- predict(mod,newdata=triceps[-x$in_id,])
  truth <- triceps[-x$in_id,]$triceps
  rmse <- mlr3measures::rmse(truth = truth,response = pred)
  mae <- mlr3measures::mae(truth = truth,response = pred)
  metric <- c(rmse,mae)
  names(metric) <- c("rmse","mae")
  return(metric)
  }
)

Dihitung kembali rata-rata dari 10 folds hasil iterasi fungsi di atas.

mean_metric_poly2 <- colMeans(metric_poly2)
mean_metric_poly2
##     rmse      mae 
## 3.977777 2.851787

Regresi Polinomial Derajat 3

set.seed(123)
cross_val <- vfold_cv(triceps,v=10,strata = "triceps")
metric_poly3 <- map_dfr(cross_val$splits,
function(x){
  mod <- lm(triceps ~ poly(age,3,raw = T),data=triceps[x$in_id,])
  pred <- predict(mod,newdata=triceps[-x$in_id,])
  truth <- triceps[-x$in_id,]$triceps
  rmse <- mlr3measures::rmse(truth = truth,response = pred)
  mae <- mlr3measures::mae(truth = truth,response = pred)
  metric <- c(rmse,mae)
  names(metric) <- c("rmse","mae")
  return(metric)
  }
)
mean_metric_poly3 <- colMeans(metric_poly3)
mean_metric_poly3
##     rmse      mae 
## 3.845976 2.632125

Regresi Tangga

set.seed(123)
cross_val <- vfold_cv(triceps,v=10,strata = "triceps")
breaks <- 3:10
best_tangga <- map_dfr(breaks, function(i){
    metric_tangga <- map_dfr(cross_val$splits,
    function(x){
        training <- triceps[x$in_id,]
        training$age <- cut(training$age,i)
        mod <- lm(triceps ~ age,data=training)
        labs_x <- levels(mod$model[,2])
        labs_x_breaks <- cbind(lower = as.numeric( sub("\\((.+),.*", "\\1", labs_x) ),
                  upper = as.numeric( sub("[^,]*,([^]]*)\\]", "\\1", labs_x) ))
        testing <- triceps[-x$in_id,]
        age_new <- cut(testing$age,c(labs_x_breaks[1,1],labs_x_breaks[,2]))
        pred <- predict(mod,newdata=list(age=age_new))
        truth <- testing$triceps
        data_eval <- na.omit(data.frame(truth,pred))
        rmse <- mlr3measures::rmse(truth = data_eval$truth,response = data_eval$pred)
        mae <- mlr3measures::mae(truth = data_eval$truth,response = data_eval$pred)
        metric <- c(rmse,mae)
        names(metric) <- c("rmse","mae")
        return(metric)
      }
    )
  metric_tangga
  # menghitung rata-rata untuk 10 folds
  mean_metric_tangga <- colMeans(metric_tangga)
  mean_metric_tangga
  }
)

best_tangga <- cbind(breaks=breaks,best_tangga)

Dari 8 breaks di atas, dipilih model Regresi Tangga terbaik berdasarkan parameter RMSE dan MAE 1. Berdasarkan RMSE

best_tangga %>% slice_min(rmse)
  1. Berdasarkan MAE
best_tangga %>% slice_min(mae)

Disimpulkan bahwa kedua parameter (RMSE dan MAE) terkecil, ditunjukkan oleh model Regresi Tangga dengan breaks = 9.

Perbandingan seluruh model - secara empirik

nilai_metric <- rbind(mean_metric_linear,
                      mean_metric_poly2,
                      mean_metric_poly3,
                      best_tangga %>% select(-1) %>% slice_min(mae))

nama_model <- c("Linear","Poly2","Poly3","Tangga (breaks=9)")
data.frame(nama_model,nilai_metric)

Berdasarkan matriks di atas, disimpulkan bahwa model Regresi terbaik adalah Regresi Tangga dengan breaks = 9.

Non Linear Regression - Part 2 (P09)

Regresi Spline

Tahap 1 -> Menentukan banyaknya fungsi dan knots yang digunakan secara manual

dim(bs(triceps$age, knots = c(10, 20,40)))
## [1] 892   6

Tahap 2 -> Menggunakan rekomendasi komputer dalam menentukan fungsi dan knots

attr(bs(triceps$age, df=6),"knots")
##     25%     50%     75% 
##  5.5475 12.2100 24.7275

Tahap 3 -> b-spline: Plot hasil fungsi dan knots manual

knot_value_manual_3 = c(10, 20,40)
mod_spline_1 = lm(triceps ~ bs(age, knots =knot_value_manual_3 ),data=triceps)
summary(mod_spline_1)
## 
## Call:
## lm(formula = triceps ~ bs(age, knots = knot_value_manual_3), 
##     data = triceps)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.385  -1.682  -0.393   1.165  22.855 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                            8.22533    0.61873  13.294  < 2e-16 ***
## bs(age, knots = knot_value_manual_3)1 -0.06551    1.14972  -0.057    0.955    
## bs(age, knots = knot_value_manual_3)2 -4.30051    0.72301  -5.948 3.90e-09 ***
## bs(age, knots = knot_value_manual_3)3  7.80435    1.17793   6.625 6.00e-11 ***
## bs(age, knots = knot_value_manual_3)4  6.14890    1.27439   4.825 1.65e-06 ***
## bs(age, knots = knot_value_manual_3)5  5.56640    1.42225   3.914 9.78e-05 ***
## bs(age, knots = knot_value_manual_3)6  7.90178    1.54514   5.114 3.87e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.76 on 885 degrees of freedom
## Multiple R-squared:  0.4195, Adjusted R-squared:  0.4155 
## F-statistic: 106.6 on 6 and 885 DF,  p-value: < 2.2e-16
ggplot(triceps,aes(x=age, y=triceps)) +
                 geom_point(alpha=0.55, color="black") +
  stat_smooth(method = "lm", 
               formula = y~bs(x, knots = knot_value_manual_3), 
               lty = 1,se = F)

Tahap 4 -> b-spline: Plot hasil fungsi dan knots rekomendasi komputer

knot_value_pc_df_6 = attr(bs(triceps$age, df=6),"knots")
mod_spline_1 = lm(triceps ~ bs(age, knots =knot_value_pc_df_6 ),data=triceps)
summary(mod_spline_1)
## 
## Call:
## lm(formula = triceps ~ bs(age, knots = knot_value_pc_df_6), data = triceps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.0056  -1.7556  -0.2944   1.2008  23.0695 
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                            6.5925     0.8770   7.517 1.37e-13 ***
## bs(age, knots = knot_value_pc_df_6)1   3.7961     1.5015   2.528  0.01164 *  
## bs(age, knots = knot_value_pc_df_6)2  -2.0749     0.8884  -2.335  0.01974 *  
## bs(age, knots = knot_value_pc_df_6)3   1.5139     1.1645   1.300  0.19391    
## bs(age, knots = knot_value_pc_df_6)4  11.6394     1.3144   8.855  < 2e-16 ***
## bs(age, knots = knot_value_pc_df_6)5   5.9680     1.5602   3.825  0.00014 ***
## bs(age, knots = knot_value_pc_df_6)6   8.9127     1.4053   6.342 3.60e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.757 on 885 degrees of freedom
## Multiple R-squared:  0.4206, Adjusted R-squared:  0.4167 
## F-statistic: 107.1 on 6 and 885 DF,  p-value: < 2.2e-16
ggplot(triceps,aes(x=age, y=triceps)) +
                 geom_point(alpha=0.55, color="black") +
  stat_smooth(method = "lm", 
               formula = y~bs(x, knots = knot_value_pc_df_6), 
               lty = 1,se = F)

Tahap 5 -> Natural spline: Plot hasil fungsi dan knots manual

knot_value_manual_3 = c(10, 20,40)
mod_spline3ns = lm(triceps ~ ns(age, knots = knot_value_manual_3),data=triceps)
summary(mod_spline3ns)
## 
## Call:
## lm(formula = triceps ~ ns(age, knots = knot_value_manual_3), 
##     data = triceps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.7220  -1.7640  -0.3985   1.1908  22.9684 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                             8.8748     0.3742  23.714  < 2e-16 ***
## ns(age, knots = knot_value_manual_3)1   7.0119     0.6728  10.422  < 2e-16 ***
## ns(age, knots = knot_value_manual_3)2   6.0762     0.8625   7.045 3.72e-12 ***
## ns(age, knots = knot_value_manual_3)3   2.0780     1.0632   1.954    0.051 .  
## ns(age, knots = knot_value_manual_3)4   8.8616     0.9930   8.924  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.762 on 887 degrees of freedom
## Multiple R-squared:  0.4176, Adjusted R-squared:  0.415 
## F-statistic:   159 on 4 and 887 DF,  p-value: < 2.2e-16

Smoothing spline

model_sms <- with(data = triceps,smooth.spline(age,triceps))
model_sms 
## Call:
## smooth.spline(x = age, y = triceps)
## 
## Smoothing Parameter  spar= 0.5162704  lambda= 1.232259e-06 (13 iterations)
## Equivalent Degrees of Freedom (Df): 50.00639
## Penalized Criterion (RSS): 8591.581
## GCV: 13.77835
pred_data <- broom::augment(model_sms)

ggplot(pred_data,aes(x=x,y=y))+
  geom_point(alpha=0.55, color="lightblue")+
  geom_line(aes(y=.fitted),col="red",
            lty=1)+
  xlab("age")+
  ylab("triceps")+
  theme_grey()

Pengaruh parameter lambda terhadap tingkat smoothness kurva, dapat dilihat pada ilustrasi berikut ini:

model_sms_lambda <- data.frame(lambda=seq(0,5,by=0.5)) %>% 
  group_by(lambda) %>% 
  do(broom::augment(with(data = triceps,smooth.spline(age,triceps,lambda = .$lambda))))

p <- ggplot(model_sms_lambda,
       aes(x=x,y=y))+
  geom_line(aes(y=.fitted),
            col="red",
            lty=1
            )+
  facet_wrap(~lambda)
p

Jika kita tentukan df=7, maka hasil kurva model smooth.spline akan lebih merepresentasikan data

model_sms <- with(data = triceps,smooth.spline(age,triceps,df=7))
model_sms 
## Call:
## smooth.spline(x = age, y = triceps, df = 7)
## 
## Smoothing Parameter  spar= 1.049874  lambda= 0.008827582 (11 iterations)
## Equivalent Degrees of Freedom (Df): 7.000747
## Penalized Criterion (RSS): 10112.16
## GCV: 14.20355
pred_data <- broom::augment(model_sms)

ggplot(pred_data,aes(x=x,y=y))+
  geom_point(alpha=0.55, color="green")+
  geom_line(aes(y=.fitted),col="brown",
            lty=1)+
  xlab("age")+
  ylab("triceps")+
  theme_grey()

LOESS

Masih menggunakan data triceps seperti pada ilustrasi sebelumnya, kali ini kita akan mencoba melakukan pendekatan local regression dengan fungsi loess()

model_loess <- loess(triceps~age,
                     data = triceps)
summary(model_loess)
## Call:
## loess(formula = triceps ~ age, data = triceps)
## 
## Number of Observations: 892 
## Equivalent Number of Parameters: 4.6 
## Residual Standard Error: 3.777 
## Trace of smoother matrix: 5.01  (exact)
## 
## Control settings:
##   span     :  0.75 
##   degree   :  2 
##   family   :  gaussian
##   surface  :  interpolate      cell = 0.2
##   normalize:  TRUE
##  parametric:  FALSE
## drop.square:  FALSE

Pengaruh parameter span terhadap tingkat smoothness kurva bisa dilihat dari ilustrasi berikut:

model_loess_span <- data.frame(span=seq(0.1,5,by=0.5)) %>% 
  group_by(span) %>% 
  do(broom::augment(loess(triceps~age,
                     data = triceps,span=.$span)))

p2 <- ggplot(model_loess_span,
       aes(x=age,y=triceps))+
  geom_line(aes(y=.fitted),
            col="blue",
            lty=1
            )+
  facet_wrap(~span)
p2

Pendekatan ini juga dapat dilakukan dengan fungsi stat_smooth() pada package ggplot2.

library(ggplot2)
ggplot(triceps, aes(age,triceps)) +
  geom_point(alpha=0.5,color="black") +
  stat_smooth(method='loess',
               formula=y~x,
              span = 0.75,
              col="blue",
              lty=1,
              se=F)

Tuning span dapat dilakukan dengan menggunakan cross-validation:

set.seed(123)
cross_val <- vfold_cv(triceps,v=10,strata = "triceps")

span <- seq(0.1,1,length.out=50)

best_loess <- map_dfr(span, function(i){
metric_loess <- map_dfr(cross_val$splits,
    function(x){
mod <- loess(triceps ~ age,span = i,
         data=triceps[x$in_id,])
pred <- predict(mod,
               newdata=triceps[-x$in_id,])
truth <- triceps[-x$in_id,]$triceps

data_eval <- na.omit(data.frame(pred=pred,
                                truth=truth))


rmse <- mlr3measures::rmse(truth = data_eval$truth,
                           response = data_eval$pred
                           )
mae <- mlr3measures::mae(truth = data_eval$truth,
                           response = data_eval$pred
                           )
metric <- c(rmse,mae)
names(metric) <- c("rmse","mae")
return(metric)
}
)

head(metric_loess,20)

# menghitung rata-rata untuk 10 folds
mean_metric_loess <- colMeans(metric_loess)

mean_metric_loess
}
)

best_loess <- cbind(span=span,best_loess)
# menampilkan hasil all breaks
best_loess
#berdasarkan rmse
best_loess %>% slice_min(rmse)
#berdasarkan mae
best_loess %>% slice_min(mae)
library(ggplot2)
ggplot(triceps, aes(age,triceps)) +
  geom_point(alpha=0.5,color="black") +
  stat_smooth(method='loess',
              formula=y~x,
              span = 0.4306122,
              col="blue",
              lty=1,
              se=F)