pacman::p_load(tidyverse, metafor, meta, svglite)
Dataset <-read.csv("homework.csv",header=TRUE, sep=",")
head(Dataset)
## Source N1 Event1 N2 Event2 N
## 1 Cook 1990 25 12 24 11 49
## 2 Conan McCaul 2003 35 6 36 4 71
## 3 Shin 2007 27 9 36 10 63
## 4 Shin 2007 26 5 35 4 61
## 5 Dabu-Bondoc 2012 30 14 32 20 62
## 6 Patel P 2013 87 9 75 7 162
df1 <- Dataset %>%
mutate(pos.i = Event1,
pos.c = Event2,
total.i = N1,
total.c = N2,
neg.i = N1 - Event1,
neg.c = N2 - Event2)
df2_label<-
meta::forest(df2,
rightlabs = c("RR","95% CI","weight"),
leftlabs = c("Author", "Event","N","Event","N"),
lab.e = "PONV",
pooled.totals = TRUE,
smlab = "",
text.random = "Random effect",
print.tau2 = FALSE,
col.diamond = "blue",
col.diamond.lines = "black",
print.I2.ci = TRUE,
digits = 2)
df2_Revman5<-
meta::forest(df2,
layout = "RevMan5",
rightlabs = c("RR","95% CI","weight"),
leftlabs = c("Author", "Event","N","Event","N"),
lab.e = "PONV",
pooled.totals = TRUE,
smlab = "",
text.random = "Random effect",
print.tau2 = FALSE,
col.diamond = "blue",
col.diamond.lines = "black",
print.I2.ci = TRUE,
digits = 2)
df2_JAMA<-
meta::forest(df2,
layout = "JAMA",
rightlabs = c("RR","95% CI","weight"),
leftlabs = c("Author", "Event","N","Event","N"),
lab.e = "PONV",
pooled.totals = TRUE,
smlab = "",
text.random = "Random effect",
print.tau2 = FALSE,
col.diamond = "blue",
col.diamond.lines = "black",
print.I2.ci = TRUE,
digits = 2)
#funnel plotをmetafor packageで実施するために実施 ## 効果量の算出
df3 <-
escalc(measure="RR",
ai=pos.i,
bi=neg.i,
ci=pos.c,
di=neg.c,
data = df1,
append=TRUE)
class(df3)
## [1] "escalc" "data.frame"
metafor::funnel(df4,
level=c(90, 95, 99),
shade=c("white", "gray", "darkgray"),
refline=0)
legend("topright",
c("p > 0.1", "0.1 > p > 0.05", "0.05 > p > 0.01"),
fill=c("white", "gray", "darkgray"))
metafor::ranktest(df4)
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = 0.4222, p = 0.1083
metafor::regtest(df4, model="lm")
##
## Regression Test for Funnel Plot Asymmetry
##
## Model: weighted regression with multiplicative dispersion
## Predictor: standard error
##
## Test for Funnel Plot Asymmetry: t = 2.2715, df = 8, p = 0.0528
## Limit Estimate (as sei -> 0): b = -0.8342 (CI: -1.3992, -0.2691)