library(haven)
lec<-read.csv("LEC.SEX.AGE.csv") #Loading in data file
Sex <- factor(lec$chsex_d1, levels = 1:2, labels = c("Male", "Female")) #Turning sex into a factor
summary(Sex) #Getting summary of sex
##   Male Female 
##    111    109
Ethnicity <- factor(lec$cethn_d1, levels = 1:6, labels = c("White", "Black", "Hispanic", "Asian-Oriental", "Mixed", "Other")) #Turning ethnicity into a factor
summary(Ethnicity) #Getting summary of ethnicity 
##          White          Black       Hispanic Asian-Oriental          Mixed 
##            154             35              4              6             21 
##          Other 
##              0
Income <- factor(lec$inc_d1, levels = 1:6, labels = c("Less than $20k", "$20k-40k", "$41k-$60k", "$61k-$80k", "$81k-$100k", "Over $100k")) #Turning income into a factor
summary(Income) #Getting summary of income 
## Less than $20k       $20k-40k      $41k-$60k      $61k-$80k     $81k-$100k 
##             12             25             40             41             35 
##     Over $100k           NA's 
##             66              1
mean(lec$cage_d1) #Calculating adolescents' mean age
## [1] 13.67034
sd(lec$cage_d1) #Calculating adolescents' age sd
## [1] 1.520727
lec2 <- subset(lec,select=c(chsex_d1, cage_d1, ltnt_c1, cethn_d1)) #Designating columns to run analyses on
library(naniar)
vis_miss(lec2) #Looking at missing data
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## Please use `gather()` instead.

lec2 <- na.omit(lec2) #Excluding missing data 
library(ggplot2)
library(ggeffects)
library(tidyr)
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(Rmisc)
## Loading required package: lattice
## Loading required package: plyr
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
r <- corr.test(lec2$cage_d1,lec2$ltnt_c1)
print(r,short=F) #Calculating pearson's correlation r for adolescents' age and negative life events
## Call:corr.test(x = lec2$cage_d1, y = lec2$ltnt_c1)
## Correlation matrix 
## [1] 0.12
## Sample Size 
## [1] 216
## These are the unadjusted probability values.
##   The probability values  adjusted for multiple tests are in the p.adj object. 
## [1] 0.07
## 
##  Confidence intervals based upon normal theory.  To get bootstrapped values, try cor.ci
##       raw.lower raw.r raw.upper raw.p lower.adj upper.adj
## NA-NA     -0.01  0.12      0.25  0.07     -0.01      0.25
ggplot(data = lec2, aes(x = cage_d1,y=ltnt_c1)) + 
  geom_point() +
  xlab("Adolescent Age") +
  ylab("Negative Life Events") +
  geom_smooth(method = "lm") #Plotting correlation for adolescents' age and negative life events using a scatter plot
## `geom_smooth()` using formula 'y ~ x'

lec2$chsex_d1 <- as.numeric(lec2$chsex_d1)
levels(lec2$chsex_d1) <- list("0"='Male',"1"='Female') #Relabel adolescents' sex to ensure it is treated as a factor, not numerical
lec2$chsex_d1 <- as.factor(lec2$chsex_d1)
levels(lec2$chsex_d1) <- list('Male'="1",'Female'="2") #Relabel adolescents' sex to ensure it is treated as a factor, not numerical
reg <- lm(cage_d1~ltnt_c1, data=lec2)
summary(reg) #Computing regression for adolescents' age and negative life events
## 
## Call:
## lm(formula = cage_d1 ~ ltnt_c1, data = lec2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7929 -1.0450  0.0982  0.9941  3.4950 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.39444    0.18491  72.439   <2e-16 ***
## ltnt_c1      0.07429    0.04113   1.806   0.0723 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.516 on 214 degrees of freedom
## Multiple R-squared:  0.01502,    Adjusted R-squared:  0.01041 
## F-statistic: 3.263 on 1 and 214 DF,  p-value: 0.07228
confint(reg) #Finding CI
##                    2.5 %     97.5 %
## (Intercept) 13.029973053 13.7589157
## ltnt_c1     -0.006779961  0.1553556
lec2$ccage_d1 <- scale(lec2$cage_d1,center=T,scale=F) #Mean centering adolescent age 
reg2 <- lm(ccage_d1~ltnt_c1,data=lec2)
summary(reg2) #Computing regression for mean centered variable
## 
## Call:
## lm(formula = ccage_d1 ~ ltnt_c1, data = lec2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7929 -1.0450  0.0982  0.9941  3.4950 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -0.27720    0.18491  -1.499   0.1353  
## ltnt_c1      0.07429    0.04113   1.806   0.0723 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.516 on 214 degrees of freedom
## Multiple R-squared:  0.01502,    Adjusted R-squared:  0.01041 
## F-statistic: 3.263 on 1 and 214 DF,  p-value: 0.07228
confint(reg2) #Finding CI of mean centered regression
##                    2.5 %     97.5 %
## (Intercept) -0.641674981 0.08726764
## ltnt_c1     -0.006779961 0.15535563
lec2$zcage_d1 <- scale(lec2$cage_d1) 
lec2$zltnt_c1 <- scale(lec2$ltnt_c1) #Standardized beta coefficients for variables

reg3 <- lm(zcage_d1~zltnt_c1,data=lec2)
summary(reg3) #Computing regression for standardized variables
## 
## Call:
## lm(formula = zcage_d1 ~ zltnt_c1, data = lec2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.83288 -0.68579  0.06446  0.65238  2.29360 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -7.201e-16  6.769e-02   0.000   1.0000  
## zltnt_c1     1.225e-01  6.784e-02   1.806   0.0723 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9948 on 214 degrees of freedom
## Multiple R-squared:  0.01502,    Adjusted R-squared:  0.01041 
## F-statistic: 3.263 on 1 and 214 DF,  p-value: 0.07228
gg <- ggpredict(reg2,terms=c("ccage_d1"))
## `ccage_d1` was not found in model terms. Maybe misspelled?
plot(gg)+labs(x="Adolescent Age",y= "Negative Life Events",title="") #Plotting regression between adolescents' age and negative life events

mean(lec2$ltnt_c1) #Computing mean of negative life events
## [1] 3.731481
sd (lec2$ltnt_c1) #Computing SD of negative life events
## [1] 2.513615
mean (lec2$cage_d1) #Computing mean of adolescents' age
## [1] 13.67165
sd(lec2$cage_d1) #Computing SD of adolescents' age
## [1] 1.523802
t.test(lec2$ltnt_c1,mu=2.5)#Conducting a one sample t-test for negative life events
## 
##  One Sample t-test
## 
## data:  lec2$ltnt_c1
## t = 7.2004, df = 215, p-value = 9.936e-12
## alternative hypothesis: true mean is not equal to 2.5
## 95 percent confidence interval:
##  3.394372 4.068591
## sample estimates:
## mean of x 
##  3.731481
library(pwr)
library(effectsize)
## 
## Attaching package: 'effectsize'
## The following object is masked from 'package:psych':
## 
##     phi
model1<-t.test(lec2$ltnt_c1,mu=2.5)
print(model1)
## 
##  One Sample t-test
## 
## data:  lec2$ltnt_c1
## t = 7.2004, df = 215, p-value = 9.936e-12
## alternative hypothesis: true mean is not equal to 2.5
## 95 percent confidence interval:
##  3.394372 4.068591
## sample estimates:
## mean of x 
##  3.731481
#report(model1)
cohens_d(model1) #Computing cohen's d for one sample t-test
## Cohen's d |       95% CI
## ------------------------
## 0.49      | [0.35, 0.63]
## 
## - Deviation from a difference of 2.5.
FemaleLE <- (lec2$ltnt_c1[lec2$chsex_d1 == "Female"])
describe(FemaleLE)
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 107 3.74 2.5      3    3.52 1.48   0  14    14 1.25     2.69 0.24
MaleLE <- (lec2$ltnt_c1[lec2$chsex_d1 == "Male"])
describe(MaleLE) #Computing M and SD of females and males negative life events
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 109 3.72 2.54      3    3.54 2.97   0  13    13 0.84     0.92 0.24
var.test(FemaleLE,MaleLE) #Looking at homogeneity of variance for adolescents' sex and negative life events
## 
##  F test to compare two variances
## 
## data:  FemaleLE and MaleLE
## F = 0.97044, num df = 106, denom df = 108, p-value = 0.8774
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.6632119 1.4209612
## sample estimates:
## ratio of variances 
##          0.9704389
t.test(FemaleLE, MaleLE,var.equal=T) #Conducting a two sample t-test between adolescents' sex and negative life events
## 
##  Two Sample t-test
## 
## data:  FemaleLE and MaleLE
## t = 0.039511, df = 214, p-value = 0.9685
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.6622905  0.6893848
## sample estimates:
## mean of x mean of y 
##  3.738318  3.724771
model2 <- t.test(FemaleLE, MaleLE,var.equal=T) 
print(model2)
## 
##  Two Sample t-test
## 
## data:  FemaleLE and MaleLE
## t = 0.039511, df = 214, p-value = 0.9685
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.6622905  0.6893848
## sample estimates:
## mean of x mean of y 
##  3.738318  3.724771
#report(model2)
cohens_d(model2) #Computing cohen's d for two sample t-test
## Warning: Missing values detected. NAs dropped.
## Cohen's d |        95% CI
## -------------------------
## 5.38e-03  | [-0.26, 0.27]
## 
## - Estimated using pooled SD.
df2 <- subset(lec,select=c(ltnt_c1, ltpt_c1))
var.test(df2$ltnt_c1, df2$ltpt_c1) #Looking at homogeneity of variance for positive and negative life events
## 
##  F test to compare two variances
## 
## data:  df2$ltnt_c1 and df2$ltpt_c1
## F = 1.2493, num df = 215, denom df = 215, p-value = 0.1034
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.9555727 1.6333771
## sample estimates:
## ratio of variances 
##           1.249324
t.test(df2$ltnt_c1, df2$ltpt_c1,var.equal= T,paired= T) #Conducting a paired samples t-test between adolescents' positive and negative life events
## 
##  Paired t-test
## 
## data:  df2$ltnt_c1 and df2$ltpt_c1
## t = -2.091, df = 215, p-value = 0.0377
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##  -0.83641140 -0.02469971
## sample estimates:
## mean difference 
##      -0.4305556
model3 <- t.test(df2$ltnt_c1, df2$ltpt_c1,var.equal= T,paired= T)
print(model3)
## 
##  Paired t-test
## 
## data:  df2$ltnt_c1 and df2$ltpt_c1
## t = -2.091, df = 215, p-value = 0.0377
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##  -0.83641140 -0.02469971
## sample estimates:
## mean difference 
##      -0.4305556
#report(model3)
cohens_d(model3) #Computing cohen's d for paired sample t-test
## Warning: Missing values detected. NAs dropped.
## Cohen's d |         95% CI
## --------------------------
## -0.14     | [-0.28, -0.01]
describe(df2$ltnt_c1)
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 216 3.73 2.51      3    3.52 1.48   0  14    14 1.04     1.82 0.17
describe(df2$ltpt_c1) #Computing M and SD of positive and negative life events
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 216 4.16 2.25      4    4.05 2.97   0  11    11 0.55     0.14 0.15
dfSumm <- lec2 %>%
  group_by(chsex_d1) %>%
  summarise(
    n=n(), 
    sd = sd(ltnt_c1, na.rm=T), 
    ltnt_c1 = mean(ltnt_c1,na.rm=T) 
    )%>%
  mutate( se=sd/sqrt(n))  %>% 
  mutate( ci=se * 1.96) 
            
ggplot(dfSumm, aes(chsex_d1,ltnt_c1)) +
  geom_col(fill=c("blue", "red")) +
  geom_errorbar(aes(ymin = ltnt_c1-ci, ymax = ltnt_c1+ci),width=0.3)+
  xlab("Adolescent Sex")+
  ylab("Negative Life Events") #Creating bar graph of t-test for two sample t-test

library(pwr)
library(effectsize)
pwr.t.test(d = .50, sig.level = .05, power = .8, type = "paired", 
           alternative = "two.sided") #Estimating power for t-test
## 
##      Paired t test power calculation 
## 
##               n = 33.36713
##               d = 0.5
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
## 
## NOTE: n is number of *pairs*
pwr.r.test(r = .30, sig.level = .05, power = .8) #Estimating power for correlation
## 
##      approximate correlation power calculation (arctangh transformation) 
## 
##               n = 84.07364
##               r = 0.3
##       sig.level = 0.05
##           power = 0.8
##     alternative = two.sided
sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: aarch64-apple-darwin20 (64-bit)
## Running under: macOS Ventura 13.0
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] effectsize_0.8.2 pwr_1.3-0        dplyr_1.0.10     Rmisc_1.5.1     
##  [5] plyr_1.8.7       lattice_0.20-45  psych_2.2.5      tidyr_1.2.1     
##  [9] ggeffects_1.1.4  ggplot2_3.3.6    naniar_0.6.1     haven_2.5.1     
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.9        assertthat_0.2.1  digest_0.6.29     utf8_1.2.2       
##  [5] R6_2.5.1          visdat_0.5.3      evaluate_0.16     highr_0.9        
##  [9] pillar_1.8.1      rlang_1.0.5       rstudioapi_0.14   jquerylib_0.1.4  
## [13] Matrix_1.4-1      rmarkdown_2.16    labeling_0.4.2    splines_4.2.1    
## [17] stringr_1.4.1     munsell_0.5.0     compiler_4.2.1    xfun_0.33        
## [21] parameters_0.19.0 pkgconfig_2.0.3   mnormt_2.1.0      mgcv_1.8-40      
## [25] htmltools_0.5.3   insight_0.18.6    tidyselect_1.1.2  tibble_3.1.8     
## [29] fansi_1.0.3       withr_2.5.0       grid_4.2.1        nlme_3.1-157     
## [33] jsonlite_1.8.0    gtable_0.3.1      lifecycle_1.0.2   DBI_1.1.3        
## [37] magrittr_2.0.3    bayestestR_0.13.0 scales_1.2.1      datawizard_0.6.3 
## [41] cli_3.4.0         stringi_1.7.8     cachem_1.0.6      farver_2.1.1     
## [45] bslib_0.4.0       ellipsis_0.3.2    generics_0.1.3    vctrs_0.4.1      
## [49] tools_4.2.1       forcats_0.5.2     glue_1.6.2        purrr_0.3.4      
## [53] hms_1.1.2         parallel_4.2.1    fastmap_1.1.0     yaml_2.3.5       
## [57] colorspace_2.0-3  knitr_1.40        sass_0.4.2
citation ("dplyr")
## 
## To cite package 'dplyr' in publications use:
## 
##   Wickham H, François R, Henry L, Müller K (2022). _dplyr: A Grammar of
##   Data Manipulation_. R package version 1.0.10,
##   <https://CRAN.R-project.org/package=dplyr>.
## 
## A BibTeX entry for LaTeX users is
## 
##   @Manual{,
##     title = {dplyr: A Grammar of Data Manipulation},
##     author = {Hadley Wickham and Romain François and Lionel Henry and Kirill Müller},
##     year = {2022},
##     note = {R package version 1.0.10},
##     url = {https://CRAN.R-project.org/package=dplyr},
##   }
citation("tidyr")
## 
## To cite package 'tidyr' in publications use:
## 
##   Wickham H, Girlich M (2022). _tidyr: Tidy Messy Data_. R package
##   version 1.2.1, <https://CRAN.R-project.org/package=tidyr>.
## 
## A BibTeX entry for LaTeX users is
## 
##   @Manual{,
##     title = {tidyr: Tidy Messy Data},
##     author = {Hadley Wickham and Maximilian Girlich},
##     year = {2022},
##     note = {R package version 1.2.1},
##     url = {https://CRAN.R-project.org/package=tidyr},
##   }
citation("Rmisc")
## 
## To cite package 'Rmisc' in publications use:
## 
##   Hope RM (2022). _Rmisc: Ryan Miscellaneous_. R package version 1.5.1,
##   <https://CRAN.R-project.org/package=Rmisc>.
## 
## A BibTeX entry for LaTeX users is
## 
##   @Manual{,
##     title = {Rmisc: Ryan Miscellaneous},
##     author = {Ryan M. Hope},
##     year = {2022},
##     note = {R package version 1.5.1},
##     url = {https://CRAN.R-project.org/package=Rmisc},
##   }
## 
## ATTENTION: This citation information has been auto-generated from the
## package DESCRIPTION file and may need manual editing, see
## 'help("citation")'.
citation("ggeffects")
## 
## To cite package 'ggeffects' in publications use:
## 
##   Lüdecke D (2018). "ggeffects: Tidy Data Frames of Marginal Effects
##   from Regression Models." _Journal of Open Source Software_, *3*(26),
##   772. doi:10.21105/joss.00772 <https://doi.org/10.21105/joss.00772>.
## 
## A BibTeX entry for LaTeX users is
## 
##   @Article{,
##     title = {ggeffects: Tidy Data Frames of Marginal Effects from Regression Models.},
##     volume = {3},
##     doi = {10.21105/joss.00772},
##     number = {26},
##     journal = {Journal of Open Source Software},
##     author = {Daniel Lüdecke},
##     year = {2018},
##     pages = {772},
##   }
citation("plyr")
## 
## To cite plyr in publications use:
## 
##   Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data
##   Analysis. Journal of Statistical Software, 40(1), 1-29. URL
##   https://www.jstatsoft.org/v40/i01/.
## 
## A BibTeX entry for LaTeX users is
## 
##   @Article{,
##     title = {The Split-Apply-Combine Strategy for Data Analysis},
##     author = {Hadley Wickham},
##     journal = {Journal of Statistical Software},
##     year = {2011},
##     volume = {40},
##     number = {1},
##     pages = {1--29},
##     url = {https://www.jstatsoft.org/v40/i01/},
##   }
citation("ggplot2")
## 
## To cite ggplot2 in publications, please use:
## 
##   H. Wickham. ggplot2: Elegant Graphics for Data Analysis.
##   Springer-Verlag New York, 2016.
## 
## A BibTeX entry for LaTeX users is
## 
##   @Book{,
##     author = {Hadley Wickham},
##     title = {ggplot2: Elegant Graphics for Data Analysis},
##     publisher = {Springer-Verlag New York},
##     year = {2016},
##     isbn = {978-3-319-24277-4},
##     url = {https://ggplot2.tidyverse.org},
##   }
citation("lattice")
## 
## To cite the lattice package in publications use:
## 
##   Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with
##   R. Springer, New York. ISBN 978-0-387-75968-5
## 
## A BibTeX entry for LaTeX users is
## 
##   @Book{,
##     title = {Lattice: Multivariate Data Visualization with R},
##     author = {Deepayan Sarkar},
##     publisher = {Springer},
##     address = {New York},
##     year = {2008},
##     note = {ISBN 978-0-387-75968-5},
##     url = {http://lmdvr.r-forge.r-project.org},
##   }
citation("naniar")
## 
## To cite package 'naniar' in publications use:
## 
##   Tierney N, Cook D, McBain M, Fay C (2021). _naniar: Data Structures,
##   Summaries, and Visualisations for Missing Data_. R package version
##   0.6.1, <https://CRAN.R-project.org/package=naniar>.
## 
## A BibTeX entry for LaTeX users is
## 
##   @Manual{,
##     title = {naniar: Data Structures, Summaries, and Visualisations for Missing Data},
##     author = {Nicholas Tierney and Di Cook and Miles McBain and Colin Fay},
##     year = {2021},
##     note = {R package version 0.6.1},
##     url = {https://CRAN.R-project.org/package=naniar},
##   }
citation ("psych")
## 
## To cite the psych package in publications use:
## 
##   Revelle, W. (2022) psych: Procedures for Personality and
##   Psychological Research, Northwestern University, Evanston, Illinois,
##   USA, https://CRAN.R-project.org/package=psych Version = 2.2.5.
## 
## A BibTeX entry for LaTeX users is
## 
##   @Manual{,
##     title = {psych: Procedures for Psychological, Psychometric, and Personality Research},
##     author = {William Revelle},
##     organization = { Northwestern University},
##     address = { Evanston, Illinois},
##     year = {2022},
##     note = {R package version 2.2.5},
##     url = {https://CRAN.R-project.org/package=psych},
##   }
citation("haven")
## 
## To cite package 'haven' in publications use:
## 
##   Wickham H, Miller E, Smith D (2022). _haven: Import and Export
##   'SPSS', 'Stata' and 'SAS' Files_. R package version 2.5.1,
##   <https://CRAN.R-project.org/package=haven>.
## 
## A BibTeX entry for LaTeX users is
## 
##   @Manual{,
##     title = {haven: Import and Export 'SPSS', 'Stata' and 'SAS' Files},
##     author = {Hadley Wickham and Evan Miller and Danny Smith},
##     year = {2022},
##     note = {R package version 2.5.1},
##     url = {https://CRAN.R-project.org/package=haven},
##   }
citation("effectsize")
## 
## To cite effectsize in publications use:
## 
##   Ben-Shachar M, Lüdecke D, Makowski D (2020). effectsize: Estimation
##   of Effect Size Indices and Standardized Parameters. Journal of Open
##   Source Software, 5(56), 2815. doi: 10.21105/joss.02815
## 
## A BibTeX entry for LaTeX users is
## 
##   @Article{,
##     title = {{e}ffectsize: Estimation of Effect Size Indices and Standardized Parameters},
##     author = {Mattan S. Ben-Shachar and Daniel Lüdecke and Dominique Makowski},
##     year = {2020},
##     journal = {Journal of Open Source Software},
##     volume = {5},
##     number = {56},
##     pages = {2815},
##     publisher = {The Open Journal},
##     doi = {10.21105/joss.02815},
##     url = {https://doi.org/10.21105/joss.02815},
##   }
citation("pwr")
## 
## To cite package 'pwr' in publications use:
## 
##   Champely S (2020). _pwr: Basic Functions for Power Analysis_. R
##   package version 1.3-0, <https://CRAN.R-project.org/package=pwr>.
## 
## A BibTeX entry for LaTeX users is
## 
##   @Manual{,
##     title = {pwr: Basic Functions for Power Analysis},
##     author = {Stephane Champely},
##     year = {2020},
##     note = {R package version 1.3-0},
##     url = {https://CRAN.R-project.org/package=pwr},
##   }