Load Packages
library(tidyverse)
library(tigris)
library(tidycensus)
library(ggplot2)
library(tmap)
library(codebookr)
library(dplyr)
Import Data
vax_deid <- read_csv("~/Desktop/R-Code/SDOH_Vax/ibd_vax.csv", show_col_types = FALSE)
Delete non-Michigan states
vax_deid %>%
mutate(STATE = na_if(STATE, "OHIO")) %>%
mutate(STATE = na_if(STATE, "CALIFORNIA")) %>%
mutate(STATE = na_if(STATE, "TEXAS")) %>%
mutate(STATE = na_if(STATE, "ARIZONA")) %>%
mutate(STATE = na_if(STATE, "FLORIDA")) %>%
mutate(STATE = na_if(STATE, "MARYLAND")) %>%
mutate(STATE = na_if(STATE, "NEW JERSEY")) %>%
mutate(STATE = na_if(STATE, "ILLINOIS")) %>%
mutate(STATE = na_if(STATE, "INDIANA")) %>%
mutate(STATE = na_if(STATE, "NEW YORK")) %>%
mutate(STATE = na_if(STATE, "NORTH CAROLINA")) %>%
mutate(STATE = na_if(STATE, "PENNSYLVANIA")) -> vax_state
vax_state %>%
dplyr::select(STATE, RPL_THEMES, tract_fips10) -> vax3
print(dfSummary(vax3), method = 'render')
Data Frame Summary
vax3
Dimensions: 15245 x 3
Duplicates: 12296
| No |
Variable |
Stats / Values |
Freqs (% of Valid) |
Graph |
Valid |
Missing |
| 1 |
STATE
[character] |
1. MICHIGAN |
|
 |
14103
(92.5%) |
1142
(7.5%) |
| 2 |
RPL_THEMES
[numeric] |
| Mean (sd) : -0.2 (23.4) | | min ≤ med ≤ max: | | -999 ≤ 0.3 ≤ 1 | | IQR (CV) : 0.4 (-130.9) |
|
2507 distinct values |
 |
14615
(95.9%) |
630
(4.1%) |
| 3 |
tract_fips10
[numeric] |
| Mean (sd) : 26364799737 (3164697243) | | min ≤ med ≤ max: | | 1081040502 ≤ 26125142000 ≤ 5.5101e+10 | | IQR (CV) : 80422200 (0.1) |
|
2949 distinct values |
 |
15245
(100.0%) |
0
(0.0%) |
Generated by summarytools 1.0.1 (R version 4.2.1)
2022-11-03
NA
Delete Missing RPL_THEMES values
vax3 %>%
mutate(RPL_THEMES = na_if(RPL_THEMES, "-999")) %>%
mutate(RPL_THEMES = na_if(RPL_THEMES, "0")) %>%
na.omit -> vax3_nomiss
print(dfSummary(vax3_nomiss), method = 'render')
Data Frame Summary
vax3_nomiss
Dimensions: 14095 x 3
Duplicates: 11815
| No |
Variable |
Stats / Values |
Freqs (% of Valid) |
Graph |
Valid |
Missing |
| 1 |
STATE
[character] |
1. MICHIGAN |
|
 |
14095
(100.0%) |
0
(0.0%) |
| 2 |
RPL_THEMES
[numeric] |
| Mean (sd) : 0.4 (0.3) | | min ≤ med ≤ max: | | 0 ≤ 0.3 ≤ 1 | | IQR (CV) : 0.4 (0.7) |
|
2244 distinct values |
 |
14095
(100.0%) |
0
(0.0%) |
| 3 |
tract_fips10
[numeric] |
| Mean (sd) : 26117278442 (45126191) | | min ≤ med ≤ max: | | 2.6001e+10 ≤ 26125144200 ≤ 26165380800 | | IQR (CV) : 74080900 (0) |
|
2280 distinct values |
 |
14095
(100.0%) |
0
(0.0%) |
Generated by summarytools 1.0.1 (R version 4.2.1)
2022-11-03
Exclude state variable
vax3_nomiss %>%
dplyr::select(tract_fips10, RPL_THEMES) -> svi_map_data
print(dfSummary(svi_map_data), method = 'render')
Data Frame Summary
svi_map_data
Dimensions: 14095 x 2
Duplicates: 11815
| No |
Variable |
Stats / Values |
Freqs (% of Valid) |
Graph |
Valid |
Missing |
| 1 |
tract_fips10
[numeric] |
| Mean (sd) : 26117278442 (45126191) | | min ≤ med ≤ max: | | 2.6001e+10 ≤ 26125144200 ≤ 26165380800 | | IQR (CV) : 74080900 (0) |
|
2280 distinct values |
 |
14095
(100.0%) |
0
(0.0%) |
| 2 |
RPL_THEMES
[numeric] |
| Mean (sd) : 0.4 (0.3) | | min ≤ med ≤ max: | | 0 ≤ 0.3 ≤ 1 | | IQR (CV) : 0.4 (0.7) |
|
2244 distinct values |
 |
14095
(100.0%) |
0
(0.0%) |
Generated by summarytools 1.0.1 (R version 4.2.1)
2022-11-03
convert tract_fips10 to character
svi_map_data %>%
mutate(tract_fips10_char = as.character(tract_fips10)) -> svi_map_data1
summary(tract_fips10_char)
Length Class Mode
18 character character
svi_map_data1 %>%
dplyr::select(tract_fips10_char, RPL_THEMES)
NA
NA
Michigan census tracts
mi_tracts <- tracts("MI",
cb = TRUE,
year = 2018)
Using FIPS code '26' for state 'MI'
mi_tracts_join <- mi_tracts %>%
left_join(svi_map_data1, by = c("GEOID" = "tract_fips10_char")) -> map_SVI
ggplot(data = map_SVI, aes(fill = RPL_THEMES)) +
geom_sf() +
scale_fill_distiller(palette = "OrRd",
direction = 2,
na.value = "grey70") +
labs(title = "Average SVI by Census Tract, 2018",
caption = "Data source: 2018 1-year ACS, US Census Bureau",
fill = "SVI") +
theme_void()

library(mapview)
mapview(map_SVI)
Interactive Map
library(mapview)
mapview(map_SVI, zcol = "RPL_THEMES")
tmap
library(tmap)
library(leaflet)
tmap_mode("view")
tmap mode set to interactive viewing
tm_shape(map_SVI) +
tm_fill(col = "RPL_THEMES", palette = "OrRd", direction = 2,
alpha = 0.5)