Load libraries, import data, separate into pre, post, and follow-up dataframes, and create race_minority and gender_minority variables.
Little’s MCAR was used earlier to check if data is missing completely at random. Test is not significant for full dataset (X2 (192, N = 258) = 203.92, p = .264) or for dataset with unit nonresponders dropped (X2 (127, N = 204) = 118.52, p = .692). Data is missing complete at random and we’re okay to proceed with analysis.
Multiple imputation done using Amelia package in R. Tutorial: https://cran.r-project.org/web/packages/Amelia/vignettes/using-amelia.html.
library(psych)
library(DT)
library(ggplot2)
library(afex)
library(emmeans)
library(rstatix)
library(dplyr)
library(stringr)
library(kableExtra)
library(Rmisc)
library(nFactors)
library(car)
library(ggpubr)
# import file
import <- read.csv(file="Z:\\purdue\\Values Affirmation Intervention\\Values Affirmation Intervention Final Data Imputed 10-29-22.csv", header = T)
long <- import
names(import)
## [1] "UID" "Q2_1" "Q2_2" "Q2_3"
## [5] "Q2_4" "Q2_5" "Q2_6" "Q2_7"
## [9] "Q2_8" "Q2_9" "Q2_10" "Q2_11"
## [13] "Q3_1" "Q3_2" "Q3_3" "Q3_4"
## [17] "Q3_5" "Q3_6" "Q3_7" "Q3_8"
## [21] "Q3_9" "Q3_10" "Q3_11" "Q3_12"
## [25] "Q4_1" "Q4_2" "Q4_3" "Q4_4"
## [29] "Q4_5" "condition" "ins" "Q47_1_pmaps"
## [33] "Q47_2_pmaps" "Q47_3_pmaps" "Q47_4_pmaps" "Q47_5_pmaps"
## [37] "Q47_6_pmaps" "Q47_7_pmaps" "Q47_8_pmaps" "re_other"
## [41] "re_asian" "re_black" "re_white" "re_latin"
## [45] "re_mena" "re_nhpi" "re_aian" "ge_other"
## [49] "ge_cis" "ge_m" "ge_gq" "ge_nb"
## [53] "ge_w" "pre_misscount" "post_misscount" "follow_misscount"
## [57] "timepoint"
pre <- subset(import, timepoint == 1, select=c(2:29))
colnames(pre) <- paste(colnames(pre),"_pre",sep="")
post <- subset(import, timepoint == 2, select=c(2:29))
colnames(post) <- paste(colnames(post),"_post",sep="")
follow <- subset(import, timepoint == 3, select=c(2:29))
colnames(follow) <- paste(colnames(follow),"_follow",sep="")
bws <- subset(import, select=c(UID, 30:57), timepoint == 1)
wide <- cbind.data.frame(bws, pre, post, follow)
rm(pre, post, follow, bws, import)
Decided to drop interest subscale of identity measure based on kurtosis and skew (2_9, 2_10, and 2_11).
desc_pre <- data.frame(describe(subset(wide, select=c(grep("_pre",colnames(wide))))))
desc_post <- describe(subset(wide, select=c(grep("_post",colnames(wide)))))
desc_follow <- describe(subset(wide, select=c(grep("_follow",colnames(wide)))))
desc_pmaps <- describe(subset(wide, select=c(grep("_pmaps",colnames(wide)))))
kbl(round(desc_pre, digits = 2)) %>%
kable_styling() %>%
row_spec(which(desc_pre$kurtosis > 2), bold = T) %>%
row_spec(which(desc_pre$kurtosis < -2), bold = T) %>%
row_spec(which(desc_pre$skew > 2), italic = T) %>%
row_spec(which(desc_pre$skew < -2), italic = T)
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Q2_1_pre | 1 | 231 | 5.42 | 1.15 | 5.06 | 5.49 | 1.39 | 2.00 | 7.00 | 5.00 | -0.47 | -0.25 | 0.08 |
| Q2_2_pre | 2 | 231 | 5.54 | 1.24 | 6.00 | 5.67 | 1.48 | 2.00 | 7.00 | 5.00 | -0.70 | -0.10 | 0.08 |
| Q2_3_pre | 3 | 231 | 6.03 | 1.00 | 6.00 | 6.16 | 1.48 | 2.00 | 7.00 | 5.00 | -1.08 | 1.28 | 0.07 |
| Q2_4_pre | 4 | 231 | 5.53 | 1.11 | 6.00 | 5.61 | 1.48 | 2.00 | 7.00 | 5.00 | -0.61 | 0.09 | 0.07 |
| Q2_5_pre | 5 | 231 | 5.95 | 1.17 | 6.00 | 6.11 | 1.48 | 2.00 | 7.67 | 5.67 | -1.02 | 0.34 | 0.08 |
| Q2_6_pre | 6 | 231 | 5.53 | 1.18 | 6.00 | 5.59 | 1.48 | 2.00 | 7.41 | 5.41 | -0.39 | -0.74 | 0.08 |
| Q2_7_pre | 7 | 231 | 5.53 | 1.16 | 6.00 | 5.62 | 1.48 | 2.00 | 7.00 | 5.00 | -0.75 | 0.23 | 0.08 |
| Q2_8_pre | 8 | 231 | 4.96 | 1.74 | 5.00 | 5.14 | 1.48 | 1.00 | 7.26 | 6.26 | -0.61 | -0.49 | 0.11 |
| Q2_9_pre | 9 | 231 | 6.62 | 0.73 | 7.00 | 6.76 | 0.00 | 1.00 | 7.00 | 6.00 | -3.26 | 17.06 | 0.05 |
| Q2_10_pre | 10 | 231 | 6.43 | 0.88 | 7.00 | 6.61 | 0.00 | 1.00 | 7.00 | 6.00 | -2.38 | 8.75 | 0.06 |
| Q2_11_pre | 11 | 231 | 6.23 | 1.04 | 7.00 | 6.42 | 0.00 | 1.00 | 7.00 | 6.00 | -1.66 | 3.43 | 0.07 |
| Q3_1_pre | 12 | 231 | 6.34 | 0.81 | 7.00 | 6.47 | 0.00 | 3.00 | 7.00 | 4.00 | -1.19 | 1.19 | 0.05 |
| Q3_2_pre | 13 | 231 | 6.55 | 0.67 | 7.00 | 6.67 | 0.00 | 4.00 | 7.17 | 3.17 | -1.44 | 1.76 | 0.04 |
| Q3_3_pre | 14 | 231 | 6.54 | 0.71 | 7.00 | 6.67 | 0.00 | 3.00 | 7.22 | 4.22 | -1.70 | 3.38 | 0.05 |
| Q3_4_pre | 15 | 231 | 5.61 | 1.27 | 6.00 | 5.74 | 1.48 | 2.00 | 7.61 | 5.61 | -0.79 | 0.10 | 0.08 |
| Q3_5_pre | 16 | 231 | 5.76 | 1.28 | 6.00 | 5.91 | 1.48 | 2.00 | 7.09 | 5.09 | -0.74 | -0.44 | 0.08 |
| Q3_6_pre | 17 | 231 | 5.82 | 1.15 | 6.00 | 5.97 | 1.48 | 2.00 | 7.16 | 5.16 | -0.93 | 0.34 | 0.08 |
| Q3_7_pre | 18 | 231 | 6.28 | 1.02 | 7.00 | 6.48 | 0.00 | 2.00 | 7.49 | 5.49 | -1.53 | 2.02 | 0.07 |
| Q3_8_pre | 19 | 231 | 5.51 | 1.21 | 6.00 | 5.61 | 1.48 | 1.00 | 7.00 | 6.00 | -0.78 | 0.71 | 0.08 |
| Q3_9_pre | 20 | 231 | 5.87 | 1.03 | 6.00 | 5.99 | 1.48 | 3.00 | 7.00 | 4.00 | -0.74 | -0.04 | 0.07 |
| Q3_10_pre | 21 | 231 | 5.12 | 1.32 | 5.00 | 5.20 | 1.48 | 1.00 | 7.00 | 6.00 | -0.61 | 0.37 | 0.09 |
| Q3_11_pre | 22 | 231 | 5.55 | 1.14 | 6.00 | 5.63 | 1.48 | 1.00 | 7.00 | 6.00 | -0.67 | 0.38 | 0.08 |
| Q3_12_pre | 23 | 231 | 5.53 | 1.02 | 6.00 | 5.57 | 1.48 | 3.00 | 7.00 | 4.00 | -0.37 | -0.40 | 0.07 |
| Q4_1_pre | 24 | 231 | 3.65 | 1.82 | 4.00 | 3.60 | 2.97 | 1.00 | 7.00 | 6.00 | 0.23 | -1.07 | 0.12 |
| Q4_2_pre | 25 | 231 | 4.49 | 1.59 | 5.00 | 4.53 | 1.48 | 1.00 | 7.61 | 6.61 | -0.25 | -0.72 | 0.10 |
| Q4_3_pre | 26 | 231 | 4.66 | 1.83 | 5.00 | 4.76 | 1.48 | 1.00 | 7.60 | 6.60 | -0.38 | -1.01 | 0.12 |
| Q4_4_pre | 27 | 231 | 4.15 | 1.80 | 4.00 | 4.16 | 1.48 | 1.00 | 7.42 | 6.42 | -0.07 | -1.07 | 0.12 |
| Q4_5_pre | 28 | 231 | 3.77 | 1.79 | 4.00 | 3.71 | 1.48 | 0.56 | 7.00 | 6.44 | 0.20 | -0.97 | 0.12 |
ggplot(gather(subset(wide, select=c(grep("_pre",colnames(wide))))), aes(value)) +
geom_histogram(bins = 7) +
facet_wrap(~key)
## Warning: Removed 812 rows containing non-finite values (stat_bin).
kbl(round(desc_post, digits = 2)) %>%
kable_styling() %>%
row_spec(which(desc_post$kurtosis > 2), bold = T) %>%
row_spec(which(desc_post$kurtosis < -2), bold = T) %>%
row_spec(which(desc_post$skew > 2), italic = T) %>%
row_spec(which(desc_post$skew < -2), italic = T)
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Q2_1_post | 1 | 231 | 5.69 | 1.09 | 6.00 | 5.80 | 1.48 | 2.00 | 7.00 | 5.00 | -0.74 | 0.15 | 0.07 |
| Q2_2_post | 2 | 231 | 5.75 | 1.07 | 6.00 | 5.85 | 1.48 | 3.00 | 7.00 | 4.00 | -0.69 | -0.18 | 0.07 |
| Q2_3_post | 3 | 231 | 6.14 | 0.91 | 6.00 | 6.25 | 1.48 | 3.00 | 7.00 | 4.00 | -0.89 | 0.22 | 0.06 |
| Q2_4_post | 4 | 231 | 5.74 | 1.04 | 6.00 | 5.85 | 1.48 | 2.00 | 7.00 | 5.00 | -0.86 | 0.75 | 0.07 |
| Q2_5_post | 5 | 231 | 6.01 | 1.09 | 6.00 | 6.17 | 1.48 | 2.00 | 7.00 | 5.00 | -1.10 | 0.64 | 0.07 |
| Q2_6_post | 6 | 231 | 5.77 | 1.06 | 6.00 | 5.87 | 1.48 | 2.00 | 7.22 | 5.22 | -0.71 | 0.00 | 0.07 |
| Q2_7_post | 7 | 231 | 5.67 | 1.09 | 6.00 | 5.78 | 1.48 | 1.00 | 7.00 | 6.00 | -0.84 | 1.00 | 0.07 |
| Q2_8_post | 8 | 231 | 5.32 | 1.50 | 5.41 | 5.49 | 2.09 | 1.00 | 7.00 | 6.00 | -0.79 | 0.04 | 0.10 |
| Q2_9_post | 9 | 231 | 6.56 | 0.70 | 7.00 | 6.69 | 0.00 | 3.00 | 7.17 | 4.17 | -1.74 | 3.45 | 0.05 |
| Q2_10_post | 10 | 231 | 6.33 | 0.86 | 7.00 | 6.46 | 0.09 | 2.00 | 7.28 | 5.28 | -1.39 | 2.35 | 0.06 |
| Q2_11_post | 11 | 231 | 6.21 | 0.95 | 6.33 | 6.36 | 0.99 | 2.00 | 7.07 | 5.07 | -1.21 | 1.23 | 0.06 |
| Q3_1_post | 12 | 231 | 6.29 | 0.77 | 6.00 | 6.39 | 1.48 | 4.00 | 7.00 | 3.00 | -0.85 | 0.09 | 0.05 |
| Q3_2_post | 13 | 231 | 6.44 | 0.71 | 7.00 | 6.57 | 0.00 | 4.00 | 7.00 | 3.00 | -1.13 | 0.65 | 0.05 |
| Q3_3_post | 14 | 231 | 6.45 | 0.76 | 7.00 | 6.59 | 0.00 | 3.00 | 7.03 | 4.03 | -1.35 | 1.58 | 0.05 |
| Q3_4_post | 15 | 231 | 5.62 | 1.38 | 6.00 | 5.83 | 1.48 | 1.00 | 7.10 | 6.10 | -1.26 | 1.59 | 0.09 |
| Q3_5_post | 16 | 231 | 5.80 | 1.14 | 6.00 | 5.93 | 1.48 | 2.00 | 7.00 | 5.00 | -0.82 | 0.13 | 0.08 |
| Q3_6_post | 17 | 231 | 5.79 | 1.11 | 6.00 | 5.92 | 1.48 | 2.00 | 7.02 | 5.02 | -0.82 | 0.15 | 0.07 |
| Q3_7_post | 18 | 231 | 6.21 | 0.98 | 6.48 | 6.37 | 0.77 | 1.00 | 7.00 | 6.00 | -1.46 | 2.98 | 0.06 |
| Q3_8_post | 19 | 231 | 5.59 | 1.12 | 6.00 | 5.69 | 1.48 | 2.00 | 7.00 | 5.00 | -0.78 | 0.53 | 0.07 |
| Q3_9_post | 20 | 231 | 5.82 | 1.01 | 6.00 | 5.93 | 1.48 | 2.00 | 7.00 | 5.00 | -0.90 | 0.98 | 0.07 |
| Q3_10_post | 21 | 231 | 5.27 | 1.24 | 5.00 | 5.38 | 1.48 | 1.00 | 7.00 | 6.00 | -0.87 | 0.92 | 0.08 |
| Q3_11_post | 22 | 231 | 5.67 | 1.01 | 6.00 | 5.76 | 1.48 | 1.00 | 7.00 | 6.00 | -0.90 | 1.62 | 0.07 |
| Q3_12_post | 23 | 231 | 5.64 | 1.03 | 6.00 | 5.74 | 1.48 | 1.00 | 7.00 | 6.00 | -1.01 | 2.06 | 0.07 |
| Q4_1_post | 24 | 231 | 3.70 | 1.88 | 3.88 | 3.65 | 2.78 | 1.00 | 7.00 | 6.00 | 0.19 | -1.19 | 0.12 |
| Q4_2_post | 25 | 231 | 4.68 | 1.66 | 5.00 | 4.77 | 1.48 | 1.00 | 7.00 | 6.00 | -0.39 | -0.82 | 0.11 |
| Q4_3_post | 26 | 231 | 4.66 | 1.85 | 5.00 | 4.76 | 1.56 | 1.00 | 7.00 | 6.00 | -0.37 | -1.04 | 0.12 |
| Q4_4_post | 27 | 231 | 4.14 | 1.91 | 4.00 | 4.16 | 2.97 | 1.00 | 7.00 | 6.00 | 0.00 | -1.19 | 0.13 |
| Q4_5_post | 28 | 231 | 3.89 | 1.92 | 4.00 | 3.87 | 2.97 | 0.84 | 7.00 | 6.16 | 0.14 | -1.19 | 0.13 |
ggplot(gather(subset(wide, select=c(grep("_post",colnames(wide))))), aes(value)) +
geom_histogram(bins = 7) +
facet_wrap(~key)
## Warning: Removed 812 rows containing non-finite values (stat_bin).
kbl(round(desc_follow, digits = 2)) %>%
kable_styling() %>%
row_spec(which(desc_follow$kurtosis > 2), bold = T) %>%
row_spec(which(desc_follow$kurtosis < -2), bold = T) %>%
row_spec(which(desc_follow$skew > 2), italic = T) %>%
row_spec(which(desc_follow$skew < -2), italic = T)
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Q2_1_follow | 1 | 231 | 5.84 | 1.03 | 6.00 | 5.94 | 1.48 | 1 | 7.00 | 6.00 | -0.98 | 1.91 | 0.07 |
| Q2_2_follow | 2 | 231 | 5.91 | 1.07 | 6.00 | 6.04 | 1.48 | 1 | 7.00 | 6.00 | -1.29 | 2.63 | 0.07 |
| Q2_3_follow | 3 | 231 | 6.19 | 0.97 | 6.00 | 6.34 | 1.48 | 1 | 7.03 | 6.03 | -1.69 | 4.40 | 0.06 |
| Q2_4_follow | 4 | 231 | 5.84 | 0.99 | 6.00 | 5.94 | 1.48 | 3 | 7.00 | 4.00 | -0.75 | 0.30 | 0.07 |
| Q2_5_follow | 5 | 231 | 6.08 | 1.05 | 6.00 | 6.26 | 1.48 | 2 | 7.07 | 5.07 | -1.28 | 1.49 | 0.07 |
| Q2_6_follow | 6 | 231 | 5.93 | 1.04 | 6.00 | 6.06 | 1.48 | 1 | 7.41 | 6.41 | -1.26 | 2.64 | 0.07 |
| Q2_7_follow | 7 | 231 | 5.83 | 1.07 | 6.00 | 5.95 | 1.48 | 1 | 7.39 | 6.39 | -0.91 | 1.28 | 0.07 |
| Q2_8_follow | 8 | 231 | 5.66 | 1.21 | 6.00 | 5.79 | 1.48 | 2 | 7.00 | 5.00 | -0.65 | -0.25 | 0.08 |
| Q2_9_follow | 9 | 231 | 6.48 | 0.89 | 7.00 | 6.66 | 0.00 | 1 | 7.12 | 6.12 | -2.78 | 11.56 | 0.06 |
| Q2_10_follow | 10 | 231 | 6.37 | 0.93 | 7.00 | 6.55 | 0.00 | 2 | 7.00 | 5.00 | -2.26 | 6.83 | 0.06 |
| Q2_11_follow | 11 | 231 | 6.24 | 0.98 | 6.74 | 6.40 | 0.39 | 2 | 7.02 | 5.02 | -1.64 | 3.45 | 0.06 |
| Q3_1_follow | 12 | 231 | 6.28 | 0.97 | 6.85 | 6.43 | 0.22 | 1 | 7.09 | 6.09 | -2.06 | 6.77 | 0.06 |
| Q3_2_follow | 13 | 231 | 6.30 | 0.93 | 6.64 | 6.43 | 0.54 | 1 | 7.50 | 6.50 | -2.18 | 8.27 | 0.06 |
| Q3_3_follow | 14 | 231 | 6.27 | 1.00 | 6.61 | 6.45 | 0.58 | 1 | 7.00 | 6.00 | -2.20 | 7.04 | 0.07 |
| Q3_4_follow | 15 | 231 | 5.90 | 1.16 | 6.00 | 6.07 | 1.48 | 1 | 7.71 | 6.71 | -1.26 | 2.26 | 0.08 |
| Q3_5_follow | 16 | 231 | 5.85 | 1.21 | 6.00 | 6.03 | 1.48 | 1 | 7.01 | 6.01 | -1.33 | 2.45 | 0.08 |
| Q3_6_follow | 17 | 231 | 5.92 | 1.21 | 6.00 | 6.12 | 1.48 | 1 | 7.00 | 6.00 | -1.38 | 1.98 | 0.08 |
| Q3_7_follow | 18 | 231 | 6.27 | 1.12 | 7.00 | 6.50 | 0.00 | 1 | 7.29 | 6.29 | -2.38 | 7.16 | 0.07 |
| Q3_8_follow | 19 | 231 | 5.71 | 1.03 | 6.00 | 5.80 | 1.48 | 2 | 7.00 | 5.00 | -0.64 | 0.22 | 0.07 |
| Q3_9_follow | 20 | 231 | 5.92 | 0.93 | 6.00 | 6.01 | 1.48 | 2 | 7.00 | 5.00 | -0.81 | 0.85 | 0.06 |
| Q3_10_follow | 21 | 231 | 5.44 | 1.13 | 5.63 | 5.50 | 0.94 | 2 | 7.03 | 5.03 | -0.41 | -0.42 | 0.07 |
| Q3_11_follow | 22 | 231 | 5.76 | 1.03 | 6.00 | 5.87 | 1.48 | 1 | 7.15 | 6.15 | -0.92 | 1.69 | 0.07 |
| Q3_12_follow | 23 | 231 | 5.73 | 0.98 | 6.00 | 5.82 | 1.48 | 2 | 7.00 | 5.00 | -0.61 | 0.28 | 0.06 |
| Q4_1_follow | 24 | 231 | 3.57 | 1.87 | 3.00 | 3.48 | 1.76 | 1 | 7.00 | 6.00 | 0.29 | -1.08 | 0.12 |
| Q4_2_follow | 25 | 231 | 4.48 | 1.69 | 5.00 | 4.55 | 1.48 | 1 | 7.00 | 6.00 | -0.34 | -0.66 | 0.11 |
| Q4_3_follow | 26 | 231 | 4.56 | 1.92 | 5.00 | 4.68 | 2.20 | 1 | 7.00 | 6.00 | -0.40 | -1.02 | 0.13 |
| Q4_4_follow | 27 | 231 | 4.00 | 1.93 | 4.00 | 4.00 | 2.97 | 1 | 7.00 | 6.00 | -0.02 | -1.18 | 0.13 |
| Q4_5_follow | 28 | 231 | 3.60 | 1.85 | 3.33 | 3.50 | 1.98 | 1 | 7.00 | 6.00 | 0.26 | -0.96 | 0.12 |
ggplot(gather(subset(wide, select=c(grep("_follow",colnames(wide))))), aes(value)) +
geom_histogram(bins = 7) +
facet_wrap(~key)
## Warning: Removed 812 rows containing non-finite values (stat_bin).
kbl(round(desc_pmaps, digits = 2)) %>%
kable_styling() %>%
row_spec(which(desc_pmaps$kurtosis > 2), bold = T) %>%
row_spec(which(desc_pmaps$kurtosis < -2), bold = T) %>%
row_spec(which(desc_pmaps$skew > 2), italic = T) %>%
row_spec(which(desc_pmaps$skew < -2), italic = T)
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Q47_1_pmaps | 1 | 212 | 2.84 | 1.66 | 3 | 2.67 | 1.48 | 1 | 7 | 6 | 0.66 | -0.48 | 0.11 |
| Q47_2_pmaps | 2 | 212 | 2.52 | 1.56 | 2 | 2.31 | 1.48 | 1 | 7 | 6 | 0.97 | 0.39 | 0.11 |
| Q47_3_pmaps | 3 | 212 | 2.62 | 1.65 | 2 | 2.41 | 1.48 | 1 | 7 | 6 | 0.95 | 0.05 | 0.11 |
| Q47_4_pmaps | 4 | 212 | 2.91 | 1.83 | 2 | 2.68 | 1.48 | 1 | 7 | 6 | 0.76 | -0.47 | 0.13 |
| Q47_5_pmaps | 5 | 212 | 4.61 | 1.48 | 5 | 4.67 | 1.48 | 1 | 7 | 6 | -0.41 | -0.30 | 0.10 |
| Q47_6_pmaps | 6 | 212 | 5.00 | 1.36 | 5 | 5.11 | 1.48 | 1 | 7 | 6 | -0.79 | 0.73 | 0.09 |
| Q47_7_pmaps | 7 | 212 | 5.08 | 1.38 | 5 | 5.21 | 1.48 | 1 | 7 | 6 | -1.03 | 1.03 | 0.09 |
| Q47_8_pmaps | 8 | 212 | 4.67 | 1.60 | 5 | 4.78 | 1.48 | 1 | 7 | 6 | -0.54 | -0.23 | 0.11 |
ggplot(gather(subset(wide, select=c(grep("_pmaps",colnames(wide))))), aes(value)) +
geom_histogram(bins = 7) +
facet_wrap(~key)
## Warning: Removed 384 rows containing non-finite values (stat_bin).
long2 <- subset(long, select=-c(Q2_9,Q2_10,Q2_11))
wide2 <- subset(wide, select=-c(grep("Q2_9",colnames(wide)), grep("Q2_10",colnames(wide)), grep("Q2_11",colnames(wide))))
Remove participants who are marked as outliers at three timepoints.
d1 <- na.omit(subset(long2, timepoint == 1, select=(1:26)))
m_dist <- mahalanobis(d1[-1], colMeans(d1[-1]), cov(d1[-1]))
d1$MD <- round(m_dist, 1)
plot(d1$MD)
describe(m_dist)
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 231 24.89 12.46 22.62 23.54 11.91 5.02 74.17 69.16 1.08 1.27
## se
## X1 0.82
cut <- qchisq(.99, df=(ncol(d1)-1))
abline(a=cut, b=0, col="red")
d1$outlier <- F
d1$outlier[d1$MD > cut] <- T
table(d1$outlier)
##
## FALSE TRUE
## 213 18
outs <- cbind.data.frame(d1$UID, d1$outlier)
d1 <- na.omit(subset(long2, timepoint == 2, select=(1:26)))
m_dist <- mahalanobis(d1[-1], colMeans(d1[-1]), cov(d1[-1]))
d1$MD <- round(m_dist, 1)
plot(d1$MD)
describe(m_dist)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 231 24.89 15.5 21.49 22.93 13.03 3.02 98.44 95.42 1.39 2.59 1.02
abline(a=cut, b=0, col="red")
d1$outlier <- F
d1$outlier[d1$MD > cut] <- T
table(d1$outlier)
##
## FALSE TRUE
## 211 20
outs <- cbind.data.frame(outs, d1$outlier)
d1 <- na.omit(subset(long2, timepoint == 3, select=(1:26)))
m_dist <- mahalanobis(d1[-1], colMeans(d1[-1]), cov(d1[-1]))
d1$MD <- round(m_dist, 1)
plot(d1$MD)
describe(m_dist)
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 231 24.89 16.43 21.46 22.74 13.57 3.23 115.24 112.02 1.65 4.51
## se
## X1 1.08
abline(a=cut, b=0, col="red")
d1$outlier <- F
d1$outlier[d1$MD > cut] <- T
table(d1$outlier)
##
## FALSE TRUE
## 209 22
outs <- cbind.data.frame(outs, d1$outlier)
outs$sum <- rowSums(outs[2:4])
table(outs$sum)
##
## 0 1 2 3
## 190 25 13 3
outs2 <- subset(outs, sum == 3)
wide3 <- subset(wide2, !(UID %in% outs2$`long2$UID`))
long3 <- subset(long2, !(UID %in% outs2$`long2$UID`))
attach(long3)
long3$bel <- (Q2_1 + Q2_2 + Q2_3 + Q2_4)/4
long3$rec <- (Q2_5 + Q2_6 + Q2_7 + Q2_8)/4
long3$inst <- (Q3_1 + Q3_2 + Q3_3)/3
long3$pof <- (Q3_4 + Q3_5 + Q3_6 + Q3_7)/4
long3$exp <- (Q3_8 + Q3_9 + Q3_10 + Q3_11 + Q3_12)/5
long3$anx <- (Q4_1 + Q4_2 + Q4_3 + Q4_4 + Q4_5)/5
long3$triv <- (Q47_1_pmaps + Q47_2_pmaps + Q47_3_pmaps + Q47_4_pmaps)/4
long3$vig <- (Q47_5_pmaps + Q47_6_pmaps + Q47_7_pmaps + Q47_8_pmaps)/4
detach(long3)
long3$re_minority <- NA
long3$re_minority[long3$re_white == T] <- "re_maj"
long3$re_minority[long3$re_latin == T | long3$re_mena == T | long3$re_nhpi == T | long3$re_black == T | long3$re_other == T | long3$re_aian== T | long3$re_asian == T] <- "re_min"
table(long3$re_minority, useNA = "always")
##
## re_maj re_min <NA>
## 345 333 102
long3$ge_minority <- NA
long3$ge_minority[long3$ge_m == T] <- "ge_maj"
long3$ge_minority[long3$ge_w == T | long3$ge_gq == T | long3$ge_other == T | long3$ge_nb == T | long3$ge_w == T] <- "ge_min"
table(long3$ge_minority, useNA = "always")
##
## ge_maj ge_min <NA>
## 492 183 105
long3$gere <- NA
long3$gere[long3$re_minority == "re_maj" & long3$ge_minority == "ge_maj"] <- "white men"
long3$gere[long3$re_minority == "re_maj" & long3$ge_minority == "ge_min"] <- "white women/nb"
long3$gere[long3$re_minority == "re_min" & long3$ge_minority == "ge_maj"] <- "men of color"
long3$gere[long3$re_minority == "re_min" & long3$ge_minority == "ge_min"] <- "women/nb of color"
table(long3$gere, useNA = "always")
##
## men of color white men white women/nb women/nb of color
## 255 237 105 78
## <NA>
## 105
table(long3$gere, long3$condition, useNA = "always")
##
## con equi int <NA>
## men of color 69 81 105 0
## white men 72 84 81 0
## white women/nb 33 42 30 0
## women/nb of color 21 30 27 0
## <NA> 42 36 27 0
# long3$gere <- NA
# long3$gere[long3$re_minority == "re_whi" & long3$ge_minority == "ge_maj"] <- "white men"
# long3$gere[long3$re_minority == "re_whi" & long3$ge_minority == "ge_min"] <- "white women/nb"
# long3$gere[long3$re_minority == "re_asi" & long3$ge_minority == "ge_maj"] <- "asian men"
# long3$gere[long3$re_minority == "re_asi" & long3$ge_minority == "ge_min"] <- "asian women/nb"
# long3$gere[long3$re_minority == "re_min" & long3$ge_minority == "ge_maj"] <- "minority men"
# long3$gere[long3$re_minority == "re_min" & long3$ge_minority == "ge_min"] <- "minority women/nb"
# table(long3$gere, useNA = "always")
# table(long3$gere, long3$condition, useNA = "always")
long3$gere <- as.factor(long3$gere)
long3$ge_minority <- as.factor(long3$ge_minority)
long3$re_minority <- as.factor(long3$re_minority)
table(long3$condition, long3$timepoint)
##
## 1 2 3
## con 79 79 79
## equi 91 91 91
## int 90 90 90
desc_pre <- data.frame(describe(subset(long3, select=c(bel, rec, inst, pof, exp, anx), timepoint == "1")))
kbl(round(desc_pre, digits = 2)) %>%
kable_styling() %>%
row_spec(which(desc_pre$kurtosis > 2), bold = T) %>%
row_spec(which(desc_pre$kurtosis < -2), bold = T) %>%
row_spec(which(desc_pre$skew > 2), italic = T) %>%
row_spec(which(desc_pre$skew < -2), italic = T)
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| bel | 1 | 231 | 5.63 | 0.99 | 5.75 | 5.70 | 1.11 | 2.00 | 7.00 | 5.00 | -0.64 | 0.23 | 0.07 |
| rec | 2 | 231 | 5.49 | 1.02 | 5.56 | 5.56 | 1.02 | 2.25 | 7.15 | 4.90 | -0.60 | 0.01 | 0.07 |
| inst | 3 | 231 | 6.48 | 0.61 | 6.67 | 6.58 | 0.49 | 4.00 | 7.08 | 3.08 | -1.36 | 1.89 | 0.04 |
| pof | 4 | 231 | 5.87 | 1.00 | 6.00 | 5.98 | 1.11 | 2.75 | 7.34 | 4.59 | -0.81 | -0.02 | 0.07 |
| exp | 5 | 231 | 5.51 | 1.02 | 5.60 | 5.59 | 0.89 | 2.40 | 7.00 | 4.60 | -0.62 | 0.02 | 0.07 |
| anx | 6 | 231 | 4.14 | 1.37 | 4.20 | 4.12 | 1.48 | 1.00 | 7.03 | 6.03 | 0.08 | -0.77 | 0.09 |
desc_post <- data.frame(describe(subset(long3, select=c(bel, rec, inst, pof, exp, anx), timepoint == "2")))
kbl(round(desc_post, digits = 2)) %>%
kable_styling() %>%
row_spec(which(desc_post$kurtosis > 2), bold = T) %>%
row_spec(which(desc_post$kurtosis < -2), bold = T) %>%
row_spec(which(desc_post$skew > 2), italic = T) %>%
row_spec(which(desc_post$skew < -2), italic = T)
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| bel | 1 | 231 | 5.83 | 0.90 | 6.00 | 5.91 | 1.11 | 2.75 | 7 | 4.25 | -0.70 | 0.04 | 0.06 |
| rec | 2 | 231 | 5.69 | 0.89 | 5.75 | 5.75 | 1.11 | 2.75 | 7 | 4.25 | -0.65 | 0.25 | 0.06 |
| inst | 3 | 231 | 6.40 | 0.63 | 6.67 | 6.49 | 0.49 | 4.33 | 7 | 2.67 | -0.95 | 0.23 | 0.04 |
| pof | 4 | 231 | 5.86 | 0.97 | 6.00 | 5.97 | 1.11 | 2.25 | 7 | 4.75 | -0.94 | 0.53 | 0.06 |
| exp | 5 | 231 | 5.60 | 0.94 | 5.80 | 5.66 | 0.89 | 2.20 | 7 | 4.80 | -0.76 | 0.77 | 0.06 |
| anx | 6 | 231 | 4.22 | 1.57 | 4.20 | 4.21 | 2.08 | 1.00 | 7 | 6.00 | 0.01 | -1.03 | 0.10 |
desc_follow <- data.frame(describe(subset(long3, select=c(bel, rec, inst, pof, exp, anx, condition), timepoint == "3")))
kbl(round(desc_follow, digits = 2)) %>%
kable_styling() %>%
row_spec(which(desc_follow$kurtosis > 2), bold = T) %>%
row_spec(which(desc_follow$kurtosis < -2), bold = T) %>%
row_spec(which(desc_follow$skew > 2), italic = T) %>%
row_spec(which(desc_follow$skew < -2), italic = T)
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| bel | 1 | 231 | 5.94 | 0.91 | 6.00 | 6.04 | 0.74 | 1.50 | 7.00 | 5.50 | -1.22 | 2.86 | 0.06 |
| rec | 2 | 231 | 5.88 | 0.88 | 6.00 | 5.95 | 0.74 | 1.75 | 7.06 | 5.31 | -1.10 | 2.67 | 0.06 |
| inst | 3 | 231 | 6.28 | 0.88 | 6.42 | 6.42 | 0.87 | 1.00 | 7.11 | 6.11 | -2.54 | 10.91 | 0.06 |
| pof | 4 | 231 | 5.99 | 1.04 | 6.25 | 6.14 | 1.11 | 1.25 | 7.23 | 5.98 | -1.57 | 3.34 | 0.07 |
| exp | 5 | 231 | 5.71 | 0.88 | 5.80 | 5.77 | 0.89 | 2.20 | 7.00 | 4.80 | -0.54 | 0.40 | 0.06 |
| anx | 6 | 231 | 4.04 | 1.54 | 4.13 | 4.03 | 1.67 | 1.00 | 7.00 | 6.00 | 0.06 | -0.69 | 0.10 |
| condition* | 7 | 260 | 2.04 | 0.81 | 2.00 | 2.05 | 1.48 | 1.00 | 3.00 | 2.00 | -0.08 | -1.47 | 0.05 |
desc_follow <- data.frame(describe(subset(long3, select=c(triv, vig, condition), timepoint == "3")))
kbl(round(desc_follow, digits = 2)) %>%
kable_styling() %>%
row_spec(which(desc_follow$kurtosis > 2), bold = T) %>%
row_spec(which(desc_follow$kurtosis < -2), bold = T) %>%
row_spec(which(desc_follow$skew > 2), italic = T) %>%
row_spec(which(desc_follow$skew < -2), italic = T)
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| triv | 1 | 212 | 2.72 | 1.54 | 2.25 | 2.55 | 1.85 | 1 | 7 | 6 | 0.81 | -0.02 | 0.11 |
| vig | 2 | 212 | 4.84 | 1.24 | 4.88 | 4.91 | 1.30 | 1 | 7 | 6 | -0.65 | 0.75 | 0.09 |
| condition* | 3 | 260 | 2.04 | 0.81 | 2.00 | 2.05 | 1.48 | 1 | 3 | 2 | -0.08 | -1.47 | 0.05 |
# Examination of residuals demonstrated some normality challenges. Trim
qqPlot(long3$triv)
## [1] 114 189
res.aovB <- aov(triv ~ gere*condition, data = long3)
qqPlot(res.aovB)
## [1] 259 519
# bu <- long3$triv
# long3$triv <- bu
upper_quantile <- quantile(long3$triv, 0.98, na.rm = TRUE)
lower_quantile <- quantile(long3$triv, 0.02, na.rm = TRUE)
# where 99th percentile becomes NA
long3$triv[long3$triv >= upper_quantile] <- NA
long3$triv[long3$triv <= lower_quantile] <- NA
res.aovB <- aov(triv ~ gere*condition, data = long3)
qqPlot(res.aovB)
## [1] 28 288
qqPlot(long3$vig)
## [1] 189 224
res.aovB <- aov(vig ~ gere*condition, data = long3)
qqPlot(res.aovB)
## [1] 224 484
Do different groups have parallel profiles? This is commonly known as the test of parallelism and is the primary question addressed by profile analysis. - Two of the major tests of profile analysis (parallelism and flatness) test difference scores between DVs measured on adjacent occasions - Difference scores are called segments in profile analysis.
library(ggplot2)
library(afex)
library(emmeans)
Dropping post-test time point for clearer interpretation. Comparing scores at pre-test to examine random assignment.
long3 <- subset(long3, timepoint != 2)
long3$condition <- as.factor(long3$condition)
long3$belc <- scale(long3$bel, center = T, scale = T)
long3$recc <- scale(long3$rec, center = T, scale = T)
long3$instc <- scale(long3$inst, center = T, scale = T)
long3$pofc <- scale(long3$pof, center = T, scale = T)
long3$expc <- scale(long3$exp, center = T, scale = T)
long3$anxc <- scale(long3$anx, center = T, scale = T)
long4 <- subset(long3, timepoint == 1)
fit <- aov_ez(id="UID", dv="bel", data=long4, between=c("condition"))
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SJOBN2309Y, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: bel
## Effect df MSE F ges p.value
## 1 condition 2, 225 0.96 1.88 .016 .154
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
fit <- aov_ez(id="UID", dv="rec", data=long4, between=c("condition"))
## Warning: More than one observation per cell, aggregating the data using mean (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SJOBN2309Y, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: rec
## Effect df MSE F ges p.value
## 1 condition 2, 225 1.04 2.61 + .023 .076
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
fit <- aov_ez(id="UID", dv="inst", data=long4, between=c("condition"))
## Warning: More than one observation per cell, aggregating the data using mean (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SJOBN2309Y, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: inst
## Effect df MSE F ges p.value
## 1 condition 2, 225 0.38 1.58 .014 .208
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
fit <- aov_ez(id="UID", dv="pof", data=long4, between=c("condition"))
## Warning: More than one observation per cell, aggregating the data using mean (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SJOBN2309Y, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: pof
## Effect df MSE F ges p.value
## 1 condition 2, 225 0.98 2.53 + .022 .082
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
fit <- aov_ez(id="UID", dv="exp", data=long4, between=c("condition"))
## Warning: More than one observation per cell, aggregating the data using mean (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SJOBN2309Y, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: exp
## Effect df MSE F ges p.value
## 1 condition 2, 225 1.03 0.76 .007 .468
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
fit <- aov_ez(id="UID", dv="anx", data=long4, between=c("condition"))
## Warning: More than one observation per cell, aggregating the data using mean (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SJOBN2309Y, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: anx
## Effect df MSE F ges p.value
## 1 condition 2, 225 1.81 4.12 * .035 .018
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
fit <- aov_ez(id="UID", dv="bel", data=long3, between=c("condition"), within="timepoint", covariate = c("recc"), factorize = F)
## Warning: Numerical variables NOT centered on 0 (i.e., likely bogus results): NA
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## ADMNF5431W, AFITA6644H, AIKAP6463M, AODNI3144W, AQMMS9810J, AVINR5897Y, AYQSB9061F, BIGPC8577I, BJCYW9313A, BKKKT3701U, BLJCY6370P, BMMVL7994H, BQYKI9156R, BVDSH3315M, BWISR1973A, BXWMH7130Y, CDHNQ4412P, CFOQZ9365X, CHADU6389C, CHKFU7601Z, CHPID9225X, CIEHL6827C, CMDRZ4165X, CMHID2661Y, COSQM7547U, CPHXV3544C, CQVAE8343T, DDWDZ2339J, DEGUG8250Q, DEZFY5154Y, DUOOW9047V, DWEFP0640O, DYJAC5887Z, EDPLI4718X, EGNPY6902N, EKHKA1320A, ELPMT5534R, ENHLY4123X, ENLUW4800F, EQRSC1726I, ETLLC3301O, EWGTH0978U, EYJKI2890J, FBPYG4513B, FDKWO5036F, FDRFT1976E, FOCRY5697B, FSKKR7810Y, FWVEK3877Q, FXXAG6538G, FZWVI1954A, GAHHN6818C, GEVFJ6602J, GFITG4909Q, GLBEZ3029S, GOSED0340T, GQBDI2909G, GUMSQ0837O, GUOQX4544Z, GVAQY8946U, HBIFA5295Q, HDDDR5624S, HHENH9196H, HHTYJ9067S, HMITM1029R, HOQSF9391C, ICNZW6469J, IDVCE3660F, IHEIE1031K, IHLAB2822T, IIBWJ1162K, IPNYM5318I, IPVOL5900Z, IQKYL9589B, IVVAN8695S, IVWLS8788C, IWQBG3288R, IXTMS7827C, IYGKJ9212Q, JDRGO5214D, JQUSH7763H, JTIXL1749F, KGZSZ9095U, KHTGW5971J, KNGSJ3794D, KODOI2800E, KOGCS2814C, KQZOR6889Y, KTTQO0724Q, KVDIE4239W, KYLRY5373V, LAZZJ4798S, LDKDH9352Y, LDTLX9551Z, LHJVD2959Y, LJGWF4027N, LJTCD1624Z, LOPWH7294L, MAJVB6162F, MDPFH5436F, MHKVA5255G, MIBGQ4458A, MOLUH1393I, MRECG6247Z, NECDB3791F, NGWDC4182S, NLEXE0538V, NNQVD9904G, NOAGL7626V, NOTVI7273I, NPEEK2345M, NVKGR6192V, NZDFV1837O, OAUDW7602Q, OEHWZ9390E, OIJRE9661O, ONXIQ1991Q, OQEDN0137J, ORMKY3774B, PAMYY6490X, PCYUT6681A, PDRGN5764W, PESUP1240W, PHIAU9193C, PPDBO1961W, PSAJP5500H, PTGGV6124L, PYGEI1292D, QFEKE7247Z, QFTUS4663W, QFYEE1921U, QNAVN3908M, QONZX2504S, QSDTY7001Q, QUOZW7823S, QXQOZ9556W, RIBRN0153W, RRBBT6871J, RTNDB7987U, RXGVF0879U, SACNZ0120A, SADTX3579I, SBFTP7166E, SBUTD1285I, SDTRI9296D, SJOBN2309Y, SKZTW6437N, SLYQX2976O, SQDCF2656X, SRAGV3585D, STHXN7574W, SVRGK7887X, SXXFS1531Q, TDBIA5306X, TEMIM8896R, TFZAE0194I, TJBJJ8859W, TMHJY2195F, TNOMW4491R, TWCNI6874W, TXDDF1309A, TYMVS5920H, UCYZA4959S, UDHFD1638I, UDYOK1503U, UGHOD6018P, UGNMS7589N, UHUGQ9517B, UIQOX7318R, ULLCV9227K, UVBLS1638O, VELTF4260O, VEMXD5267D, VETKA3898N, VGJRD7424G, VHUIR1579V, VIQDL0582N, VNSSV4633E, VPMAK8781R, VUDWY1712Y, VYPFA1221S, WDOOB5760W, WHDVV0726Z, WIGYE4790M, WKMZJ5561X, WPBCK1207N, WUVZT3628Z, WVCXC4155L, WVPCP3440D, WYSWO1471E, XBYQZ8055T, XGNJP1929D, XKCRD7820V, XVCKT5197T, XWLZJ8035G, XXJXG2725P, XZQWA3103I, YAIBB9238C, YHKSR3208E, YIGNG1445M, YIWQF4610I, YOGUC5356J, YTUFO0314P, YVRMZ9228Y, YWQXI5864U, YXZRO8024H, YZKBO8058U, YZTVA8918Z, YZVMS4925G, ZCFIN4382O, ZCNDI2519Z, ZIKXQ5287N, ZQCVQ9164X, ZUOTR6815P, ZWPKK7562T, ZWTSA1605F, ZYFYX4806X, ZZCEK2517F
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: bel
## Effect df MSE F ges p.value
## 1 condition 2, 35 0.48 0.97 .043 .388
## 2 recc 1, 35 0.48 51.36 *** .543 <.001
## 3 timepoint 1, 35 0.11 7.27 * .038 .011
## 4 condition:timepoint 2, 35 0.11 1.70 .018 .198
## 5 recc:timepoint 1, 35 0.11 5.91 * .031 .020
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(fit, x = "timepoint", error = "within")
fit <- aov_ez(id="UID", dv="bel", data=long3, between=c("condition","gere"), within="timepoint")
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, EKHKA1320A, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIHCW0935B, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SBUTD1285I, SJOBN2309Y, SKZTW6437N, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VBCFZ4637X, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, XKCRD7820V, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition, gere
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: bel
## Effect df MSE F ges p.value
## 1 condition 2, 210 1.23 2.62 + .019 .075
## 2 gere 3, 210 1.23 11.47 *** .112 <.001
## 3 condition:gere 6, 210 1.23 0.67 .015 .674
## 4 timepoint 1, 210 0.36 35.00 *** .036 <.001
## 5 condition:timepoint 2, 210 0.36 0.38 <.001 .687
## 6 gere:timepoint 3, 210 0.36 2.06 .007 .106
## 7 condition:gere:timepoint 6, 210 0.36 0.43 .003 .860
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
fit <- aov_ez(id="UID", dv="rec", data=long3, between=c("condition"), within="timepoint", covariate = c("belc"), factorize = F)
## Warning: Numerical variables NOT centered on 0 (i.e., likely bogus results): NA
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## AFITA6644H, AODNI3144W, AVINR5897Y, AYQSB9061F, BIGPC8577I, BJCYW9313A, BLJCY6370P, BMMVL7994H, BOMVH4712H, BQYKI9156R, BVDSH3315M, BWHCJ5688Q, BWISR1973A, BXWMH7130Y, CDHNQ4412P, CFOQZ9365X, CGXNN1861X, CHADU6389C, CHKFU7601Z, CHPID9225X, CIEHL6827C, CJDVL5022X, CMDRZ4165X, CMHID2661Y, COSQM7547U, CPHXV3544C, CQVAE8343T, DDWDZ2339J, DEGUG8250Q, DEZFY5154Y, DUOOW9047V, DWEFP0640O, ECLDJ0558Y, EDPLI4718X, EGNPY6902N, EKHKA1320A, ELPMT5534R, ENGNR4476F, ENLUW4800F, EPVXZ9711C, ETLLC3301O, EWGTH0978U, EYJKI2890J, FBPYG4513B, FDKWO5036F, FDRFT1976E, FOCRY5697B, FSKKR7810Y, FWVEK3877Q, FXXAG6538G, GAHHN6818C, GFITG4909Q, GLBEZ3029S, GOSED0340T, GQBDI2909G, GUMSQ0837O, GUOQX4544Z, GVAQY8946U, HBIFA5295Q, HDDDR5624S, HHENH9196H, HHTYJ9067S, HMITM1029R, HOQSF9391C, HVTWX3105O, ICNZW6469J, IDVCE3660F, IHEIE1031K, IHLAB2822T, IIBWJ1162K, IQKYL9589B, IVVAN8695S, IWQBG3288R, IXTMS7827C, IYGKJ9212Q, JAQOX6224H, JDRGO5214D, JQUSH7763H, JTIXL1749F, KGZSZ9095U, KHTGW5971J, KNGSJ3794D, KODOI2800E, KOGCS2814C, KQZOR6889Y, KTTQO0724Q, KVDIE4239W, KYLRY5373V, LAZZJ4798S, LDKDH9352Y, LDTLX9551Z, LHJVD2959Y, LJGWF4027N, LOPWH7294L, LQYVS8333P, MAJVB6162F, MHKVA5255G, MIBGQ4458A, MOLUH1393I, MSMVZ2231V, NBUDI3965W, NECDB3791F, NGWDC4182S, NLEXE0538V, NNQVD9904G, NOTVI7273I, NPEEK2345M, NVKGR6192V, NXSHA4361K, NZDFV1837O, OAUDW7602Q, OEHWZ9390E, OIJRE9661O, ONXIQ1991Q, OQEDN0137J, ORMKY3774B, PCYUT6681A, PDRGN5764W, PESUP1240W, PIFPO0872F, PIMZK0270T, PLKLW0979X, PPDBO1961W, PQSIQ7727D, PSAJP5500H, PYGEI1292D, QFTUS4663W, QFYEE1921U, QNAVN3908M, QONZX2504S, QSDTY7001Q, QUOZW7823S, QWQPC1344Y, QXQOZ9556W, RIBRN0153W, RRBBT6871J, RTNDB7987U, RXGVF0879U, SACNZ0120A, SADTX3579I, SBFTP7166E, SDTRI9296D, SGUWP5939A, SJOBN2309Y, SKZTW6437N, SLYQX2976O, SQDCF2656X, SRAGV3585D, STHXN7574W, SVRGK7887X, SXXFS1531Q, SZSPH6169O, TDBIA5306X, TEMIM8896R, TFZAE0194I, TJBJJ8859W, TJDHC0458U, TNOMW4491R, TWCNI6874W, UCYZA4959S, UDHFD1638I, UDYOK1503U, UEWZT9177C, UGHOD6018P, UGNMS7589N, UHUGQ9517B, ULLCV9227K, UVBLS1638O, VELTF4260O, VEMXD5267D, VETKA3898N, VIQDL0582N, VNSSV4633E, VPMAK8781R, VUDWY1712Y, VYPFA1221S, WDOOB5760W, WHDVV0726Z, WIGYE4790M, WKMZJ5561X, WPBCK1207N, WUVZT3628Z, WVCXC4155L, WVPCP3440D, WYSWO1471E, XBYQZ8055T, XGNJP1929D, XKCRD7820V, XVCKT5197T, XWLZJ8035G, XXJXG2725P, YAIBB9238C, YHKSR3208E, YIGNG1445M, YVRMZ9228Y, YXZRO8024H, YZKBO8058U, YZTVA8918Z, YZVMS4925G, ZCFIN4382O, ZIKXQ5287N, ZQCVQ9164X, ZUOTR6815P, ZWPKK7562T, ZWTSA1605F, ZYFYX4806X, ZZCEK2517F
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: rec
## Effect df MSE F ges p.value
## 1 condition 2, 46 0.57 1.08 .036 .347
## 2 belc 1, 46 0.57 38.13 *** .400 <.001
## 3 timepoint 1, 46 0.14 3.84 + .016 .056
## 4 condition:timepoint 2, 46 0.14 2.74 + .023 .075
## 5 belc:timepoint 1, 46 0.14 1.16 .005 .288
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(fit, x = "timepoint", error = "within")
afex_plot(fit, x = "timepoint", trace = "condition")
## Warning: Panel(s) show a mixed within-between-design.
## Error bars do not allow comparisons across all means.
## Suppress error bars with: error = "none"
fit <- aov_ez(id="UID", dv="rec", data=long3, between=c("condition","gere"), within="timepoint", covariate = c("belc"), factorize = F)
## Warning: Numerical variables NOT centered on 0 (i.e., likely bogus results): NA
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## AFITA6644H, AODNI3144W, AVINR5897Y, AYQSB9061F, BIGPC8577I, BJCYW9313A, BLJCY6370P, BMMVL7994H, BOMVH4712H, BQYKI9156R, BVDSH3315M, BWHCJ5688Q, BWISR1973A, BXWMH7130Y, CDHNQ4412P, CFOQZ9365X, CGXNN1861X, CHADU6389C, CHKFU7601Z, CHPID9225X, CIEHL6827C, CJDVL5022X, CMDRZ4165X, CMHID2661Y, COSQM7547U, CPHXV3544C, CQVAE8343T, DDWDZ2339J, DEGUG8250Q, DEZFY5154Y, DUOOW9047V, DWEFP0640O, ECLDJ0558Y, EDPLI4718X, EGNPY6902N, EKHKA1320A, ELPMT5534R, ENGNR4476F, ENLUW4800F, EPVXZ9711C, ETLLC3301O, EWGTH0978U, EYJKI2890J, FBPYG4513B, FDKWO5036F, FDRFT1976E, FOCRY5697B, FSKKR7810Y, FWVEK3877Q, FXXAG6538G, GAHHN6818C, GFITG4909Q, GLBEZ3029S, GOSED0340T, GQBDI2909G, GUMSQ0837O, GUOQX4544Z, GVAQY8946U, HBIFA5295Q, HDDDR5624S, HHENH9196H, HHTYJ9067S, HMITM1029R, HOQSF9391C, HVTWX3105O, ICNZW6469J, IDVCE3660F, IHEIE1031K, IHLAB2822T, IIBWJ1162K, IQKYL9589B, IVVAN8695S, IWQBG3288R, IXTMS7827C, IYGKJ9212Q, JAQOX6224H, JDRGO5214D, JQUSH7763H, JTIXL1749F, KGZSZ9095U, KHTGW5971J, KNGSJ3794D, KODOI2800E, KOGCS2814C, KQZOR6889Y, KTTQO0724Q, KVDIE4239W, KYLRY5373V, LAZZJ4798S, LDKDH9352Y, LDTLX9551Z, LHJVD2959Y, LJGWF4027N, LOPWH7294L, LQYVS8333P, MAJVB6162F, MHKVA5255G, MIBGQ4458A, MOLUH1393I, MSMVZ2231V, NBUDI3965W, NECDB3791F, NGWDC4182S, NLEXE0538V, NNQVD9904G, NOTVI7273I, NPEEK2345M, NVKGR6192V, NXSHA4361K, NZDFV1837O, OAUDW7602Q, OEHWZ9390E, OIHCW0935B, OIJRE9661O, ONXIQ1991Q, OQEDN0137J, ORMKY3774B, PCYUT6681A, PDRGN5764W, PESUP1240W, PIFPO0872F, PIMZK0270T, PLKLW0979X, PPDBO1961W, PQSIQ7727D, PSAJP5500H, PYGEI1292D, QFTUS4663W, QFYEE1921U, QNAVN3908M, QONZX2504S, QSDTY7001Q, QUOZW7823S, QWQPC1344Y, QXQOZ9556W, RIBRN0153W, RRBBT6871J, RTNDB7987U, RXGVF0879U, SACNZ0120A, SADTX3579I, SBFTP7166E, SBUTD1285I, SDTRI9296D, SGUWP5939A, SJOBN2309Y, SKZTW6437N, SLYQX2976O, SQDCF2656X, SRAGV3585D, STHXN7574W, SVRGK7887X, SXXFS1531Q, SZSPH6169O, TDBIA5306X, TEMIM8896R, TFZAE0194I, TJBJJ8859W, TJDHC0458U, TNOMW4491R, TWCNI6874W, UCYZA4959S, UDHFD1638I, UDYOK1503U, UEWZT9177C, UGHOD6018P, UGNMS7589N, UHUGQ9517B, ULLCV9227K, UVBLS1638O, VBCFZ4637X, VELTF4260O, VEMXD5267D, VETKA3898N, VIQDL0582N, VNSSV4633E, VPMAK8781R, VUDWY1712Y, VYPFA1221S, WDOOB5760W, WHDVV0726Z, WIGYE4790M, WKMZJ5561X, WPBCK1207N, WUVZT3628Z, WVCXC4155L, WVPCP3440D, WYSWO1471E, XBYQZ8055T, XGNJP1929D, XKCRD7820V, XVCKT5197T, XWLZJ8035G, XXJXG2725P, YAIBB9238C, YHKSR3208E, YIGNG1445M, YVRMZ9228Y, YXZRO8024H, YZKBO8058U, YZTVA8918Z, YZVMS4925G, ZCFIN4382O, ZIKXQ5287N, ZQCVQ9164X, ZUOTR6815P, ZWPKK7562T, ZWTSA1605F, ZYFYX4806X, ZZCEK2517F
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition, gere
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: rec
## Effect df MSE F ges p.value
## 1 condition 2, 34 0.42 1.97 .080 .155
## 2 gere 3, 34 0.42 4.23 * .219 .012
## 3 belc 1, 34 0.42 15.17 *** .251 <.001
## 4 condition:gere 6, 34 0.42 1.27 .144 .297
## 5 timepoint 1, 34 0.14 4.48 * .032 .042
## 6 condition:timepoint 2, 34 0.14 2.91 + .041 .068
## 7 gere:timepoint 3, 34 0.14 0.54 .012 .657
## 8 belc:timepoint 1, 34 0.14 0.65 .005 .426
## 9 condition:gere:timepoint 6, 34 0.14 1.38 .057 .253
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(fit, x = "condition")
## NOTE: Results may be misleading due to involvement in interactions
afex_plot(fit, x = "gere")
## NOTE: Results may be misleading due to involvement in interactions
afex_plot(fit, x = "timepoint", error = "within")
fit <- aov_ez(id="UID", dv="inst", data=long3, between=c("condition"), within="timepoint", covariate = c("expc","pofc"), factorize = F)
## Warning: Numerical variables NOT centered on 0 (i.e., likely bogus results): NA,
## NA
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## ADMNF5431W, AFITA6644H, AIKAP6463M, AODNI3144W, AQMMS9810J, AVINR5897Y, AYQSB9061F, BIGPC8577I, BJCYW9313A, BKKKT3701U, BLJCY6370P, BMMVL7994H, BOMVH4712H, BQYKI9156R, BVDSH3315M, BWHCJ5688Q, BWISR1973A, BXWMH7130Y, CDHNQ4412P, CFOQZ9365X, CGXNN1861X, CHADU6389C, CHKFU7601Z, CHPID9225X, CIEHL6827C, CJDVL5022X, CMDRZ4165X, CMHID2661Y, COSQM7547U, CPHXV3544C, CQVAE8343T, CZHNG1043X, DDWDZ2339J, DEGUG8250Q, DEZFY5154Y, DKMEC3318T, DUOOW9047V, DWEFP0640O, ECLDJ0558Y, EDPLI4718X, EGNPY6902N, EKHKA1320A, ELPMT5534R, ENGNR4476F, ENLUW4800F, EQRSC1726I, ETLLC3301O, EWGTH0978U, EYJKI2890J, FBPYG4513B, FDKWO5036F, FDRFT1976E, FOCRY5697B, FSKKR7810Y, FWVEK3877Q, FXXAG6538G, FZWVI1954A, GAHHN6818C, GEVFJ6602J, GFITG4909Q, GLBEZ3029S, GOSED0340T, GQBDI2909G, GUMSQ0837O, GUOQX4544Z, HBIFA5295Q, HDDDR5624S, HHENH9196H, HHTYJ9067S, HMITM1029R, HOQSF9391C, HVTWX3105O, IACUK2046G, ICNZW6469J, IDVCE3660F, IHEIE1031K, IHLAB2822T, IIBWJ1162K, IPNYM5318I, IPVOL5900Z, IQKYL9589B, ITEDM8731I, IVVAN8695S, IVWLS8788C, IWQBG3288R, IXTMS7827C, IYGKJ9212Q, JAQOX6224H, JDRGO5214D, JQUSH7763H, JRWTN5883X, JTIXL1749F, KGZSZ9095U, KHTGW5971J, KNGSJ3794D, KODOI2800E, KOGCS2814C, KQZOR6889Y, KTTQO0724Q, KVDIE4239W, KYLRY5373V, LAZZJ4798S, LDKDH9352Y, LDTLX9551Z, LHJVD2959Y, LJGWF4027N, LJTCD1624Z, LOPWH7294L, LQYVS8333P, MAJVB6162F, MDPFH5436F, MHKVA5255G, MIBGQ4458A, MOLUH1393I, MRECG6247Z, MSMVZ2231V, NBUDI3965W, NECDB3791F, NGWDC4182S, NLEXE0538V, NNQVD9904G, NOTVI7273I, NPEEK2345M, NVKGR6192V, NXSHA4361K, NZDFV1837O, OAUDW7602Q, ODNEC0022H, OEHWZ9390E, OIHCW0935B, OIJRE9661O, ONXIQ1991Q, OQEDN0137J, ORMKY3774B, OSNKC4976B, PAMYY6490X, PCYUT6681A, PDRGN5764W, PESUP1240W, PHIAU9193C, PIFPO0872F, PIMZK0270T, PLKLW0979X, PPDBO1961W, PQSIQ7727D, PSAJP5500H, PTGGV6124L, PYGEI1292D, QFEKE7247Z, QFTUS4663W, QFYEE1921U, QHDSO1457K, QNAVN3908M, QONZX2504S, QSDTY7001Q, QUOZW7823S, QWQPC1344Y, QXQOZ9556W, RIBRN0153W, RRBBT6871J, RTNDB7987U, RXGVF0879U, SACNZ0120A, SADTX3579I, SBFTP7166E, SBUTD1285I, SDTRI9296D, SGUWP5939A, SJOBN2309Y, SKZTW6437N, SLYQX2976O, SQDCF2656X, SRAGV3585D, STHXN7574W, STTSA5710O, SVRGK7887X, SXXFS1531Q, SZSPH6169O, TDBIA5306X, TEMIM8896R, TFZAE0194I, TJBJJ8859W, TJDHC0458U, TLPKY1497B, TMHJY2195F, TNOMW4491R, TWCNI6874W, TXDDF1309A, TYMVS5920H, UCYZA4959S, UDHFD1638I, UDYOK1503U, UEWZT9177C, UGHOD6018P, UGNMS7589N, UHUGQ9517B, ULLCV9227K, UVBLS1638O, VBCFZ4637X, VELTF4260O, VEMXD5267D, VETKA3898N, VGJRD7424G, VHUIR1579V, VIFDZ9388B, VIQDL0582N, VJOCD9817C, VNSSV4633E, VPMAK8781R, VYPFA1221S, WDOOB5760W, WHDVV0726Z, WIGYE4790M, WKMZJ5561X, WPBCK1207N, WUVZT3628Z, WVCXC4155L, WVPCP3440D, WYSWO1471E, XBYQZ8055T, XGNJP1929D, XKCRD7820V, XVCKT5197T, XWLZJ8035G, XXJXG2725P, XZQWA3103I, YAIBB9238C, YHKSR3208E, YIGNG1445M, YIWQF4610I, YOGUC5356J, YTUFO0314P, YVRMZ9228Y, YWQXI5864U, YXZRO8024H, YZKBO8058U, YZTVA8918Z, YZVMS4925G, ZBGBY1736H, ZCFIN4382O, ZCNDI2519Z, ZIKXQ5287N, ZJCBX9350S, ZQCVQ9164X, ZUOTR6815P, ZWPKK7562T, ZWTSA1605F, ZYFYX4806X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: inst
## Effect df MSE F ges p.value
## 1 condition 2, 4 0.54 1.56 .397 .316
## 2 expc 1, 4 0.54 0.03 .006 .870
## 3 pofc 1, 4 0.54 3.16 .400 .150
## 4 timepoint 1, 4 0.10 3.07 .107 .154
## 5 condition:timepoint 2, 4 0.10 2.98 .188 .162
## 6 expc:timepoint 1, 4 0.10 0.17 .006 .704
## 7 pofc:timepoint 1, 4 0.10 3.58 .122 .131
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
No covariates - empty cells?
fit2 <- aov_ez(id="UID", dv="inst", data=long3, between=c("condition","re_minority"), within="timepoint")
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIHCW0935B, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SBUTD1285I, SJOBN2309Y, SKZTW6437N, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VBCFZ4637X, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, XKCRD7820V, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition, re_minority
nice(fit2)
## Anova Table (Type 3 tests)
##
## Response: inst
## Effect df MSE F ges p.value
## 1 condition 2, 217 0.78 0.77 .005 .463
## 2 re_minority 1, 217 0.78 2.44 .008 .119
## 3 condition:re_minority 2, 217 0.78 0.81 .005 .447
## 4 timepoint 1, 217 0.38 9.23 ** .014 .003
## 5 condition:timepoint 2, 217 0.38 2.20 .007 .114
## 6 re_minority:timepoint 1, 217 0.38 0.92 .001 .339
## 7 condition:re_minority:timepoint 2, 217 0.38 3.65 * .011 .028
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
fit <- aov_ez(id="UID", dv="pof", data=long3, between=c("condition"), within="timepoint", covariate = c("expc","instc"), factorize = F)
## Warning: Numerical variables NOT centered on 0 (i.e., likely bogus results): NA,
## NA
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## ADMNF5431W, AFITA6644H, AIKAP6463M, AODNI3144W, AQMMS9810J, AVINR5897Y, AYQSB9061F, BIGPC8577I, BJCYW9313A, BKKKT3701U, BLJCY6370P, BMMVL7994H, BOMVH4712H, BQYKI9156R, BVDSH3315M, BWHCJ5688Q, BWISR1973A, BXWMH7130Y, CDHNQ4412P, CFOQZ9365X, CGXNN1861X, CHADU6389C, CHKFU7601Z, CHPID9225X, CIEHL6827C, CJDVL5022X, CMDRZ4165X, CMHID2661Y, COSQM7547U, CPHXV3544C, CQVAE8343T, CZHNG1043X, DDWDZ2339J, DEGUG8250Q, DEZFY5154Y, DKMEC3318T, DUOOW9047V, DWEFP0640O, ECLDJ0558Y, EGNPY6902N, EKHKA1320A, ELPMT5534R, ENGNR4476F, ENHLY4123X, ENLUW4800F, EQRSC1726I, ETLLC3301O, EWGTH0978U, EYJKI2890J, FBPYG4513B, FDKWO5036F, FOCRY5697B, FSKKR7810Y, FWVEK3877Q, FXXAG6538G, FZWVI1954A, GAHHN6818C, GEVFJ6602J, GFITG4909Q, GLBEZ3029S, GOSED0340T, GQBDI2909G, GUMSQ0837O, GUOQX4544Z, HBIFA5295Q, HDDDR5624S, HHENH9196H, HHTYJ9067S, HMITM1029R, HOQSF9391C, HVTWX3105O, IACUK2046G, ICNZW6469J, IDVCE3660F, IHEIE1031K, IHLAB2822T, IIBWJ1162K, IPNYM5318I, IPVOL5900Z, IQKYL9589B, ITEDM8731I, IVVAN8695S, IVWLS8788C, IWQBG3288R, IXTMS7827C, IYGKJ9212Q, JAQOX6224H, JDRGO5214D, JQUSH7763H, JRWTN5883X, JTIXL1749F, KGZSZ9095U, KHTGW5971J, KNGSJ3794D, KODOI2800E, KOGCS2814C, KQZOR6889Y, KTTQO0724Q, KVDIE4239W, KYLRY5373V, LDKDH9352Y, LDTLX9551Z, LHJVD2959Y, LJGWF4027N, LJTCD1624Z, LOPWH7294L, LQYVS8333P, MAJVB6162F, MDPFH5436F, MHKVA5255G, MIBGQ4458A, MOLUH1393I, MRECG6247Z, MSMVZ2231V, NBUDI3965W, NECDB3791F, NGWDC4182S, NLEXE0538V, NNQVD9904G, NOTVI7273I, NPEEK2345M, NVKGR6192V, NXSHA4361K, OAUDW7602Q, OIHCW0935B, OIJRE9661O, ONXIQ1991Q, OQEDN0137J, ORMKY3774B, OSNKC4976B, PAMYY6490X, PCYUT6681A, PDRGN5764W, PESUP1240W, PHIAU9193C, PIFPO0872F, PIMZK0270T, PLKLW0979X, PPDBO1961W, PQSIQ7727D, PSAJP5500H, PTGGV6124L, PYGEI1292D, QFEKE7247Z, QFTUS4663W, QFYEE1921U, QHDSO1457K, QNAVN3908M, QONZX2504S, QUOZW7823S, QWQPC1344Y, QXQOZ9556W, RIBRN0153W, RRBBT6871J, RTNDB7987U, RXGVF0879U, SACNZ0120A, SADTX3579I, SBFTP7166E, SBUTD1285I, SDTRI9296D, SGUWP5939A, SJOBN2309Y, SKZTW6437N, SLYQX2976O, SQDCF2656X, SRAGV3585D, STHXN7574W, STTSA5710O, SVRGK7887X, SXXFS1531Q, SZSPH6169O, TDBIA5306X, TEMIM8896R, TJBJJ8859W, TJDHC0458U, TLPKY1497B, TMHJY2195F, TNOMW4491R, TWCNI6874W, TYMVS5920H, UCYZA4959S, UDHFD1638I, UDYOK1503U, UEWZT9177C, UGHOD6018P, UGNMS7589N, UHUGQ9517B, ULLCV9227K, UVBLS1638O, VBCFZ4637X, VELTF4260O, VEMXD5267D, VETKA3898N, VGJRD7424G, VHUIR1579V, VIFDZ9388B, VIQDL0582N, VJOCD9817C, VNSSV4633E, VPMAK8781R, VYPFA1221S, WDOOB5760W, WHDVV0726Z, WIGYE4790M, WKMZJ5561X, WPBCK1207N, WUVZT3628Z, WVCXC4155L, WVPCP3440D, WYSWO1471E, XBYQZ8055T, XGNJP1929D, XKCRD7820V, XVCKT5197T, XWLZJ8035G, XXJXG2725P, XZQWA3103I, YHKSR3208E, YIWQF4610I, YOGUC5356J, YTUFO0314P, YVRMZ9228Y, YWQXI5864U, YZKBO8058U, YZTVA8918Z, YZVMS4925G, ZBGBY1736H, ZCFIN4382O, ZCNDI2519Z, ZIKXQ5287N, ZJCBX9350S, ZQCVQ9164X, ZUOTR6815P, ZWPKK7562T, ZWTSA1605F, ZYFYX4806X, ZZCEK2517F
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: pof
## Effect df MSE F ges p.value
## 1 condition 2, 14 0.28 6.30 * .396 .011
## 2 expc 1, 14 0.28 1.93 .091 .187
## 3 instc 1, 14 0.28 27.44 *** .588 <.001
## 4 timepoint 1, 14 0.10 0.09 .002 .775
## 5 condition:timepoint 2, 14 0.10 1.08 .040 .367
## 6 expc:timepoint 1, 14 0.10 0.13 .003 .720
## 7 instc:timepoint 1, 14 0.10 0.05 .001 .818
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
fit <- aov_ez(id="UID", dv="pof", data=long3, between=c("condition","ge_minority"), within="timepoint", covariate = c("expc","instc"), factorize = F)
## Warning: Numerical variables NOT centered on 0 (i.e., likely bogus results): NA,
## NA
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## ADMNF5431W, AFITA6644H, AIKAP6463M, AODNI3144W, AQMMS9810J, AVINR5897Y, AYQSB9061F, BIGPC8577I, BJCYW9313A, BKKKT3701U, BLJCY6370P, BMMVL7994H, BOMVH4712H, BQYKI9156R, BVDSH3315M, BWHCJ5688Q, BWISR1973A, BXWMH7130Y, CDHNQ4412P, CFOQZ9365X, CGXNN1861X, CHADU6389C, CHKFU7601Z, CHPID9225X, CIEHL6827C, CJDVL5022X, CMDRZ4165X, CMHID2661Y, COSQM7547U, CPHXV3544C, CQVAE8343T, CZHNG1043X, DDWDZ2339J, DEGUG8250Q, DEZFY5154Y, DKMEC3318T, DUOOW9047V, DWEFP0640O, ECLDJ0558Y, EGNPY6902N, EKHKA1320A, ELPMT5534R, ENGNR4476F, ENHLY4123X, ENLUW4800F, EQRSC1726I, ETLLC3301O, EWGTH0978U, EYJKI2890J, FBPYG4513B, FDKWO5036F, FOCRY5697B, FSKKR7810Y, FWVEK3877Q, FXXAG6538G, FZWVI1954A, GAHHN6818C, GEVFJ6602J, GFITG4909Q, GLBEZ3029S, GOSED0340T, GQBDI2909G, GUMSQ0837O, GUOQX4544Z, HBIFA5295Q, HDDDR5624S, HHENH9196H, HHTYJ9067S, HMITM1029R, HOQSF9391C, HVTWX3105O, IACUK2046G, ICNZW6469J, IDVCE3660F, IHEIE1031K, IHLAB2822T, IIBWJ1162K, IPNYM5318I, IPVOL5900Z, IQKYL9589B, ITEDM8731I, IVVAN8695S, IVWLS8788C, IWQBG3288R, IXTMS7827C, IYGKJ9212Q, JAQOX6224H, JDRGO5214D, JQUSH7763H, JRWTN5883X, JTIXL1749F, KGZSZ9095U, KHTGW5971J, KNGSJ3794D, KODOI2800E, KOGCS2814C, KQZOR6889Y, KTTQO0724Q, KVDIE4239W, KYLRY5373V, LDKDH9352Y, LDTLX9551Z, LHJVD2959Y, LJGWF4027N, LJTCD1624Z, LOPWH7294L, LQYVS8333P, MAJVB6162F, MDPFH5436F, MHKVA5255G, MIBGQ4458A, MOLUH1393I, MRECG6247Z, MSMVZ2231V, NBUDI3965W, NECDB3791F, NGWDC4182S, NLEXE0538V, NNQVD9904G, NOTVI7273I, NPEEK2345M, NVKGR6192V, NXSHA4361K, OAUDW7602Q, OIHCW0935B, OIJRE9661O, ONXIQ1991Q, OQEDN0137J, ORMKY3774B, OSNKC4976B, PAMYY6490X, PCYUT6681A, PDRGN5764W, PESUP1240W, PHIAU9193C, PIFPO0872F, PIMZK0270T, PLKLW0979X, PPDBO1961W, PQSIQ7727D, PSAJP5500H, PTGGV6124L, PYGEI1292D, QFEKE7247Z, QFTUS4663W, QFYEE1921U, QHDSO1457K, QNAVN3908M, QONZX2504S, QUOZW7823S, QWQPC1344Y, QXQOZ9556W, RIBRN0153W, RRBBT6871J, RTNDB7987U, RXGVF0879U, SACNZ0120A, SADTX3579I, SBFTP7166E, SBUTD1285I, SDTRI9296D, SGUWP5939A, SJOBN2309Y, SKZTW6437N, SLYQX2976O, SQDCF2656X, SRAGV3585D, STHXN7574W, STTSA5710O, SVRGK7887X, SXXFS1531Q, SZSPH6169O, TDBIA5306X, TEMIM8896R, TJBJJ8859W, TJDHC0458U, TLPKY1497B, TMHJY2195F, TNOMW4491R, TWCNI6874W, TYMVS5920H, UCYZA4959S, UDHFD1638I, UDYOK1503U, UEWZT9177C, UGHOD6018P, UGNMS7589N, UHUGQ9517B, ULLCV9227K, UVBLS1638O, VBCFZ4637X, VELTF4260O, VEMXD5267D, VETKA3898N, VGJRD7424G, VHUIR1579V, VIFDZ9388B, VIQDL0582N, VJOCD9817C, VNSSV4633E, VPMAK8781R, VYPFA1221S, WDOOB5760W, WHDVV0726Z, WIGYE4790M, WKMZJ5561X, WPBCK1207N, WUVZT3628Z, WVCXC4155L, WVPCP3440D, WYSWO1471E, XBYQZ8055T, XGNJP1929D, XKCRD7820V, XVCKT5197T, XWLZJ8035G, XXJXG2725P, XZQWA3103I, YHKSR3208E, YIWQF4610I, YOGUC5356J, YTUFO0314P, YVRMZ9228Y, YWQXI5864U, YZKBO8058U, YZTVA8918Z, YZVMS4925G, ZBGBY1736H, ZCFIN4382O, ZCNDI2519Z, ZIKXQ5287N, ZJCBX9350S, ZQCVQ9164X, ZUOTR6815P, ZWPKK7562T, ZWTSA1605F, ZYFYX4806X, ZZCEK2517F
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition, ge_minority
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: pof
## Effect df MSE F ges p.value
## 1 condition 2, 11 0.16 9.89 ** .538 .003
## 2 ge_minority 1, 11 0.16 10.48 ** .381 .008
## 3 expc 1, 11 0.16 0.01 <.001 .925
## 4 instc 1, 11 0.16 53.19 *** .758 <.001
## 5 condition:ge_minority 2, 11 0.16 2.39 .220 .137
## 6 timepoint 1, 11 0.09 0.10 .003 .761
## 7 condition:timepoint 2, 11 0.09 3.11 + .166 .085
## 8 ge_minority:timepoint 1, 11 0.09 0.05 .002 .823
## 9 expc:timepoint 1, 11 0.09 0.00 <.001 .978
## 10 instc:timepoint 1, 11 0.09 0.29 .009 .601
## 11 condition:ge_minority:timepoint 2, 11 0.09 2.71 .148 .110
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
fit <- aov_ez(id="UID", dv="pof", data=long3, between=c("condition","re_minority"), within="timepoint", covariate = c("expc","instc"), factorize = F)
## Warning: Numerical variables NOT centered on 0 (i.e., likely bogus results): NA,
## NA
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## ADMNF5431W, AFITA6644H, AIKAP6463M, AODNI3144W, AQMMS9810J, AVINR5897Y, AYQSB9061F, BIGPC8577I, BJCYW9313A, BKKKT3701U, BLJCY6370P, BMMVL7994H, BOMVH4712H, BQYKI9156R, BVDSH3315M, BWHCJ5688Q, BWISR1973A, BXWMH7130Y, CDHNQ4412P, CFOQZ9365X, CGXNN1861X, CHADU6389C, CHKFU7601Z, CHPID9225X, CIEHL6827C, CJDVL5022X, CMDRZ4165X, CMHID2661Y, COSQM7547U, CPHXV3544C, CQVAE8343T, CZHNG1043X, DDWDZ2339J, DEGUG8250Q, DEZFY5154Y, DKMEC3318T, DUOOW9047V, DWEFP0640O, ECLDJ0558Y, EGNPY6902N, EKHKA1320A, ELPMT5534R, ENGNR4476F, ENHLY4123X, ENLUW4800F, EQRSC1726I, ETLLC3301O, EWGTH0978U, EYJKI2890J, FBPYG4513B, FDKWO5036F, FOCRY5697B, FSKKR7810Y, FWVEK3877Q, FXXAG6538G, FZWVI1954A, GAHHN6818C, GEVFJ6602J, GFITG4909Q, GLBEZ3029S, GOSED0340T, GQBDI2909G, GUMSQ0837O, GUOQX4544Z, HBIFA5295Q, HDDDR5624S, HHENH9196H, HHTYJ9067S, HMITM1029R, HOQSF9391C, HVTWX3105O, IACUK2046G, ICNZW6469J, IDVCE3660F, IHEIE1031K, IHLAB2822T, IIBWJ1162K, IPNYM5318I, IPVOL5900Z, IQKYL9589B, ITEDM8731I, IVVAN8695S, IVWLS8788C, IWQBG3288R, IXTMS7827C, IYGKJ9212Q, JAQOX6224H, JDRGO5214D, JQUSH7763H, JRWTN5883X, JTIXL1749F, KGZSZ9095U, KHTGW5971J, KNGSJ3794D, KODOI2800E, KOGCS2814C, KQZOR6889Y, KTTQO0724Q, KVDIE4239W, KYLRY5373V, LDKDH9352Y, LDTLX9551Z, LHJVD2959Y, LJGWF4027N, LJTCD1624Z, LOPWH7294L, LQYVS8333P, MAJVB6162F, MDPFH5436F, MHKVA5255G, MIBGQ4458A, MOLUH1393I, MRECG6247Z, MSMVZ2231V, NBUDI3965W, NECDB3791F, NGWDC4182S, NLEXE0538V, NNQVD9904G, NOTVI7273I, NPEEK2345M, NVKGR6192V, NXSHA4361K, OAUDW7602Q, OIHCW0935B, OIJRE9661O, ONXIQ1991Q, OQEDN0137J, ORMKY3774B, OSNKC4976B, PAMYY6490X, PCYUT6681A, PDRGN5764W, PESUP1240W, PHIAU9193C, PIFPO0872F, PIMZK0270T, PLKLW0979X, PPDBO1961W, PQSIQ7727D, PSAJP5500H, PTGGV6124L, PYGEI1292D, QFEKE7247Z, QFTUS4663W, QFYEE1921U, QHDSO1457K, QNAVN3908M, QONZX2504S, QUOZW7823S, QWQPC1344Y, QXQOZ9556W, RIBRN0153W, RRBBT6871J, RTNDB7987U, RXGVF0879U, SACNZ0120A, SADTX3579I, SBFTP7166E, SBUTD1285I, SDTRI9296D, SGUWP5939A, SJOBN2309Y, SKZTW6437N, SLYQX2976O, SQDCF2656X, SRAGV3585D, STHXN7574W, STTSA5710O, SVRGK7887X, SXXFS1531Q, SZSPH6169O, TDBIA5306X, TEMIM8896R, TJBJJ8859W, TJDHC0458U, TLPKY1497B, TMHJY2195F, TNOMW4491R, TWCNI6874W, TYMVS5920H, UCYZA4959S, UDHFD1638I, UDYOK1503U, UEWZT9177C, UGHOD6018P, UGNMS7589N, UHUGQ9517B, ULLCV9227K, UVBLS1638O, VBCFZ4637X, VELTF4260O, VEMXD5267D, VETKA3898N, VGJRD7424G, VHUIR1579V, VIFDZ9388B, VIQDL0582N, VJOCD9817C, VNSSV4633E, VPMAK8781R, VYPFA1221S, WDOOB5760W, WHDVV0726Z, WIGYE4790M, WKMZJ5561X, WPBCK1207N, WUVZT3628Z, WVCXC4155L, WVPCP3440D, WYSWO1471E, XBYQZ8055T, XGNJP1929D, XKCRD7820V, XVCKT5197T, XWLZJ8035G, XXJXG2725P, XZQWA3103I, YHKSR3208E, YIWQF4610I, YOGUC5356J, YTUFO0314P, YVRMZ9228Y, YWQXI5864U, YZKBO8058U, YZTVA8918Z, YZVMS4925G, ZBGBY1736H, ZCFIN4382O, ZCNDI2519Z, ZIKXQ5287N, ZJCBX9350S, ZQCVQ9164X, ZUOTR6815P, ZWPKK7562T, ZWTSA1605F, ZYFYX4806X, ZZCEK2517F
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition, re_minority
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: pof
## Effect df MSE F ges p.value
## 1 condition 2, 11 0.23 9.63 ** .554 .004
## 2 re_minority 1, 11 0.23 3.31 + .176 .096
## 3 expc 1, 11 0.23 1.18 .071 .301
## 4 instc 1, 11 0.23 29.87 *** .658 <.001
## 5 condition:re_minority 2, 11 0.23 2.46 .241 .131
## 6 timepoint 1, 11 0.09 0.99 .025 .342
## 7 condition:timepoint 2, 11 0.09 2.12 .100 .167
## 8 re_minority:timepoint 1, 11 0.09 0.17 .005 .685
## 9 expc:timepoint 1, 11 0.09 0.98 .025 .344
## 10 instc:timepoint 1, 11 0.09 0.21 .005 .659
## 11 condition:re_minority:timepoint 2, 11 0.09 2.34 .110 .143
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
fit <- aov_ez(id="UID", dv="exp", data=long3, between=c("condition"), within="timepoint")
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SJOBN2309Y, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: exp
## Effect df MSE F ges p.value
## 1 condition 2, 225 1.42 0.64 .004 .529
## 2 timepoint 1, 225 0.38 12.66 *** .012 <.001
## 3 condition:timepoint 2, 225 0.38 0.25 <.001 .778
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(fit, x = "timepoint", error = "within")
fit <- aov_ez(id="UID", dv="exp", data=long3, between=c("condition","re_minority"), within="timepoint")
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIHCW0935B, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SBUTD1285I, SJOBN2309Y, SKZTW6437N, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VBCFZ4637X, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, XKCRD7820V, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition, re_minority
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: exp
## Effect df MSE F ges p.value
## 1 condition 2, 217 1.39 0.77 .006 .465
## 2 re_minority 1, 217 1.39 4.25 * .015 .040
## 3 condition:re_minority 2, 217 1.39 0.25 .002 .781
## 4 timepoint 1, 217 0.39 11.01 ** .011 .001
## 5 condition:timepoint 2, 217 0.39 0.16 <.001 .856
## 6 re_minority:timepoint 1, 217 0.39 0.45 <.001 .502
## 7 condition:re_minority:timepoint 2, 217 0.39 0.42 <.001 .656
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(fit, x = "timepoint", trace = "re_minority", panel = "condition")
## Warning: Panel(s) show a mixed within-between-design.
## Error bars do not allow comparisons across all means.
## Suppress error bars with: error = "none"
fit <- aov_ez(id="UID", dv="exp", data=long3, between=c("condition","ge_minority"), within="timepoint")
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, EKHKA1320A, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIHCW0935B, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SBUTD1285I, SJOBN2309Y, SKZTW6437N, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VBCFZ4637X, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, XKCRD7820V, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition, ge_minority
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: exp
## Effect df MSE F ges p.value
## 1 condition 2, 216 1.34 0.91 .007 .404
## 2 ge_minority 1, 216 1.34 11.58 *** .040 <.001
## 3 condition:ge_minority 2, 216 1.34 0.17 .001 .846
## 4 timepoint 1, 216 0.39 9.31 ** .010 .003
## 5 condition:timepoint 2, 216 0.39 0.13 <.001 .874
## 6 ge_minority:timepoint 1, 216 0.39 0.06 <.001 .799
## 7 condition:ge_minority:timepoint 2, 216 0.39 0.35 <.001 .708
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(fit, x = "ge_minority")
## NOTE: Results may be misleading due to involvement in interactions
fit <- aov_ez(id="UID", dv="anx", data=long3, between=c("condition"), within="timepoint")
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SJOBN2309Y, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: anx
## Effect df MSE F ges p.value
## 1 condition 2, 225 3.45 4.26 * .031 .015
## 2 timepoint 1, 225 0.69 3.20 + .002 .075
## 3 condition:timepoint 2, 225 0.69 1.78 .003 .172
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(fit, x = "timepoint", error = "within")
afex_plot(fit, x = "condition")
fit <- aov_ez(id="UID", dv="anx", data=long3, between=c("condition","re_minority"), within="timepoint")
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIHCW0935B, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SBUTD1285I, SJOBN2309Y, SKZTW6437N, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VBCFZ4637X, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, XKCRD7820V, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition, re_minority
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: anx
## Effect df MSE F ges p.value
## 1 condition 2, 217 3.40 4.48 * .033 .012
## 2 re_minority 1, 217 3.40 4.44 * .017 .036
## 3 condition:re_minority 2, 217 3.40 0.09 <.001 .916
## 4 timepoint 1, 217 0.70 3.37 + .003 .068
## 5 condition:timepoint 2, 217 0.70 1.51 .002 .224
## 6 re_minority:timepoint 1, 217 0.70 0.27 <.001 .601
## 7 condition:re_minority:timepoint 2, 217 0.70 0.11 <.001 .896
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
fit <- aov_ez(id="UID", dv="anx", data=long3, between=c("condition","ge_minority"), within="timepoint")
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, EKHKA1320A, GLBEZ3029S, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, MOLUH1393I, NGWDC4182S, NOTVI7273I, OIHCW0935B, OIJRE9661O, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SBUTD1285I, SJOBN2309Y, SKZTW6437N, SRAGV3585D, STHXN7574W, UGNMS7589N, UHUGQ9517B, VBCFZ4637X, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, XKCRD7820V, YZKBO8058U, YZVMS4925G, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition, ge_minority
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: anx
## Effect df MSE F ges p.value
## 1 condition 2, 216 3.44 4.49 * .034 .012
## 2 ge_minority 1, 216 3.44 2.37 .009 .125
## 3 condition:ge_minority 2, 216 3.44 0.10 <.001 .903
## 4 timepoint 1, 216 0.68 1.15 <.001 .285
## 5 condition:timepoint 2, 216 0.68 0.09 <.001 .917
## 6 ge_minority:timepoint 1, 216 0.68 2.00 .002 .158
## 7 condition:ge_minority:timepoint 2, 216 0.68 2.99 + .005 .052
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(fit, x = "timepoint", trace="ge_minority", panel="condition")
## Warning: Panel(s) show a mixed within-between-design.
## Error bars do not allow comparisons across all means.
## Suppress error bars with: error = "none"
pairs(emmeans(fit, specs="timepoint", by=c("ge_minority","condition")))
## ge_minority = ge_maj, condition = con:
## contrast estimate SE df t.ratio p.value
## X1 - X3 0.5654 0.171 216 3.316 0.0011
##
## ge_minority = ge_min, condition = con:
## contrast estimate SE df t.ratio p.value
## X1 - X3 -0.2826 0.276 216 -1.026 0.3062
##
## ge_minority = ge_maj, condition = equi:
## contrast estimate SE df t.ratio p.value
## X1 - X3 0.1616 0.158 216 1.025 0.3064
##
## ge_minority = ge_min, condition = equi:
## contrast estimate SE df t.ratio p.value
## X1 - X3 0.0280 0.239 216 0.117 0.9067
##
## ge_minority = ge_maj, condition = int:
## contrast estimate SE df t.ratio p.value
## X1 - X3 -0.0665 0.152 216 -0.437 0.6624
##
## ge_minority = ge_min, condition = int:
## contrast estimate SE df t.ratio p.value
## X1 - X3 0.1635 0.268 216 0.610 0.5427
pairs(emmeans(fit, specs="ge_minority", by=c("timepoint","condition")))
## timepoint = X1, condition = con:
## contrast estimate SE df t.ratio p.value
## ge_maj - ge_min 0.141 0.375 216 0.377 0.7068
##
## timepoint = X3, condition = con:
## contrast estimate SE df t.ratio p.value
## ge_maj - ge_min -0.707 0.420 216 -1.683 0.0939
##
## timepoint = X1, condition = equi:
## contrast estimate SE df t.ratio p.value
## ge_maj - ge_min -0.145 0.331 216 -0.437 0.6624
##
## timepoint = X3, condition = equi:
## contrast estimate SE df t.ratio p.value
## ge_maj - ge_min -0.278 0.371 216 -0.750 0.4539
##
## timepoint = X1, condition = int:
## contrast estimate SE df t.ratio p.value
## ge_maj - ge_min -0.538 0.357 216 -1.510 0.1326
##
## timepoint = X3, condition = int:
## contrast estimate SE df t.ratio p.value
## ge_maj - ge_min -0.308 0.400 216 -0.771 0.4417
pairs(emmeans(fit, specs="condition", by=c("timepoint","ge_minority")))
## timepoint = X1, ge_minority = ge_maj:
## contrast estimate SE df t.ratio p.value
## con - equi 0.6107 0.269 216 2.274 0.0616
## con - int 0.1367 0.264 216 0.517 0.8630
## equi - int -0.4740 0.253 216 -1.871 0.1496
##
## timepoint = X3, ge_minority = ge_maj:
## contrast estimate SE df t.ratio p.value
## con - equi 0.2069 0.301 216 0.687 0.7712
## con - int -0.4953 0.296 216 -1.671 0.2186
## equi - int -0.7022 0.284 216 -2.472 0.0377
##
## timepoint = X1, ge_minority = ge_min:
## contrast estimate SE df t.ratio p.value
## con - equi 0.3250 0.421 216 0.771 0.7211
## con - int -0.5427 0.445 216 -1.221 0.4423
## equi - int -0.8677 0.415 216 -2.090 0.0942
##
## timepoint = X3, ge_minority = ge_min:
## contrast estimate SE df t.ratio p.value
## con - equi 0.6356 0.473 216 1.345 0.3719
## con - int -0.0965 0.499 216 -0.194 0.9795
## equi - int -0.7321 0.465 216 -1.573 0.2595
##
## P value adjustment: tukey method for comparing a family of 3 estimates
names(long3)
## [1] "UID" "Q2_1" "Q2_2" "Q2_3"
## [5] "Q2_4" "Q2_5" "Q2_6" "Q2_7"
## [9] "Q2_8" "Q3_1" "Q3_2" "Q3_3"
## [13] "Q3_4" "Q3_5" "Q3_6" "Q3_7"
## [17] "Q3_8" "Q3_9" "Q3_10" "Q3_11"
## [21] "Q3_12" "Q4_1" "Q4_2" "Q4_3"
## [25] "Q4_4" "Q4_5" "condition" "ins"
## [29] "Q47_1_pmaps" "Q47_2_pmaps" "Q47_3_pmaps" "Q47_4_pmaps"
## [33] "Q47_5_pmaps" "Q47_6_pmaps" "Q47_7_pmaps" "Q47_8_pmaps"
## [37] "re_other" "re_asian" "re_black" "re_white"
## [41] "re_latin" "re_mena" "re_nhpi" "re_aian"
## [45] "ge_other" "ge_cis" "ge_m" "ge_gq"
## [49] "ge_nb" "ge_w" "pre_misscount" "post_misscount"
## [53] "follow_misscount" "timepoint" "bel" "rec"
## [57] "inst" "pof" "exp" "anx"
## [61] "triv" "vig" "re_minority" "ge_minority"
## [65] "gere" "belc" "recc" "instc"
## [69] "pofc" "expc" "anxc"
d <- na.omit(subset(long3, timepoint == 1, select=c(grep("_pmaps",colnames(long3)))))
ev <- eigen(cor(d)) # get eigenvalues
ap <- parallel(subject = nrow(d), var = ncol(d),
rep = 100,cent = .05)
nS <- nScree(x = ev$values, aparallel = ap$eigen$qevpea)
plotnScree(nS)
fit <- factanal(d, 2, rotation="promax")
print(fit, digits = 3, cutoff = 0.3, sort = TRUE)
##
## Call:
## factanal(x = d, factors = 2, rotation = "promax")
##
## Uniquenesses:
## Q47_1_pmaps Q47_2_pmaps Q47_3_pmaps Q47_4_pmaps Q47_5_pmaps Q47_6_pmaps
## 0.220 0.156 0.120 0.317 0.518 0.107
## Q47_7_pmaps Q47_8_pmaps
## 0.190 0.540
##
## Loadings:
## Factor1 Factor2
## Q47_1_pmaps 0.905
## Q47_2_pmaps 0.938
## Q47_3_pmaps 0.945
## Q47_4_pmaps 0.807
## Q47_5_pmaps 0.659
## Q47_6_pmaps 0.973
## Q47_7_pmaps 0.920
## Q47_8_pmaps 0.634
##
## Factor1 Factor2
## SS loadings 3.267 2.638
## Proportion Var 0.408 0.330
## Cumulative Var 0.408 0.738
##
## Factor Correlations:
## Factor1 Factor2
## Factor1 1.000 -0.408
## Factor2 -0.408 1.000
##
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 18.14 on 13 degrees of freedom.
## The p-value is 0.152
psych::alpha(subset(d, select=c(1:4)))
##
## Reliability analysis
## Call: psych::alpha(x = subset(d, select = c(1:4)))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.94 0.94 0.92 0.79 15 0.0072 2.7 1.5 0.79
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.92 0.94 0.95
## Duhachek 0.92 0.94 0.95
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Q47_1_pmaps 0.92 0.92 0.89 0.79 11.6 0.0100 0.00349 0.77
## Q47_2_pmaps 0.91 0.91 0.88 0.78 10.4 0.0108 0.00246 0.77
## Q47_3_pmaps 0.90 0.91 0.87 0.76 9.7 0.0115 0.00155 0.75
## Q47_4_pmaps 0.94 0.94 0.91 0.83 15.0 0.0075 0.00076 0.83
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## Q47_1_pmaps 212 0.92 0.92 0.88 0.85 2.8 1.7
## Q47_2_pmaps 212 0.93 0.93 0.91 0.87 2.5 1.6
## Q47_3_pmaps 212 0.94 0.94 0.93 0.89 2.6 1.6
## Q47_4_pmaps 212 0.89 0.89 0.82 0.80 2.9 1.8
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 7 miss
## Q47_1_pmaps 0.27 0.22 0.18 0.15 0.10 0.05 0.03 0
## Q47_2_pmaps 0.35 0.22 0.19 0.13 0.07 0.01 0.03 0
## Q47_3_pmaps 0.32 0.26 0.17 0.08 0.11 0.02 0.04 0
## Q47_4_pmaps 0.29 0.21 0.17 0.12 0.08 0.06 0.06 0
psych::alpha(subset(d, select=c(5:8)))
##
## Reliability analysis
## Call: psych::alpha(x = subset(d, select = c(5:8)))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.87 0.88 0.86 0.64 7.1 0.015 4.8 1.2 0.61
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.84 0.87 0.9
## Duhachek 0.84 0.87 0.9
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Q47_5_pmaps 0.86 0.87 0.84 0.69 6.8 0.017 0.0187 0.61
## Q47_6_pmaps 0.80 0.80 0.73 0.57 4.0 0.024 0.0037 0.60
## Q47_7_pmaps 0.81 0.81 0.75 0.59 4.3 0.023 0.0063 0.61
## Q47_8_pmaps 0.87 0.88 0.85 0.70 7.0 0.016 0.0180 0.65
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## Q47_5_pmaps 212 0.81 0.81 0.69 0.65 4.6 1.5
## Q47_6_pmaps 212 0.91 0.91 0.91 0.83 5.0 1.4
## Q47_7_pmaps 212 0.89 0.90 0.88 0.80 5.1 1.4
## Q47_8_pmaps 212 0.81 0.80 0.68 0.64 4.7 1.6
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 7 miss
## Q47_5_pmaps 0.03 0.08 0.09 0.24 0.29 0.18 0.10 0
## Q47_6_pmaps 0.03 0.03 0.06 0.17 0.35 0.24 0.12 0
## Q47_7_pmaps 0.03 0.02 0.07 0.11 0.33 0.32 0.11 0
## Q47_8_pmaps 0.06 0.06 0.07 0.25 0.24 0.21 0.12 0
fit <- aov_ez(id="UID", dv="triv", data=long3, between=c("condition"), covariate = c("belc","anxc"), factorize = F)
## Warning: Numerical variables NOT centered on 0 (i.e., likely bogus results): NA,
## NA
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## AVINR5897Y, BIGPC8577I, BJCYW9313A, BLJCY6370P, BMMVL7994H, CHADU6389C, CPHXV3544C, CZHNG1043X, DDWDZ2339J, DEZFY5154Y, DWEFP0640O, EKHKA1320A, ELPMT5534R, ENHLY4123X, ENLUW4800F, EPVXZ9711C, EQRSC1726I, ETLLC3301O, FBPYG4513B, FDKWO5036F, FDRFT1976E, FWVEK3877Q, FXXAG6538G, GFITG4909Q, GLBEZ3029S, GOSED0340T, GQBDI2909G, HBIFA5295Q, HDDDR5624S, HHTYJ9067S, HMITM1029R, HOQSF9391C, ICNZW6469J, IDVCE3660F, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, KOGCS2814C, KTTQO0724Q, KVDIE4239W, KYLRY5373V, LHJVD2959Y, LJTCD1624Z, LOPWH7294L, MHKVA5255G, MIBGQ4458A, MOLUH1393I, MRECG6247Z, NGWDC4182S, NLEXE0538V, NOTVI7273I, NPEEK2345M, NVKGR6192V, OIJRE9661O, OSNKC4976B, PESUP1240W, PHIAU9193C, PIMZK0270T, PPDBO1961W, PSAJP5500H, QFYEE1921U, QHDSO1457K, QONZX2504S, QXQOZ9556W, SACNZ0120A, SBUTD1285I, SJOBN2309Y, SLYQX2976O, SRAGV3585D, STHXN7574W, SVRGK7887X, TFZAE0194I, TXDDF1309A, UGNMS7589N, UHUGQ9517B, UIQOX7318R, VETKA3898N, VNSSV4633E, VPMAK8781R, VYPFA1221S, WHDVV0726Z, WIGYE4790M, WUVZT3628Z, WVCXC4155L, WVPCP3440D, XBYQZ8055T, XXJXG2725P, YIWQF4610I, YWQXI5864U, YXZRO8024H, YZKBO8058U, YZTVA8918Z, YZVMS4925G, ZIKXQ5287N, ZQCVQ9164X, ZYFYX4806X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: triv
## Effect df MSE F ges p.value
## 1 condition 2, 309 1.40 1.11 .007 .329
## 2 belc 1, 309 1.40 0.18 <.001 .672
## 3 anxc 1, 309 1.40 0.00 <.001 .974
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(fit, x = "condition")
Control group only: - Significant main effect of gender/race (p = .059). Seems to be driven by difference in trivialization between majority women/nb and minority men (p = .05)
long4 <- subset(long3, condition == "con")
fit <- aov_ez(id="UID", dv="triv", data=long4, between=c("gere"), covariate = c("belc","anxc"), factorize = F)
## Warning: Numerical variables NOT centered on 0 (i.e., likely bogus results): NA,
## NA
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## EKHKA1320A, EPVXZ9711C, ETLLC3301O, FDKWO5036F, FXXAG6538G, GFITG4909Q, GQBDI2909G, JDRGO5214D, JTIXL1749F, KTTQO0724Q, NGWDC4182S, NLEXE0538V, OIHCW0935B, OIJRE9661O, PESUP1240W, PPDBO1961W, PSAJP5500H, QONZX2504S, STHXN7574W, SVRGK7887X, TFZAE0194I, VBCFZ4637X, VETKA3898N, VPMAK8781R, WUVZT3628Z, XBYQZ8055T, XKCRD7820V, YWQXI5864U, YXZRO8024H, ZQCVQ9164X, ZYFYX4806X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: gere
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: triv
## Effect df MSE F ges p.value
## 1 gere 3, 89 1.25 1.92 .061 .132
## 2 belc 1, 89 1.25 0.53 .006 .467
## 3 anxc 1, 89 1.25 5.76 * .061 .018
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(fit, x = "gere")
pairs(emmeans(fit, specs = "gere"))
## contrast estimate SE df t.ratio p.value
## men of color - white men 0.256 0.276 89 0.928 0.7902
## men of color - (white women/nb) 0.562 0.369 89 1.524 0.4279
## men of color - (women/nb of color) -0.563 0.440 89 -1.278 0.5793
## white men - (white women/nb) 0.306 0.393 89 0.778 0.8642
## white men - (women/nb of color) -0.819 0.468 89 -1.749 0.3051
## (white women/nb) - (women/nb of color) -1.125 0.504 89 -2.234 0.1219
##
## P value adjustment: tukey method for comparing a family of 4 estimates
summ <- summarySE(long4, measurevar="triv", groupvars=c("gere"), na.rm = T)
summ
## gere N triv sd se ci
## 1 men of color 42 3.273810 1.3203491 0.2037343 0.4114497
## 2 white men 32 2.812500 1.0453430 0.1847923 0.3768863
## 3 white women/nb 14 2.678571 1.0535132 0.2815633 0.6082804
## 4 women/nb of color 8 4.000000 0.8451543 0.2988072 0.7065666
## 5 <NA> 6 3.750000 1.0246951 0.4183300 1.0753515
All conditions: - Significant main effect of condition (.016), gender/race (< .001) - Significant interaction (p = .006)
Post-hoc tests, condition: - Equivalent group significantly lower than control (.016) and intervention (.057)
Post-hoc tests, gender/race: - Majority men significantly higher than majority women/nb (.014) - Majority men significantly higher than minority women/nb (.043) - Minority men significantly higher than majority women/nb (< .001) - Minority men significantly higher than minority women/nb (.001)
Post-hoc tests, interaction: - Minority men in intervention condition significantly lower than minority men in control and equivalent conditions (p = .003 & p = .001) - In control group: Majority men significantly lower than minority men (.099) and majority women/nb significantly lower than minority men (.081) - In equivalent group: Majority men significantly higher than majority women/nb (p = .006) - In intervention group: Minority men significantly higher than majority men (p = .008), majority women/nb (p < .001), and minority women/nb (p < .001); majority men significantly higher than minority women/nb (p - .013) - Majority men did not differ by group - Majority women/nb lower in equivalent when compared to control (p = .071) - Minority men significantly lower in equivalent when compared to control (p = .003) and intervention (p < .001) - Minority women/nb did not differ by group
table(long3$gere, long3$condition)
##
## con equi int
## men of color 46 54 70
## white men 48 56 54
## white women/nb 22 28 20
## women/nb of color 14 20 18
fit <- aov_ez(id="UID", dv="triv", data=long3, between=c("condition","gere"), covariate = c("belc","anxc"), factorize = F)
## Warning: Numerical variables NOT centered on 0 (i.e., likely bogus results): NA,
## NA
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## AVINR5897Y, BIGPC8577I, BJCYW9313A, BLJCY6370P, BMMVL7994H, CHADU6389C, CPHXV3544C, CZHNG1043X, DDWDZ2339J, DEZFY5154Y, DWEFP0640O, EKHKA1320A, ELPMT5534R, ENHLY4123X, ENLUW4800F, EPVXZ9711C, EQRSC1726I, ETLLC3301O, FBPYG4513B, FDKWO5036F, FDRFT1976E, FWVEK3877Q, FXXAG6538G, GFITG4909Q, GLBEZ3029S, GOSED0340T, GQBDI2909G, HBIFA5295Q, HDDDR5624S, HHTYJ9067S, HMITM1029R, HOQSF9391C, ICNZW6469J, IDVCE3660F, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, KOGCS2814C, KTTQO0724Q, KVDIE4239W, KYLRY5373V, LHJVD2959Y, LJTCD1624Z, LOPWH7294L, MHKVA5255G, MIBGQ4458A, MOLUH1393I, MRECG6247Z, NGWDC4182S, NLEXE0538V, NOTVI7273I, NPEEK2345M, NVKGR6192V, OIHCW0935B, OIJRE9661O, OSNKC4976B, PESUP1240W, PHIAU9193C, PIMZK0270T, PPDBO1961W, PSAJP5500H, QFYEE1921U, QHDSO1457K, QONZX2504S, QXQOZ9556W, SACNZ0120A, SBUTD1285I, SJOBN2309Y, SKZTW6437N, SLYQX2976O, SRAGV3585D, STHXN7574W, SVRGK7887X, TFZAE0194I, TXDDF1309A, UGNMS7589N, UHUGQ9517B, UIQOX7318R, VBCFZ4637X, VETKA3898N, VNSSV4633E, VPMAK8781R, VYPFA1221S, WHDVV0726Z, WIGYE4790M, WUVZT3628Z, WVCXC4155L, WVPCP3440D, XBYQZ8055T, XKCRD7820V, XXJXG2725P, YIWQF4610I, YWQXI5864U, YXZRO8024H, YZKBO8058U, YZTVA8918Z, YZVMS4925G, ZIKXQ5287N, ZQCVQ9164X, ZYFYX4806X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition, gere
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: triv
## Effect df MSE F ges p.value
## 1 condition 2, 292 1.27 2.25 .015 .107
## 2 gere 3, 292 1.27 2.07 .021 .104
## 3 belc 1, 292 1.27 0.01 <.001 .938
## 4 anxc 1, 292 1.27 0.00 <.001 .947
## 5 condition:gere 6, 292 1.27 5.60 *** .103 <.001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(fit, x = "condition")
## NOTE: Results may be misleading due to involvement in interactions
pairs(emmeans(fit, specs = "condition"))
## NOTE: Results may be misleading due to involvement in interactions
## contrast estimate SE df t.ratio p.value
## con - equi 0.3849 0.194 292 1.984 0.1180
## con - int 0.3345 0.203 292 1.651 0.2261
## equi - int -0.0504 0.198 292 -0.255 0.9648
##
## Results are averaged over the levels of: gere
## P value adjustment: tukey method for comparing a family of 3 estimates
afex_plot(fit, x = "gere")
## NOTE: Results may be misleading due to involvement in interactions
pairs(emmeans(fit, specs = "gere"))
## NOTE: Results may be misleading due to involvement in interactions
## contrast estimate SE df t.ratio p.value
## men of color - white men -0.0565 0.151 292 -0.375 0.9820
## men of color - (white women/nb) 0.4839 0.216 292 2.237 0.1158
## men of color - (women/nb of color) 0.0377 0.243 292 0.155 0.9987
## white men - (white women/nb) 0.5404 0.224 292 2.407 0.0779
## white men - (women/nb of color) 0.0943 0.256 292 0.369 0.9829
## (white women/nb) - (women/nb of color) -0.4461 0.285 292 -1.564 0.4009
##
## Results are averaged over the levels of: condition
## P value adjustment: tukey method for comparing a family of 4 estimates
afex_plot(fit, x = "gere", trace = "condition")
pairs(emmeans(fit, specs = "condition", by=c("gere")))
## gere = men of color:
## contrast estimate SE df t.ratio p.value
## con - equi 0.7262 0.251 292 2.896 0.0113
## con - int -0.0385 0.247 292 -0.156 0.9867
## equi - int -0.7647 0.249 292 -3.072 0.0066
##
## gere = white men:
## contrast estimate SE df t.ratio p.value
## con - equi -0.6756 0.265 292 -2.552 0.0301
## con - int -0.2992 0.269 292 -1.111 0.5080
## equi - int 0.3765 0.254 292 1.483 0.3007
##
## gere = white women/nb:
## contrast estimate SE df t.ratio p.value
## con - equi 0.5376 0.426 292 1.262 0.4177
## con - int -0.2723 0.470 292 -0.579 0.8314
## equi - int -0.8099 0.470 292 -1.722 0.1986
##
## gere = women/nb of color:
## contrast estimate SE df t.ratio p.value
## con - equi 0.9513 0.534 292 1.781 0.1779
## con - int 1.9478 0.535 292 3.639 0.0009
## equi - int 0.9965 0.506 292 1.971 0.1213
##
## P value adjustment: tukey method for comparing a family of 3 estimates
afex_plot(fit, x = "condition", trace = "gere")
pairs(emmeans(fit, specs = "gere", by=c("condition")))
## condition = con:
## contrast estimate SE df t.ratio p.value
## men of color - white men 0.498 0.270 292 1.845 0.2547
## men of color - (white women/nb) 0.625 0.353 292 1.769 0.2904
## men of color - (women/nb of color) -0.699 0.437 292 -1.599 0.3806
## white men - (white women/nb) 0.127 0.369 292 0.344 0.9860
## white men - (women/nb of color) -1.197 0.453 292 -2.640 0.0431
## (white women/nb) - (women/nb of color) -1.324 0.501 292 -2.644 0.0427
##
## condition = equi:
## contrast estimate SE df t.ratio p.value
## men of color - white men -0.904 0.247 292 -3.656 0.0017
## men of color - (white women/nb) 0.436 0.354 292 1.230 0.6080
## men of color - (women/nb of color) -0.474 0.403 292 -1.177 0.6421
## white men - (white women/nb) 1.340 0.352 292 3.812 0.0010
## white men - (women/nb of color) 0.430 0.403 292 1.067 0.7100
## (white women/nb) - (women/nb of color) -0.910 0.468 292 -1.946 0.2115
##
## condition = int:
## contrast estimate SE df t.ratio p.value
## men of color - white men 0.237 0.254 292 0.933 0.7872
## men of color - (white women/nb) 0.391 0.396 292 0.986 0.7573
## men of color - (women/nb of color) 1.287 0.399 292 3.222 0.0077
## white men - (white women/nb) 0.154 0.406 292 0.379 0.9814
## white men - (women/nb of color) 1.050 0.414 292 2.535 0.0567
## (white women/nb) - (women/nb of color) 0.896 0.505 292 1.775 0.2876
##
## P value adjustment: tukey method for comparing a family of 4 estimates
summ <- summarySE(long3, measurevar="triv", groupvars=c("condition","gere"), na.rm = T)
## Warning in qt(conf.interval/2 + 0.5, datac$N - 1): NaNs produced
summ
## condition gere N triv sd se ci
## 1 con men of color 42 3.273810 1.3203491 0.2037343 0.4114497
## 2 con white men 32 2.812500 1.0453430 0.1847923 0.3768863
## 3 con white women/nb 14 2.678571 1.0535132 0.2815633 0.6082804
## 4 con women/nb of color 8 4.000000 0.8451543 0.2988072 0.7065666
## 5 con <NA> 6 3.750000 1.0246951 0.4183300 1.0753515
## 6 equi men of color 42 2.583333 1.0457036 0.1613556 0.3258642
## 7 equi white men 42 3.488095 1.1541975 0.1780965 0.3596733
## 8 equi white women/nb 14 2.142857 0.6333237 0.1692629 0.3656702
## 9 equi women/nb of color 10 3.050000 1.3270686 0.4196559 0.9493277
## 10 equi <NA> 2 2.500000 0.0000000 0.0000000 0.0000000
## 11 int men of color 44 3.397727 1.1950944 0.1801673 0.3633419
## 12 int white men 40 3.112500 1.1968843 0.1892440 0.3827822
## 13 int white women/nb 10 2.950000 1.1352924 0.3590110 0.8121393
## 14 int women/nb of color 10 2.050000 0.6101002 0.1929306 0.4364394
## 15 int <NA> 0 NaN NA NA NaN
fit <- aov_ez(id="UID", dv="vig", data=long3, between=c("condition"), covariate = c("belc","anxc"), factorize = F)
## Warning: Numerical variables NOT centered on 0 (i.e., likely bogus results): NA,
## NA
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, ELPMT5534R, ETLLC3301O, FBPYG4513B, FDKWO5036F, GFITG4909Q, GLBEZ3029S, HMITM1029R, HOQSF9391C, ICNZW6469J, IDVCE3660F, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, KVDIE4239W, LHJVD2959Y, MIBGQ4458A, MOLUH1393I, NGWDC4182S, NLEXE0538V, NOTVI7273I, NPEEK2345M, OIJRE9661O, PESUP1240W, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SJOBN2309Y, SRAGV3585D, STHXN7574W, SVRGK7887X, UGNMS7589N, UHUGQ9517B, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, XXJXG2725P, YZKBO8058U, YZTVA8918Z, YZVMS4925G, ZIKXQ5287N, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: vig
## Effect df MSE F ges p.value
## 1 condition 2, 411 1.52 1.61 .008 .201
## 2 belc 1, 411 1.52 2.57 .006 .110
## 3 anxc 1, 411 1.52 2.04 .005 .154
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
fit <- aov_ez(id="UID", dv="vig", data=long4, between=c("gere"), covariate = c("belc","anxc"), factorize = F)
## Warning: Numerical variables NOT centered on 0 (i.e., likely bogus results): NA,
## NA
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## EKHKA1320A, ETLLC3301O, FDKWO5036F, GFITG4909Q, JDRGO5214D, JTIXL1749F, NGWDC4182S, NLEXE0538V, OIHCW0935B, OIJRE9661O, PESUP1240W, PPDBO1961W, PSAJP5500H, STHXN7574W, SVRGK7887X, VBCFZ4637X, VETKA3898N, VPMAK8781R, XKCRD7820V, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: gere
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: vig
## Effect df MSE F ges p.value
## 1 gere 3, 111 1.46 3.16 * .079 .027
## 2 belc 1, 111 1.46 0.08 <.001 .781
## 3 anxc 1, 111 1.46 0.00 <.001 .952
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(fit, x = "gere")
pairs(emmeans(fit, specs = "gere"))
## contrast estimate SE df t.ratio p.value
## men of color - white men -0.6980 0.264 111 -2.643 0.0457
## men of color - (white women/nb) -0.7586 0.350 111 -2.170 0.1380
## men of color - (women/nb of color) -0.6868 0.415 111 -1.655 0.3527
## white men - (white women/nb) -0.0607 0.365 111 -0.166 0.9984
## white men - (women/nb of color) 0.0112 0.435 111 0.026 1.0000
## (white women/nb) - (women/nb of color) 0.0718 0.455 111 0.158 0.9986
##
## P value adjustment: tukey method for comparing a family of 4 estimates
Significant main effect of gender/race (p = .090): - Majority men higher than minority women/nb (p = .099)
Significant interaction (p < .001): - In control group: majority men significantly higher than minority men (.064); minority men significantly lower than minority women (.004) - In equivalent group: majority men significantly lower than majority women/nb (.003) and minority men (.007) - In intervention group: no differences - Majority men: equivalent group significantly lower than intervention group (.020) - Majority women/nb: no significant differences - Minority men: control significantly lower than equivalent and intervention (< .001 & .020) - Minority women/nb: control significantly higher than equivalent (.078)
fit <- aov_ez(id="UID", dv="vig", data=long3, between=c("condition","gere"), covariate = c("belc","anxc"), factorize = F)
## Warning: Numerical variables NOT centered on 0 (i.e., likely bogus results): NA,
## NA
## Warning: More than one observation per cell, aggregating the data using mean
## (i.e, fun_aggregate = mean)!
## Warning: Missing values for following ID(s):
## DEZFY5154Y, EKHKA1320A, ELPMT5534R, ETLLC3301O, FBPYG4513B, FDKWO5036F, GFITG4909Q, GLBEZ3029S, HMITM1029R, HOQSF9391C, ICNZW6469J, IDVCE3660F, IQKYL9589B, IYGKJ9212Q, JDRGO5214D, JTIXL1749F, KHTGW5971J, KNGSJ3794D, KVDIE4239W, LHJVD2959Y, MIBGQ4458A, MOLUH1393I, NGWDC4182S, NLEXE0538V, NOTVI7273I, NPEEK2345M, OIHCW0935B, OIJRE9661O, PESUP1240W, PPDBO1961W, PSAJP5500H, QFYEE1921U, QXQOZ9556W, SBUTD1285I, SJOBN2309Y, SKZTW6437N, SRAGV3585D, STHXN7574W, SVRGK7887X, UGNMS7589N, UHUGQ9517B, VBCFZ4637X, VETKA3898N, VPMAK8781R, WIGYE4790M, WVCXC4155L, WVPCP3440D, XKCRD7820V, XXJXG2725P, YZKBO8058U, YZTVA8918Z, YZVMS4925G, ZIKXQ5287N, ZQCVQ9164X
## Removing those cases from the analysis.
## Contrasts set to contr.sum for the following variables: condition, gere
nice(fit)
## Anova Table (Type 3 tests)
##
## Response: vig
## Effect df MSE F ges p.value
## 1 condition 2, 390 1.51 0.26 .001 .772
## 2 gere 3, 390 1.51 2.29 + .017 .078
## 3 belc 1, 390 1.51 5.56 * .014 .019
## 4 anxc 1, 390 1.51 1.92 .005 .166
## 5 condition:gere 6, 390 1.51 2.46 * .036 .024
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
afex_plot(fit, x = "gere")
## NOTE: Results may be misleading due to involvement in interactions
pairs(emmeans(fit, specs = "gere"))
## NOTE: Results may be misleading due to involvement in interactions
## contrast estimate SE df t.ratio p.value
## men of color - white men -0.211 0.146 390 -1.446 0.4713
## men of color - (white women/nb) -0.384 0.190 390 -2.023 0.1813
## men of color - (women/nb of color) -0.447 0.214 390 -2.091 0.1577
## white men - (white women/nb) -0.173 0.196 390 -0.885 0.8126
## white men - (women/nb of color) -0.236 0.222 390 -1.061 0.7135
## (white women/nb) - (women/nb of color) -0.063 0.244 390 -0.258 0.9939
##
## Results are averaged over the levels of: condition
## P value adjustment: tukey method for comparing a family of 4 estimates
afex_plot(fit, x = "condition", trace = "gere")
pairs(emmeans(fit, specs = "gere", by = "condition"))
## condition = con:
## contrast estimate SE df t.ratio p.value
## men of color - white men -0.6760 0.265 390 -2.553 0.0536
## men of color - (white women/nb) -0.8436 0.345 390 -2.443 0.0708
## men of color - (women/nb of color) -0.7831 0.405 390 -1.934 0.2157
## white men - (white women/nb) -0.1676 0.352 390 -0.476 0.9644
## white men - (women/nb of color) -0.1071 0.413 390 -0.259 0.9939
## (white women/nb) - (women/nb of color) 0.0605 0.459 390 0.132 0.9992
##
## condition = equi:
## contrast estimate SE df t.ratio p.value
## men of color - white men -0.1610 0.242 390 -0.666 0.9099
## men of color - (white women/nb) -0.8032 0.304 390 -2.640 0.0427
## men of color - (women/nb of color) -0.2708 0.343 390 -0.789 0.8593
## white men - (white women/nb) -0.6422 0.304 390 -2.112 0.1510
## white men - (women/nb of color) -0.1098 0.342 390 -0.321 0.9886
## (white women/nb) - (women/nb of color) 0.5324 0.385 390 1.382 0.5112
##
## condition = int:
## contrast estimate SE df t.ratio p.value
## men of color - white men 0.2031 0.244 390 0.831 0.8396
## men of color - (white women/nb) 0.4938 0.332 390 1.488 0.4458
## men of color - (women/nb of color) -0.2880 0.334 390 -0.863 0.8238
## white men - (white women/nb) 0.2907 0.342 390 0.849 0.8310
## white men - (women/nb of color) -0.4911 0.347 390 -1.414 0.4914
## (white women/nb) - (women/nb of color) -0.7818 0.410 390 -1.905 0.2275
##
## P value adjustment: tukey method for comparing a family of 4 estimates
afex_plot(fit, x = "gere", trace = "condition")
pairs(emmeans(fit, specs = "condition", by = "gere"))
## gere = men of color:
## contrast estimate SE df t.ratio p.value
## con - equi -0.3657 0.251 390 -1.458 0.3125
## con - int -0.8016 0.245 390 -3.266 0.0034
## equi - int -0.4359 0.237 390 -1.836 0.1593
##
## gere = white men:
## contrast estimate SE df t.ratio p.value
## con - equi 0.1493 0.256 390 0.583 0.8291
## con - int 0.0775 0.260 390 0.298 0.9522
## equi - int -0.0718 0.249 390 -0.289 0.9551
##
## gere = white women/nb:
## contrast estimate SE df t.ratio p.value
## con - equi -0.3252 0.384 390 -0.846 0.6744
## con - int 0.5358 0.413 390 1.297 0.3978
## equi - int 0.8611 0.385 390 2.234 0.0668
##
## gere = women/nb of color:
## contrast estimate SE df t.ratio p.value
## con - equi 0.1467 0.459 390 0.319 0.9453
## con - int -0.3065 0.460 390 -0.667 0.7831
## equi - int -0.4531 0.413 390 -1.097 0.5163
##
## P value adjustment: tukey method for comparing a family of 3 estimates