# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("RTX", "GD", "LMT", "BA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "BA" "GD" "LMT" "RTX"
# weights
weights <- c(0.35, 0.30, 0.20, 0.15)
weights
## [1] 0.35 0.30 0.20 0.15
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 BA 0.35
## 2 GD 0.3
## 3 LMT 0.2
## 4 RTX 0.15
# tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = ("returns"))
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.0224
## 2 2013-02-28 0.0349
## 3 2013-03-28 0.0727
## 4 2013-04-30 0.0405
## 5 2013-05-31 0.0642
## 6 2013-06-28 0.0184
## 7 2013-07-31 0.0764
## 8 2013-08-30 -0.0114
## 9 2013-09-30 0.0773
## 10 2013-10-31 0.0423
## # … with 50 more rows
# Define risk free rate
rfr <- 0.0003
portfolio_SharpeRatio_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = SharpeRatio,
Rf = rfr,
FUN = "StdDev")
portfolio_SharpeRatio_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.555
# Create a custom function to calculate rolling SR
Calculate_rolling_SharpeRatio <- function(data) {
rolling_SR <- SharpeRatio(R = data,
Rf = rfr,
FUN = "StdDev")
return(rolling_SR)
}
# Define Window
window <- 24
# Transform data: calculate rolling sharpe ratio
rolling_sr_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = Calculate_rolling_SharpeRatio,
col_rename = "rolling_sr") %>%
select(-returns) %>%
na.omit()
rolling_sr_tbl
## # A tibble: 37 × 2
## date rolling_sr
## <date> <dbl>
## 1 2014-12-31 0.785
## 2 2015-01-30 0.888
## 3 2015-02-27 0.901
## 4 2015-03-31 0.800
## 5 2015-04-30 0.665
## 6 2015-05-29 0.619
## 7 2015-06-30 0.572
## 8 2015-07-31 0.554
## 9 2015-08-31 0.434
## 10 2015-09-30 0.359
## # … with 27 more rows
rolling_sr_tbl %>%
ggplot(aes(x = date, y = rolling_sr)) +
geom_line(color = "slateblue") +
# Labeling
labs(x = NULL, y = "Rolling Sharpe Ratio",
title = paste0("Rolling ", window, "-Month Sharpe Ratio")) +
theme(plot.title = element_text(hjust = 0.5))
How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?
The portfolio had a break around February of 2015. The only thing that I could find that happened in early 2015 that would effect the portfolio is the agreement between Ukraine and Russia. This agreement included a ceasefire and a withdraw of heavy weapons. This means that the demand for defense vehicles and systems went down. This would cause these defense and aerospace stocks to decrease.