# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("NFLX","TSLA","AAPL")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol)%>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl%>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "NFLX" "TSLA"
# weights
weights <- c(.25, .25, .2)
weights
## [1] 0.25 0.25 0.20
w_tble <- tibble(symbols, weights)
w_tble
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 NFLX 0.25
## 3 TSLA 0.2
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tble,
rebalance_on ="months",
col_rename = "Returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date Returns
## <date> <dbl>
## 1 2013-01-31 0.126
## 2 2013-02-28 0.0111
## 3 2013-03-28 0.0191
## 4 2013-04-30 0.104
## 5 2013-05-31 0.136
## 6 2013-06-28 -0.0301
## 7 2013-07-31 0.114
## 8 2013-08-30 0.103
## 9 2013-09-30 0.0429
## 10 2013-10-31 -0.00445
## # … with 50 more rows
# Define risk free rate
rfr <- 0.0003
portfolio_SharpeRatio_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = Returns,
performance_fun = SharpeRatio,
Rf = rfr,
FUN = "StdDev")
portfolio_SharpeRatio_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.410
Calculate_rolling_SharpeRatio <- function(data) {
rolling_SR <- SharpeRatio(R = data,
Rf = rfr,
FUN = "StdDev")
return(rolling_SR)
}
window <- 24
# Transform data: calculate rolling sharpe ratio
rolling_sr_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = Returns,
mutate_fun = rollapply,
width = window,
FUN = Calculate_rolling_SharpeRatio,
col_rename = "rolling_sr") %>%
select(-Returns) %>%
na.omit()
rolling_sr_tbl
## # A tibble: 37 × 2
## date rolling_sr
## <date> <dbl>
## 1 2014-12-31 0.548
## 2 2015-01-30 0.529
## 3 2015-02-27 0.552
## 4 2015-03-31 0.476
## 5 2015-04-30 0.478
## 6 2015-05-29 0.455
## 7 2015-06-30 0.500
## 8 2015-07-31 0.470
## 9 2015-08-31 0.377
## 10 2015-09-30 0.310
## # … with 27 more rows
rolling_sr_tbl %>%
ggplot(aes(x = date, y = rolling_sr)) +
geom_line(color = "cornflowerblue") +
labs(x = NULL, y = "Rolling Sharpe Ratio") +
annotate(geom = "text",
x = as.Date("2016-06-01"), y = 0.5,
label = str_glue("This portfolio started off really well
then dropped until late 2016
and has started to go back up."),
color ="red", size = 5)
How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?
It had a major drop off from 2015 to late 2017 but has continued steady increase after 2017. Im not really too sure why it had a break in November 2016 but most likely some form of economic shrtage.