Problem 1
A (Row total x column total)/Total sample size
B (200, 200)
Problem 2 A
z = 1.155
pnorm(z, lower.tail = F)
## [1] 0.1240452
B (1)
Draws <- rpois(40, 5)
t.test(Draws, alternative = "two.sided", mu = 5, conf.level=0.95)
##
## One Sample t-test
##
## data: Draws
## t = 0.62072, df = 39, p-value = 0.5384
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
## 4.491808 5.958192
## sample estimates:
## mean of x
## 5.225
t.test(Draws, alternative = "two.sided", mu = 8, conf.level=0.95)
##
## One Sample t-test
##
## data: Draws
## t = -7.6555, df = 39, p-value = 2.745e-09
## alternative hypothesis: true mean is not equal to 8
## 95 percent confidence interval:
## 4.491808 5.958192
## sample estimates:
## mean of x
## 5.225
Problem 3 A
library(ggplot2)
library(haven)
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(ggExtra)
## Warning: package 'ggExtra' was built under R version 4.2.2
library(sjPlot)
## Warning: package 'sjPlot' was built under R version 4.2.2
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
Data1 <- read_dta("C:\\Users\\Chandler\\Downloads\\apsrfinaldata.dta")
lm1 <- lm(Data1$pg ~ Data1$betweenstd + Data1$lngdpstd)
stargazer(lm1, type = 'html')
| Dependent variable: | |
| pg | |
| betweenstd | -0.228*** |
| (0.075) | |
| lngdpstd | 0.800*** |
| (0.075) | |
| Constant | 0.000 |
| (0.070) | |
| Observations | 46 |
| R2 | 0.793 |
| Adjusted R2 | 0.783 |
| Residual Std. Error | 0.473 (df = 43) |
| F Statistic | 82.249*** (df = 2; 43) |
| Note: | p<0.1; p<0.05; p<0.01 |
B
summary(lm1)
##
## Call:
## lm(formula = Data1$pg ~ Data1$betweenstd + Data1$lngdpstd)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.44477 -0.26331 -0.00354 0.15106 1.30639
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.047e-10 6.976e-02 0.000 1.00000
## Data1$betweenstd -2.283e-01 7.521e-02 -3.036 0.00406 **
## Data1$lngdpstd 7.997e-01 7.521e-02 10.633 1.3e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4732 on 43 degrees of freedom
## Multiple R-squared: 0.7928, Adjusted R-squared: 0.7831
## F-statistic: 82.25 on 2 and 43 DF, p-value: 2.013e-15
The standard error for betweenstd is 7.521e-02 and for lngdpstd it is also 7.521e-02.
C The t-statistc for betweenstd is -3.036 the absolute value of which is larger than the t critical values for .9, .95, and .99. This is thus associated with a p-value smaller than .01. We therefore reject H0: that betweenstd has no effect on the mean outcome of public goods. The t-statistc for lngdpstd is 10.633 the absolute value of which is much larger than the t critical values for .9, .95, and .99. This is thus associated with a p-value smaller than .01. We therefore reject H0: that lngdpstd has no effect on the mean outcome of public goods.
Problem 4
A
Data2 <- read_dta("C:\\Users\\Chandler\\Downloads\\MAR_2006.dta")
Polgr_P <- ggplot(Data2, aes(x=POLGR)) +
geom_histogram() +
theme(legend.position="none")
Excerp_P <- ggplot(Data2, aes(x=EXECREP)) +
geom_histogram() +
theme(legend.position="none")
Groupcon_P <- ggplot(Data2, aes(x=GROUPCON)) +
geom_histogram() +
theme(legend.position="none")
Polgr_P
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Excerp_P
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Groupcon_P
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
B
Data2$POLGR <- as.factor(Data2$POLGR)
Data2$EXECREP <- as.factor(Data2$EXECREP)
Chisq <- chisq.test(Data2$POLGR, Data2$EXECREP)
Chisqs <- summary(Chisq)
Chisq
##
## Pearson's Chi-squared test
##
## data: Data2$POLGR and Data2$EXECREP
## X-squared = 11.53, df = 4, p-value = 0.02121
Chisqs
## Length Class Mode
## statistic 1 -none- numeric
## parameter 1 -none- numeric
## p.value 1 -none- numeric
## method 1 -none- character
## data.name 1 -none- character
## observed 10 table numeric
## expected 10 -none- numeric
## residuals 10 table numeric
## stdres 10 table numeric
tab_xtab(
var.row = Data2$POLGR,
var.col = Data2$EXECREP,
show.row.prc = T)
| POLGR | EXECREP | Total | |
|---|---|---|---|
| 0 | 1 | ||
| 0 |
24 45.3 % |
29 54.7 % |
53 100 % |
| 1 |
43 60.6 % |
28 39.4 % |
71 100 % |
| 2 |
9 42.9 % |
12 57.1 % |
21 100 % |
| 3 |
28 58.3 % |
20 41.7 % |
48 100 % |
| 4 |
46 73 % |
17 27 % |
63 100 % |
| Total |
150 58.6 % |
106 41.4 % |
256 100 % |
χ2=11.530 · df=4 · Cramer’s V=0.212 · p=0.021 |