setwd("~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Env_muestra/data")
datos<-read.table("granofin.csv", header=T, sep=',')
datos$curva <- factor(datos$curva, levels = c("1", "2", "3"), 
                      labels = c("P3", "P1", "P2"))
datos$gen<-as.factor(datos$gen)
datos$curva<-as.factor(datos$curva)
datos$id<-as.factor(datos$id)
datos$muestra<-as.factor(datos$muestra)
datos$dia<-as.factor(datos$dia)
library(ggplot2)
library(Rmisc)
## Loading required package: lattice
## Loading required package: plyr
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ tibble  3.1.6     ✓ purrr   0.3.4
## ✓ tidyr   1.1.4     ✓ stringr 1.4.0
## ✓ readr   2.1.1     ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::arrange()   masks plyr::arrange()
## x purrr::compact()   masks plyr::compact()
## x dplyr::count()     masks plyr::count()
## x dplyr::failwith()  masks plyr::failwith()
## x dplyr::filter()    masks stats::filter()
## x dplyr::id()        masks plyr::id()
## x dplyr::lag()       masks stats::lag()
## x dplyr::mutate()    masks plyr::mutate()
## x dplyr::rename()    masks plyr::rename()
## x dplyr::summarise() masks plyr::summarise()
## x dplyr::summarize() masks plyr::summarize()
library(ggpubr)
## 
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
## 
##     mutate
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following objects are masked from 'package:plyr':
## 
##     desc, mutate
## The following object is masked from 'package:stats':
## 
##     filter
##Summary statistics
summ<-datos %>%
  group_by(curva, gen, dia) %>%
  get_summary_stats(cd.grano.d, type = "mean_sd")
summ %>% as_tibble() %>% print(n=Inf)
## # A tibble: 36 × 7
##    curva gen   dia   variable       n  mean    sd
##    <fct> <fct> <fct> <chr>      <dbl> <dbl> <dbl>
##  1 P3    CCN51 0     cd.grano.d     3  8.59 0.933
##  2 P3    CCN51 2     cd.grano.d     3  8.40 0.262
##  3 P3    CCN51 5     cd.grano.d     3  7.49 0.181
##  4 P3    CCN51 6     cd.grano.d     3  7.67 0.413
##  5 P3    ICS95 0     cd.grano.d     3 11.4  0.529
##  6 P3    ICS95 2     cd.grano.d     3 11.3  0.947
##  7 P3    ICS95 5     cd.grano.d     3 11.3  0.881
##  8 P3    ICS95 6     cd.grano.d     3 10.3  0.739
##  9 P3    TCS01 0     cd.grano.d     3  8.91 2.42 
## 10 P3    TCS01 2     cd.grano.d     3  7.98 0.831
## 11 P3    TCS01 5     cd.grano.d     3  7.78 0.921
## 12 P3    TCS01 6     cd.grano.d     3  8.36 1.05 
## 13 P1    CCN51 0     cd.grano.d     3  8.38 0.997
## 14 P1    CCN51 2     cd.grano.d     3  9.20 0.745
## 15 P1    CCN51 5     cd.grano.d     3  7.99 0.99 
## 16 P1    CCN51 6     cd.grano.d     3  7.98 0.419
## 17 P1    ICS95 0     cd.grano.d     3  9.02 1.13 
## 18 P1    ICS95 2     cd.grano.d     3  9.43 0.558
## 19 P1    ICS95 5     cd.grano.d     3  9.63 1.36 
## 20 P1    ICS95 6     cd.grano.d     3  9.63 0.824
## 21 P1    TCS01 0     cd.grano.d     3  6.76 0.146
## 22 P1    TCS01 2     cd.grano.d     3  7.47 1.74 
## 23 P1    TCS01 5     cd.grano.d     3  6.73 0.496
## 24 P1    TCS01 6     cd.grano.d     3  6.78 0.429
## 25 P2    CCN51 0     cd.grano.d     3  6.52 1.10 
## 26 P2    CCN51 2     cd.grano.d     3  5.97 1.10 
## 27 P2    CCN51 5     cd.grano.d     3  6.42 0.185
## 28 P2    CCN51 6     cd.grano.d     3  7.15 0.314
## 29 P2    ICS95 0     cd.grano.d     3 11.0  1.27 
## 30 P2    ICS95 2     cd.grano.d     3 11.6  0.313
## 31 P2    ICS95 5     cd.grano.d     3 11.7  0.381
## 32 P2    ICS95 6     cd.grano.d     3 10.8  0.495
## 33 P2    TCS01 0     cd.grano.d     3  8.23 0.516
## 34 P2    TCS01 2     cd.grano.d     3  6.69 0.393
## 35 P2    TCS01 5     cd.grano.d     3  8.85 0.394
## 36 P2    TCS01 6     cd.grano.d     3  8.21 0.16
##Visualization
bxp <- ggboxplot(
  datos, x = "curva", y = "cd.grano.d",
  color = "dia", palette = "jco",
  facet.by =  "gen"
)
bxp

##Check assumptions
##Outliers

datos %>%
  group_by(curva, gen, dia) %>%
  identify_outliers(cd.grano.d)
##  [1] curva      gen        dia        muestra    id         cd.grano  
##  [7] curva.1    protocolo  gen.1      muestra.1  dia.1      Testa     
## [13] Grano      cd.grano.c cd.grano.a cd.grano.d X          is.outlier
## [19] is.extreme
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:
  
norm<-datos %>%
  group_by(curva, gen, dia) %>%
  shapiro_test(cd.grano.d)
norm %>% as_tibble() %>% print(n=Inf)
## # A tibble: 36 × 6
##    curva gen   dia   variable   statistic     p
##    <fct> <fct> <fct> <chr>          <dbl> <dbl>
##  1 P3    CCN51 0     cd.grano.d     0.812 0.143
##  2 P3    CCN51 2     cd.grano.d     0.841 0.216
##  3 P3    CCN51 5     cd.grano.d     0.803 0.122
##  4 P3    CCN51 6     cd.grano.d     0.927 0.477
##  5 P3    ICS95 0     cd.grano.d     0.828 0.183
##  6 P3    ICS95 2     cd.grano.d     0.999 0.927
##  7 P3    ICS95 5     cd.grano.d     0.867 0.286
##  8 P3    ICS95 6     cd.grano.d     0.982 0.740
##  9 P3    TCS01 0     cd.grano.d     0.979 0.720
## 10 P3    TCS01 2     cd.grano.d     0.798 0.109
## 11 P3    TCS01 5     cd.grano.d     0.824 0.172
## 12 P3    TCS01 6     cd.grano.d     0.979 0.725
## 13 P1    CCN51 0     cd.grano.d     0.852 0.246
## 14 P1    CCN51 2     cd.grano.d     0.986 0.770
## 15 P1    CCN51 5     cd.grano.d     0.906 0.403
## 16 P1    CCN51 6     cd.grano.d     0.942 0.536
## 17 P1    ICS95 0     cd.grano.d     0.952 0.576
## 18 P1    ICS95 2     cd.grano.d     0.974 0.689
## 19 P1    ICS95 5     cd.grano.d     0.973 0.685
## 20 P1    ICS95 6     cd.grano.d     0.828 0.182
## 21 P1    TCS01 0     cd.grano.d     0.998 0.913
## 22 P1    TCS01 2     cd.grano.d     0.944 0.543
## 23 P1    TCS01 5     cd.grano.d     0.989 0.799
## 24 P1    TCS01 6     cd.grano.d     0.815 0.151
## 25 P2    CCN51 0     cd.grano.d     0.814 0.149
## 26 P2    CCN51 2     cd.grano.d     1.00  0.972
## 27 P2    CCN51 5     cd.grano.d     0.917 0.442
## 28 P2    CCN51 6     cd.grano.d     0.976 0.702
## 29 P2    ICS95 0     cd.grano.d     0.880 0.325
## 30 P2    ICS95 2     cd.grano.d     0.975 0.696
## 31 P2    ICS95 5     cd.grano.d     0.971 0.674
## 32 P2    ICS95 6     cd.grano.d     0.809 0.135
## 33 P2    TCS01 0     cd.grano.d     0.992 0.827
## 34 P2    TCS01 2     cd.grano.d     1.00  0.986
## 35 P2    TCS01 5     cd.grano.d     0.994 0.854
## 36 P2    TCS01 6     cd.grano.d     0.888 0.349
##Create QQ plot for each cell of design:
    
    ggqqplot(datos, "cd.grano.d", ggtheme = theme_bw()) +
    facet_grid(dia~ curva*gen, labeller = "label_both")

##Homogneity of variance assumption
    
##Compute the Levene’s test at each level of the within-subjects factor, here time variable:
      
lev<-datos %>%
      group_by(dia) %>%
      levene_test(cd.grano.d ~ curva*gen)
lev %>% as_tibble() %>% print(n=Inf)
## # A tibble: 4 × 5
##   dia     df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         8    18     0.726 0.667
## 2 2         8    18     0.769 0.634
## 3 5         8    18     0.671 0.710
## 4 6         8    18     0.509 0.834
##Computation
      
res.aov <- anova_test(
        data = datos, dv = cd.grano.d, wid = id,
        within = dia, between = c(curva, gen)
      )
      get_anova_table(res.aov)
## ANOVA Table (type II tests)
## 
##          Effect  DFn   DFd      F        p p<.05   ges
## 1         curva 2.00 18.00  6.117 9.00e-03     * 0.202
## 2           gen 2.00 18.00 88.422 4.90e-10     * 0.785
## 3           dia 2.22 40.01  0.357 7.24e-01       0.012
## 4     curva:gen 4.00 18.00 10.113 1.80e-04     * 0.455
## 5     curva:dia 4.45 40.01  2.554 4.80e-02     * 0.151
## 6       gen:dia 4.45 40.01  1.298 2.86e-01       0.083
## 7 curva:gen:dia 8.89 40.01  1.037 4.28e-01       0.127
##Splitting dataframe by temperature ramp
## Protocol 3 (P3)

datos.curve1<-filter(datos, curva=="P3")

##Check assumptions
##Outliers

datos.curve1 %>%
  group_by(gen, dia) %>%
  identify_outliers(cd.grano.d)
##  [1] gen        dia        curva      muestra    id         cd.grano  
##  [7] curva.1    protocolo  gen.1      muestra.1  dia.1      Testa     
## [13] Grano      cd.grano.c cd.grano.a cd.grano.d X          is.outlier
## [19] is.extreme
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm1<-datos.curve1 %>%
  group_by(gen, dia) %>%
  shapiro_test(cd.grano.d)
norm1 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 12 × 5
##    gen   dia   variable   statistic     p
##    <fct> <fct> <chr>          <dbl> <dbl>
##  1 CCN51 0     cd.grano.d     0.812 0.143
##  2 CCN51 2     cd.grano.d     0.841 0.216
##  3 CCN51 5     cd.grano.d     0.803 0.122
##  4 CCN51 6     cd.grano.d     0.927 0.477
##  5 ICS95 0     cd.grano.d     0.828 0.183
##  6 ICS95 2     cd.grano.d     0.999 0.927
##  7 ICS95 5     cd.grano.d     0.867 0.286
##  8 ICS95 6     cd.grano.d     0.982 0.740
##  9 TCS01 0     cd.grano.d     0.979 0.720
## 10 TCS01 2     cd.grano.d     0.798 0.109
## 11 TCS01 5     cd.grano.d     0.824 0.172
## 12 TCS01 6     cd.grano.d     0.979 0.725
##Create QQ plot for each cell of design:

ggqqplot(datos.curve1, "cd.grano.d", ggtheme = theme_bw()) +
  facet_grid(dia~ curva*gen, labeller = "label_both")

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev1<-datos.curve1 %>%
  group_by(dia) %>%
  levene_test(cd.grano.d ~ gen)
lev1 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 4 × 5
##   dia     df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6     1.28  0.344
## 2 2         2     6     0.553 0.602
## 3 5         2     6     0.476 0.643
## 4 6         2     6     0.568 0.595
##Computation

res.aov1 <- anova_test(
  data = datos.curve1, dv = cd.grano.d, wid = id,
  within = dia, between = gen
)
get_anova_table(res.aov1)
## ANOVA Table (type II tests)
## 
##    Effect DFn DFd      F        p p<.05   ges
## 1     gen   2   6 27.237 0.000977     * 0.739
## 2     dia   3  18  1.520 0.243000       0.148
## 3 gen:dia   6  18  0.573 0.747000       0.116
#CCN51
datos.ccn<-filter(datos.curve1, gen=="CCN51")
res.aov.ccn1 <- anova_test(
  data = datos.ccn, dv = cd.grano.d, wid = id,
  within = dia
)
get_anova_table(res.aov.ccn1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1    dia   3   6 3.253 0.102       0.532
#ICS95
datos.ics<-filter(datos.curve1, gen=="ICS95")
res.aov.ics1 <- anova_test(
  data = datos.ics, dv = cd.grano.d, wid = id,
  within = dia
)
get_anova_table(res.aov.ics1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1    dia   3   6 2.245 0.184       0.341
#TCS01
datos.tcs<-filter(datos.curve1, gen=="TCS01")
res.aov.tcs1 <- anova_test(
  data = datos.tcs, dv = cd.grano.d, wid = id,
  within = dia
)
get_anova_table(res.aov.tcs1)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F    p p<.05   ges
## 1    dia   3   6 0.351 0.79       0.117
## Protocol 1 (P1)

datos.curve2<-filter(datos, curva=="P1")

##Check assumptions
##Outliers

datos.curve2 %>%
  group_by(gen, dia) %>%
  identify_outliers(cd.grano.d)
##  [1] gen        dia        curva      muestra    id         cd.grano  
##  [7] curva.1    protocolo  gen.1      muestra.1  dia.1      Testa     
## [13] Grano      cd.grano.c cd.grano.a cd.grano.d X          is.outlier
## [19] is.extreme
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm2<-datos.curve2 %>%
  group_by(gen, dia) %>%
  shapiro_test(cd.grano.d)
norm2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 12 × 5
##    gen   dia   variable   statistic     p
##    <fct> <fct> <chr>          <dbl> <dbl>
##  1 CCN51 0     cd.grano.d     0.852 0.246
##  2 CCN51 2     cd.grano.d     0.986 0.770
##  3 CCN51 5     cd.grano.d     0.906 0.403
##  4 CCN51 6     cd.grano.d     0.942 0.536
##  5 ICS95 0     cd.grano.d     0.952 0.576
##  6 ICS95 2     cd.grano.d     0.974 0.689
##  7 ICS95 5     cd.grano.d     0.973 0.685
##  8 ICS95 6     cd.grano.d     0.828 0.182
##  9 TCS01 0     cd.grano.d     0.998 0.913
## 10 TCS01 2     cd.grano.d     0.944 0.543
## 11 TCS01 5     cd.grano.d     0.989 0.799
## 12 TCS01 6     cd.grano.d     0.815 0.151
##Create QQ plot for each cell of design:

ggqqplot(datos.curve2, "cd.grano.d", ggtheme = theme_bw()) +
  facet_grid(dia~ curva*gen, labeller = "label_both")

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev2<-datos.curve2 %>%
  group_by(dia) %>%
  levene_test(cd.grano.d ~ gen)
lev2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 4 × 5
##   dia     df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6     0.779 0.500
## 2 2         2     6     0.829 0.481
## 3 5         2     6     0.514 0.622
## 4 6         2     6     0.214 0.813
##Computation

res.aov2 <- anova_test(
  data = datos.curve2, dv = cd.grano.d, wid = id,
  within = dia, between = gen
)
get_anova_table(res.aov2)
## ANOVA Table (type II tests)
## 
##    Effect  DFn  DFd      F     p p<.05   ges
## 1     gen 2.00 6.00 11.200 0.009     * 0.646
## 2     dia 1.48 8.91  1.401 0.285       0.107
## 3 gen:dia 2.97 8.91  0.675 0.587       0.103
#CCN51
datos.ccn<-filter(datos.curve2, gen=="CCN51")
res.aov.ccn2 <- anova_test(
  data = datos.ccn, dv = cd.grano.d, wid = id,
  within = dia
)
get_anova_table(res.aov.ccn2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1    dia   3   6 1.585 0.288       0.351
#ICS95
datos.ics<-filter(datos.curve2, gen=="ICS95")
res.aov.ics2 <- anova_test(
  data = datos.ics, dv = cd.grano.d, wid = id,
  within = dia
)
get_anova_table(res.aov.ics2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1    dia   3   6 0.699 0.586       0.083
#TCS01
datos.tcs<-filter(datos.curve2, gen=="TCS01")
res.aov.tcs2 <- anova_test(
  data = datos.tcs, dv = cd.grano.d, wid = id,
  within = dia
)
get_anova_table(res.aov.tcs2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1    dia   3   6 0.491 0.701       0.143
## Protocol 2 (P2)

datos.curve3<-filter(datos, curva=="P2")

##Check assumptions
##Outliers

datos.curve3 %>%
  group_by(gen, dia) %>%
  identify_outliers(cd.grano.d)
##  [1] gen        dia        curva      muestra    id         cd.grano  
##  [7] curva.1    protocolo  gen.1      muestra.1  dia.1      Testa     
## [13] Grano      cd.grano.c cd.grano.a cd.grano.d X          is.outlier
## [19] is.extreme
## <0 rows> (or 0-length row.names)
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:

norm2<-datos.curve3 %>%
  group_by(gen, dia) %>%
  shapiro_test(cd.grano.d)
norm2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 12 × 5
##    gen   dia   variable   statistic     p
##    <fct> <fct> <chr>          <dbl> <dbl>
##  1 CCN51 0     cd.grano.d     0.814 0.149
##  2 CCN51 2     cd.grano.d     1.00  0.972
##  3 CCN51 5     cd.grano.d     0.917 0.442
##  4 CCN51 6     cd.grano.d     0.976 0.702
##  5 ICS95 0     cd.grano.d     0.880 0.325
##  6 ICS95 2     cd.grano.d     0.975 0.696
##  7 ICS95 5     cd.grano.d     0.971 0.674
##  8 ICS95 6     cd.grano.d     0.809 0.135
##  9 TCS01 0     cd.grano.d     0.992 0.827
## 10 TCS01 2     cd.grano.d     1.00  0.986
## 11 TCS01 5     cd.grano.d     0.994 0.854
## 12 TCS01 6     cd.grano.d     0.888 0.349
##Create QQ plot for each cell of design:

ggqqplot(datos.curve3, "cd.grano.d", ggtheme = theme_bw()) +
  facet_grid(dia~ curva*gen, labeller = "label_both")

##Homogneity of variance assumption

##Compute the Levene’s test at each level of the within-subjects factor, here time variable:

lev2<-datos.curve3 %>%
  group_by(dia) %>%
  levene_test(cd.grano.d ~ gen)
lev2 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 4 × 5
##   dia     df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 0         2     6     0.226 0.804
## 2 2         2     6     1.52  0.292
## 3 5         2     6     0.431 0.668
## 4 6         2     6     0.332 0.730
##Computation

res.aov2 <- anova_test(
  data = datos.curve3, dv = cd.grano.d, wid = id,
  within = dia, between = gen
)
get_anova_table(res.aov2)
## ANOVA Table (type II tests)
## 
##    Effect  DFn  DFd       F        p p<.05   ges
## 1     gen 2.00 6.00 145.128 8.31e-06     * 0.931
## 2     dia 1.64 9.82   3.075 9.80e-02       0.270
## 3 gen:dia 3.27 9.82   2.966 8.20e-02       0.416
#CCN51
datos.ccn<-filter(datos.curve3, gen=="CCN51")
res.aov.ccn2 <- anova_test(
  data = datos.ccn, dv = cd.grano.d, wid = id,
  within = dia
)
get_anova_table(res.aov.ccn2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1    dia   3   6 1.393 0.333       0.295
#ICS95
datos.ics<-filter(datos.curve3, gen=="ICS95")
res.aov.ics2 <- anova_test(
  data = datos.ics, dv = cd.grano.d, wid = id,
  within = dia
)
get_anova_table(res.aov.ics2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd     F     p p<.05   ges
## 1    dia   3   6 0.775 0.549       0.278
#TCS01
datos.tcs<-filter(datos.curve3, gen=="TCS01")
res.aov.tcs2 <- anova_test(
  data = datos.tcs, dv = cd.grano.d, wid = id,
  within = dia
)
get_anova_table(res.aov.tcs2)
## ANOVA Table (type III tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1    dia   3   6 46.383 0.000152     * 0.863
## Gráficas por réplica y genotipo
datos$dia<-as.numeric(as.character(datos$dia))
##Gráfica por réplica compuesta
pht<- ggplot(datos, aes(x = dia)) +
  facet_grid(curva~gen*muestra) +
  geom_line(aes(y=cd.grano.d)) +
  geom_point(aes(y=cd.grano.d)) +
  scale_y_continuous(name = expression("Cd (mg*Kg"^"-1)")) +  # Etiqueta de la variable continua
  scale_x_continuous(name = "día", breaks=seq(0,7,1)) + # Etiqueta de los grupos
  theme(axis.line = element_line(colour = "black", # Personalización del tema
                                 size = 0.25)) +
  theme(text = element_text(size = 12))
pht

## Gráfica por genotipo

datos2<-summarySE (datos, measurevar = "cd.grano.d", groupvars = c("curva", "gen","dia"))
write.csv(datos2, "~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Env_muestra/data/datos_mean_grano.csv")

pht2<- ggplot(datos2, aes(x = dia)) +
  facet_grid(curva~gen) +
  geom_errorbar(aes(ymin=cd.grano.d-ci, ymax=cd.grano.d+ci), width=.1) +
  geom_line(aes(y=cd.grano.d)) +
  geom_point(aes(y=cd.grano.d)) +
  scale_y_continuous(name = expression("Cd (mg*Kg"^"-1)")) +  # Etiqueta de la variable continua
  scale_x_continuous(name = "día", breaks=seq(0,7,1)) + # Etiqueta de los grupos
  theme(axis.line = element_line(colour = "black", # Personalización del tema
                                 size = 0.25)) +
  theme(text = element_text(size = 15))  
pht2