library(tidyverse)   # for working with ease

Read data

The MESI data.

df <- read_csv("../data/mesi_main.csv")
## Warning: One or more parsing issues, see `problems()` for details

The GCME data (from a version of the db obtained by Kevin on 2019 03 25, eported tabs as CSV and read here).

df_gcme_data <- read_csv("../data-raw/table_var_exp_names_Data_tbl.csv")
## Warning: One or more parsing issues, see `problems()` for details
df_refs_gcme <- read_csv("../data-raw/table_var_exp_names_References.csv") %>% 
  select(1:3) %>% 
  select(exp = "Experiment Name", ref = "Reference", full_ref = "Full Reference")

CO2 experiments

Root:shoot ratio

The following is available in MESI.

df %>% 
  filter(treatment == "c") %>% 
  filter(experiment_type == "field") %>% 
  filter(response == "root_shoot_ratio") %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep_c)) %>% 
  knitr::kable()
exp n
46.77_9.87_c 3
climaite_c 6
duolun7_c 12
eucface_c 3
euroface_pa_c 9
euroface_pe_c 9
euroface_pn_c 9
euroface_pooled_c 3
jrbp_face_c 8
maricopaface_cotton91_c 68
maricopaface_wheat94_c 4
ornl_face_liqui_c 2
sca_c 3
swissface_chalk_c 12
swissface_forest_c 24
swissface_lolium_c 6

Look for relevant GCME data from CO2-only experiments

df_gcme_data %>% 
  filter(`Data type` == "root-shoot ratio" |
         `Data type` == "root:shoot (biomass)" |
         `Data type` == "root:shoot ratio" ) %>% 
  mutate(varnam = "root_shoot_ratio") %>% 
  mutate(rep = as.numeric(`Measurement replicates`)) %>% 
  rename(exp = `Experiment Name`) %>% 
  filter(str_ends(exp, "_c") | str_detect(exp, "_c")) %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep)) %>% 
  left_join(
    df_gcme_data %>% 
      filter(`Data type` == "root-shoot ratio" |
             `Data type` == "root:shoot (biomass)" |
             `Data type` == "root:shoot ratio" ) %>% 
      select(exp = "Experiment Name", ref = "Source Reference") %>% 
      distinct(),
    by = "exp"
  ) %>% 
  left_join(
    df_refs_gcme,
    by = c("exp", "ref")
  ) %>% 
  knitr::kable()
exp n ref full_ref
Duke_pinus1_c 1 Phillips et al.,2009 Phillips, R. P., Bernhardt, E. S., & Schlesinger, W. H. (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree physiology, 29(12), 1513-1523
Duke_pinus1_cf 1 Phillips et al.,2009 Phillips, R. P., Bernhardt, E. S., & Schlesinger, W. H. (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree physiology, 29(12), 1513-1523
Duke_pinus2_c 1 Phillips et al.,2009 Phillips, R. P., Bernhardt, E. S., & Schlesinger, W. H. (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree physiology, 29(12), 1513-1523
Duke_pinus2_cf 1 Phillips et al.,2009 Phillips, R. P., Bernhardt, E. S., & Schlesinger, W. H. (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree physiology, 29(12), 1513-1523
EUROFACE4_pa_c 3 Liberloo et al 2006 NA
EUROFACE4_pe_c 3 Liberloo et al 2006 NA
EUROFACE4_pn_c 3 Liberloo et al 2006 NA
MaricopaFACE_cotton91_c 68 Mauney et al., 1994 NA
MaricopaFACE_cotton91_cd 68 Mauney et al., 1994 Mauney, J. R., Kimball, B. A., Pinter Jr, P. J., LaMorte, R. L., Lewin, K. F., Nagy, J., & Hendrey, G. R. (1994). Growth and yield of cotton in response to a free-air carbon dioxide enrichment (FACE) environment. Agricultural and Forest Meteorology, 70(1-4), 49-67.
MaricopaFACE_cotton91_d 68 Mauney et al., 1994 Mauney, J. R., Kimball, B. A., Pinter Jr, P. J., LaMorte, R. L., Lewin, K. F., Nagy, J., & Hendrey, G. R. (1994). Growth and yield of cotton in response to a free-air carbon dioxide enrichment (FACE) environment. Agricultural and Forest Meteorology, 70(1-4), 49-67.
MaricopaFACE_wheat_93_c 4 Wall et al., 2006 NA
MaricopaFACE_wheat_93_ci 4 Wall et al., 2006 NA
POPFACE_pa_c 3 Calfapietera et al 2003a NA
POPFACE_pe_c 3 Calfapietera et al 2003a NA
POPFACE_pn_c 3 Calfapietera et al 2003a NA
TL_6_c NA Bassirirad et al. 1996 Bassirirad, H. et al. Response of Eriophorum vaginatum to CO2 enrichment at different soil temperatures: effects on growth, root respiration and PO4 3- uptake kinetics. New Phytol. (1996), 133, 423-430.
TL_6_cw- NA Bassirirad et al. 1996 Bassirirad, H. et al. Response of Eriophorum vaginatum to CO2 enrichment at different soil temperatures: effects on growth, root respiration and PO4 3- uptake kinetics. New Phytol. (1996), 133, 423-430.
TL_6_cw+ NA Bassirirad et al. 1996 Bassirirad, H. et al. Response of Eriophorum vaginatum to CO2 enrichment at different soil temperatures: effects on growth, root respiration and PO4 3- uptake kinetics. New Phytol. (1996), 133, 423-430.
UA2007_cw NA Buscher et al 2012 Büscher, M., Zavalloni, C., de Boulois, H. D., Vicca, S., Van den Berge, J., Declerck, S., … & Nijs, I. (2012). Effects of arbuscular mycorrhizal fungi on grassland productivity are altered by future climate and below-ground resource availability. Environmental and experimental botany, 81, 62-71.

Inorganic N

The following is available in MESI.

df %>% 
  filter(treatment == "c") %>% 
  filter(experiment_type == "field") %>% 
  filter(response %in% c("soil_no3-n", "soil_nh4-n", "soil_nh4", "soil_no3", "soil_solution_nh4", "soil_solution_no3")) %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep_c)) %>% 
  knitr::kable()
exp n
aspenface_pooled_c 12
biocon_c 21
climaite_c 54
dukeface_c 32
euroface_pooled_c 18
ornl_face_liqui2_c NA
riceface_nianyufarm_triticum_2012_c 30
riceface_zhongcun_2011_c 72
soyfacesoy8_c 48

Look for relevant GCME data from CO2-only experiments

df_gcme_data %>% 
  filter(`Data type` %in% c("soil solution NO3-", "soil solution mineral N", "soil solution NH4+", "soil NH4+", "soil NH4-N", "soil NH4+-N", "soil NO3-N" , "soil nitrate" , "soil NO3-", "soil ammonium" )) %>% 
  mutate(rep = as.numeric(`Measurement replicates`)) %>% 
  rename(exp = `Experiment Name`) %>% 
  filter(str_ends(exp, "_c") | str_detect(exp, "_c")) %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep)) %>% 
  left_join(
    df_gcme_data %>% 
      filter(`Data type` %in% c("soil solution NO3-", "soil solution mineral N", "soil solution NH4+", "soil NH4+", "soil NH4-N", "soil NH4+-N", "soil NO3-N" , "soil nitrate" , "soil NO3-", "soil ammonium" )) %>% 
      select(exp = "Experiment Name", ref = "Source Reference") %>% 
      distinct(),
    by = "exp"
  ) %>% 
  left_join(
    df_refs_gcme,
    by = c("exp", "ref")
  ) %>% 
  knitr::kable()
exp n ref full_ref
BioCON_c 48 Craine & Reich, 2001 Craine JM & Reich PB. 2001. Elevated CO2 and nitrogen supply alter leaf longevity of grassland species. New Phytologist, 150(2): 397-403.
BioCON_c 48 Antoninka et al., 2009 Antoninka A, Wolf JE, Bowker M, Classen AT, Johnson NC. 2009. Linking above‐and belowground responses to global change at community and ecosystem scales. Global Change Biology, 15(4): 914-929.
BioCON_c 48 Tu et al., 2017 Tu Q, He Z, Wu L, Xue K, Xie G, Chain P, Zhou J. 2017. Metagenomic reconstruction of nitrogen cycling pathways in a CO 2-enriched grassland ecosystem. Soil Biology and Biochemistry, 106: 99-108.
BioCON_cf 38 Antoninka et al., 2009 Antoninka A, Wolf JE, Bowker M, Classen AT, Johnson NC. 2009. Linking above‐and belowground responses to global change at community and ecosystem scales. Global Change Biology, 15(4): 914-929.
BioCON_cf 38 Craine & Reich, 2001 Craine JM & Reich PB. 2001. Elevated CO2 and nitrogen supply alter leaf longevity of grassland species. New Phytologist, 150(2): 397-403.
Brandbjerg_c 24 Andresen et al 2009 Andresen LC, Michelsen A, Jonasson S, Beier C, Ambus P (2009) Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought. Acta Oecologica, 35, 786–796.
Brandbjerg_c 24 Andresen et al 2010 Andresen LC, Michelsen A, Ambus P, Beier C (2010) Belowground heathland responses after 2 years of combined warming, elevated CO2 and summer drought. Biogeochemistry, 101, 27–42.
Brandbjerg_c 24 Carter et al 2011 NA
Brandbjerg_cd 24 Andresen et al 2009 Andresen LC, Michelsen A, Jonasson S, Beier C, Ambus P (2009) Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought. Acta Oecologica, 35, 786–796.
Brandbjerg_cd 24 Andresen et al 2010 Andresen LC, Michelsen A, Ambus P, Beier C (2010) Belowground heathland responses after 2 years of combined warming, elevated CO2 and summer drought. Biogeochemistry, 101, 27–42.
Brandbjerg_cd 24 Carter et al 2011 NA
Brandbjerg_cw 24 Andresen et al 2009 Andresen LC, Michelsen A, Jonasson S, Beier C, Ambus P (2009) Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought. Acta Oecologica, 35, 786–796.
Brandbjerg_cw 24 Andresen et al 2010 Andresen LC, Michelsen A, Ambus P, Beier C (2010) Belowground heathland responses after 2 years of combined warming, elevated CO2 and summer drought. Biogeochemistry, 101, 27–42.
Brandbjerg_cw 24 Carter et al 2011 NA
Brandbjerg_cwd 24 Andresen et al 2009 Andresen LC, Michelsen A, Jonasson S, Beier C, Ambus P (2009) Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought. Acta Oecologica, 35, 786–796.
Brandbjerg_cwd 24 Andresen et al 2010 Andresen LC, Michelsen A, Ambus P, Beier C (2010) Belowground heathland responses after 2 years of combined warming, elevated CO2 and summer drought. Biogeochemistry, 101, 27–42.
Brandbjerg_cwd 24 Carter et al 2011 NA
DRI_c 10 Johnson et al., 2000 Johnson DW, Cheng W, Ball JT (2000) Effects of [co2] and nitrogen fertilization on soils planted with ponderosa pine. Plant and Soil, 224, 99-113.
DUKE2_c 32 Drake et al., 2012 Drake JE, Oishi AC, Giasson MA, Oren R, Johnsen KH, Finzi, AC. 2012. Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO2] and N fertilization. Agricultural and Forest Meteorology, 165: 43-52.
DUKE2_c 32 Jackson et al., 2009 Jackson RB, Cook CW, Pippen JS, Palme SM. 2009. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm‐temperate forest. Ecology, 90(12): 3352-3366.
DUKE2_cf 8 Drake et al., 2012 Drake JE, Oishi AC, Giasson MA, Oren R, Johnsen KH, Finzi, AC. 2012. Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO2] and N fertilization. Agricultural and Forest Meteorology, 165: 43-52.
EucFACE_c 60 Hasegawa et al 2016 Hasegawa S, Macdonald CA, Power SA (2016) Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Glob Change Biol 22:1628–1643
EucFACE_c 60 Ochoa-Hueso et al 2017 Ochoa-Hueso R, Hughes J, Delgado-Baquerizo M, Drake JE, Tjoelker MG, Piñeiro J, Power SA (2017) Rhizosphere-driven increase in nitrogen and phosphorus availability under elevated atmospheric CO2 in a mature Eucalyptus woodland. Plant Soil 416:283–295
EUROFACE7_pooled_c 90 Lagomarsino et al 2006 NA
EUROFACE7_pooled_c 90 Liberloo et al 2006 NA
EUROFACE7_pooled_cf 90 Lagomarsino et al 2006 NA
EUROFACE7_pooled_cf 90 Liberloo et al 2006 NA
FACTS II FACE3_pt_c 3 Liu et al., 2009 Liu L, King JS, Booker FL, Giardina CP, Lee Allen H, Hu S (2009) Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO 2 : a microcosm study. Global Change Biology 15:441–453
FACTS II FACE7_pooled_c 12 Zak et al., 2007b Zak DR, Holmes WE, Pregitzer KS (2007) Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems. Ecology 88:2630–2639
GiFACE_c 84 Brenzinger et al. 2015 Brenzinger K (2015) pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil. PhD Dissertation, Philipps-Universität Marburg, Marburg an der Lahn, 218 pp.
GiFACE_c 84 Müller et al. 2009 Müller C, Rütting T, Abbasi MK et al. (2009) Effect of elevated CO2 on soil N dynamics in a temperate grassland soil. Soil Biology and Biochemistry, 41, 1996–2001.
GiFACE_c 84 Kammann et al. 2008 Kammann C, Müller C, Grünhage L, Jäger H-J (2008) Elevated CO2 stimulates N2O emissions in permanent grassland. Soil Biology and Biochemistry, 40, 2194–2205.
GiFACE_c 84 Regan et al. 2011 Regan K, Kammann C, Hartung K et al. (2011) Can differences in microbial abundances help explain enhanced N2O emissions in a permanent grassland under elevated atmospheric CO2? Global Change Biology, 17, 3176–3186.
GiFACE_ci- 36 Regan et al. 2011 Regan K, Kammann C, Hartung K et al. (2011) Can differences in microbial abundances help explain enhanced N2O emissions in a permanent grassland under elevated atmospheric CO2? Global Change Biology, 17, 3176–3186.
GiFACE_ci+ 36 Regan et al. 2011 Regan K, Kammann C, Hartung K et al. (2011) Can differences in microbial abundances help explain enhanced N2O emissions in a permanent grassland under elevated atmospheric CO2? Global Change Biology, 17, 3176–3186.
MaricopaFACE_wheat_kimball_cd 224 Kimball et al., 2000 NA
MaricopaFACE_wheat_kimball_cdf 448 Kimball et al., 2000 NA
MaricopaFACE_wheat_kimball_cf 224 Kimball et al., 2000 NA
New Zealand FACE_c 48 Deng et al. 2016 Deng Q, Cheng X, Bowatte S, Newton PCD, Zhang Q (2016) Rhizospheric carbon-nitrogen interactions in a mixed-species pasture after 13 years of elevated CO2. Agriculture, Ecosystems & Environment, 235, 134–141.
ORNERP_liqui2_c NA Iversen et al.,2011 Iversen, C. M., Hooker, T. D., Classen, A. T., & Norby, R. J. (2011). Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2]. Global Change Biology, 17(2), 1130-1139.
RiceFACE_China_32N_120E_Tr_1_c 30 Zhang et al., 2014 Zhang, Y., et al. Availability of soil nitrogen and phosphorus under elevated [CO2] and temperature in the Taihu Lake region, China. J. Plant Nutr. Soil Sci. 2014, 177, 343–348.
RiceFACE_China_32N_120E_Tr_1_cw 30 Zhang et al., 2014 Zhang, Y., et al. Availability of soil nitrogen and phosphorus under elevated [CO2] and temperature in the Taihu Lake region, China. J. Plant Nutr. Soil Sci. 2014, 177, 343–348.
RiceFACE_China_33N_120E_Or_7_c 72 Cheng et al., 2016 Cheng, Y., et al. Ten years of elevated atmospheric CO2 doesn’t alter soil nitrogen availability in a rice paddy. Soil Biology & Biochemistry 98 (2016) 99e108.
RiceFACE_China_33N_120E_Or_7_cf 144 Cheng et al., 2016 Cheng, Y., et al. Ten years of elevated atmospheric CO2 doesn’t alter soil nitrogen availability in a rice paddy. Soil Biology & Biochemistry 98 (2016) 99e108.
SoyFACEsoy8_c NA Pereira et al. 2011 Engil Isadora Pujol Pereiraa, Haegeun Chungb, Kate Scowc, Michael J. Sadowskyd, Chris van Kessela, Johan Sixa
ST FACE_c 6 Dawes et al., 2011 Dawes et al., 2011. Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytologist 191, 806-818
ST FACE_c 6 Dawes et al., 2011 Dawes et al., 2011. Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytologist 191, 806-818
ST FACE_cw 6 Dawes et al., 2011 Dawes et al., 2011. Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytologist 191, 806-818
ST FACE_cw 6 Dawes et al., 2011 Dawes et al., 2011. Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytologist 191, 806-818
ST FACE_ld_c 80 Hagedorn et al. 2013 Hagedorn F, Hiltbrunner D, Streit K et al. (2013) Nine years of CO2 enrichment at the alpine treeline stimulates soil respiration but does not alter soil microbial communities. Soil Biology and Biochemistry, 57, 390–400.
ST FACE_pu_c 80 Hagedorn et al. 2013 Hagedorn F, Hiltbrunner D, Streit K et al. (2013) Nine years of CO2 enrichment at the alpine treeline stimulates soil respiration but does not alter soil microbial communities. Soil Biology and Biochemistry, 57, 390–400.
SwissFACE_lolium2_c NA Fromin et al 2005 Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biology
SwissFACE_lolium2_c NA Fromin et al 2005 Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biology and Biochemistry 37:1962–1965
SwissFACE_lolium2_cf 6 Fromin et al 2005 Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biology
SwissFACE_lolium2_cf 6 Fromin et al 2005 Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biology and Biochemistry 37:1962–1965
TasFACE_c 24 Hayden et al. 2012 Hayden HL, Mele PM, Bougoure DS et al. (2012) Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environmental Microbiology, 14, 3081–3096.
TasFACE_cw 24 Hayden et al. 2012 Hayden HL, Mele PM, Bougoure DS et al. (2012) Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environmental Microbiology, 14, 3081–3096.

N uptake

The following is available in MESI.

df %>% 
  filter(treatment == "c") %>% 
  filter(experiment_type == "field") %>% 
  filter(response %in% c("root_n_uptake", "root_nh4_uptake", "root_no3_uptake")) %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep_c)) %>% 
  knitr::kable()
exp n
aspenface_c 6
aspenface_pt_c 9
aspenface_ptbp_c 9
climaite_c 36
euroface_pa_c 6
euroface_pe_c 6
euroface_pn_c 6
euroface_pooled_c 6
ornl_face_liqui_c 2
ornl_face_liqui2_c 2
riceface_nianyufarm_2014_c 30
riceface_nianyufarm_triticum_2014_c 24
riceface_zhongcun_2012_c 6
riceface_zhongcun_2014_c 6

Look for relevant GCME data from CO2-only experiments

df_gcme_data %>% 
  filter(`Data type` %in% c("N uptake", "NH4+ uptake", "NO3- uptake")) %>% 
  mutate(rep = as.numeric(`Measurement replicates`)) %>% 
  rename(exp = `Experiment Name`) %>% 
  filter(str_ends(exp, "_c") | str_detect(exp, "_c")) %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep)) %>% 
  left_join(
    df_gcme_data %>% 
      filter(`Data type` %in% c("N uptake", "NH4+ uptake", "NO3- uptake")) %>% 
      select(exp = "Experiment Name", ref = "Source Reference") %>% 
      distinct(),
    by = "exp"
  ) %>% 
  left_join(
    df_refs_gcme,
    by = c("exp", "ref")
  ) %>% 
  knitr::kable()
exp n ref full_ref
Brandbjerg_c 24 Arndal et al 2013a Arndal MF, Merrild MP, Michelsen A, et al (2013) Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species. Plant and Soil 369:615–629. doi: 10.1007/s11104-013-1601-8
Brandbjerg_c 24 Arndal et al 2013b Arndal MF, Schmidt IK, Kongstad J, et al (2013) Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem. Funct Plant Biol 41:1–10.
Brandbjerg_cd 24 Arndal et al 2013a Arndal MF, Merrild MP, Michelsen A, et al (2013) Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species. Plant and Soil 369:615–629. doi: 10.1007/s11104-013-1601-8
Brandbjerg_cd 24 Arndal et al 2013b Arndal MF, Schmidt IK, Kongstad J, et al (2013) Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem. Funct Plant Biol 41:1–10.
Brandbjerg_cw 24 Arndal et al 2013a Arndal MF, Merrild MP, Michelsen A, et al (2013) Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species. Plant and Soil 369:615–629. doi: 10.1007/s11104-013-1601-8
Brandbjerg_cw 24 Arndal et al 2013b Arndal MF, Schmidt IK, Kongstad J, et al (2013) Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem. Funct Plant Biol 41:1–10.
Brandbjerg_cwd 24 Arndal et al 2013a Arndal MF, Merrild MP, Michelsen A, et al (2013) Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species. Plant and Soil 369:615–629. doi: 10.1007/s11104-013-1601-8
Brandbjerg_cwd 24 Arndal et al 2013b Arndal MF, Schmidt IK, Kongstad J, et al (2013) Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem. Funct Plant Biol 41:1–10.
Durham_DukeFACE_c 11 Finzi et al.,2007 Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., … & Ledford, J. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, 104(35), 14014-14019.
Durham_DukeFACE_c 11 George K et al.,2003 George, K., Norby, R. J., Hamilton, J. G., & DeLucia, E. H. (2003). Fine‐root respiration in a loblolly pine and sweetgum forest growing in elevated CO2. New Phytologist, 160(3), 511-522.
FACTS II FACE3_pt_c 9 Finzi et al., 2007 Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iverson CM, Jackson RB, Kubiske ME, Ledford HR, Liberloo M, Oren R, Polle A, Pritchard SG, Zak DR, Schlesinger WH, Ceulemans R (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. 2007. PNAS 104(35):14014-14019. PNAS 104:14014–14019
FACTS II FACE3_ptbp_c 9 Finzi et al., 2007 Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iverson CM, Jackson RB, Kubiske ME, Ledford HR, Liberloo M, Oren R, Polle A, Pritchard SG, Zak DR, Schlesinger WH, Ceulemans R (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. 2007. PNAS 104(35):14014-14019. PNAS 104:14014–14019
ORNERP_liqui_c 5 Finzi et al.,2007 Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., … & Ledford, J. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, 104(35), 14014-14019.
ORNERP_liqui2_c NA George K et al.,2003 George, K., Norby, R. J., Hamilton, J. G., & DeLucia, E. H. (2003). Fine‐root respiration in a loblolly pine and sweetgum forest growing in elevated CO2. New Phytologist, 160(3), 511-522.
POPFACE_pa_c 6 Finzi et al 2007 NA
POPFACE_pe_c 6 Finzi et al 2007 NA
POPFACE_pn_c 6 Finzi et al 2007 NA
Rhine-aspenFACE_c 6 Finzi et al.,2007 Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., … & Ledford, J. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, 104(35), 14014-14019.
RiceFACE_China_32N_120E_Or_Tr_7_c 54 Cai et al., 2016 Cai, C., et al. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology (2016) 22, 856–874, doi: 10.1111/gcb.13065.
RiceFACE_China_32N_120E_Or_Tr_7_cw 54 Cai et al., 2016 Cai, C., et al. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology (2016) 22, 856–874, doi: 10.1111/gcb.13065.
RiceFACE_China_33N_120E_Or_5_c 12 Zhu et al., 2015 Zhu, C. et al. An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment. Sci. Rep. 5, 12719; doi: 10.1038/srep12719 (2015).
RiceFACE_Japan_A_1998_39,38_140,57_c 12 Kim et al., 2000 NA
RiceFACE_Japan_A_1998_39,38_140,57_c 12 Kim et al., 2003 Kim et al., 2003. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global change Biology (2003) 9, 826-837
RiceFACE_Japan_A_1998_39,38_140,57_cf 12 Kim et al., 2000 NA
RiceFACE_Japan_A_1998_39,38_140,57_cf 12 Kim et al., 2003 NA
RiceFACE_Japan_A_1998_39,38_140,57_cf+ 12 Kim et al., 2000 NA
RiceFACE_Japan_A_1998_39,38_140,57_cf+ 12 Kim et al., 2003 Kim et al., 2003. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global change Biology (2003) 9, 826-839
RiceFACE_Japan_A_1998_39,40_141_c 24 Fumoto et al., 2013 Fumoto et al., 2013. Application of a process-based biogeochemistry model, DNDC-Rice, on a rice field under free-air CO2 enrichment (FACE). in Journal of Agricultural Meteorology 69(3):173-190 · January 2013
RiceFACE_Japan_A_1999_35,38_139,60_c 20 Yamakawa et al., 2004 Yamakawa et al., 2004. Nutrient uptake by rice and soil solution composition under atmospheric
CO2 enrichment. Plant and Soil 259: 367–372, 2004.
RiceFACE_Japan_A_1999_39,40_141_c 24 Fumoto et al., 2013 NA
RiceFACE_Japan_A_2000_39,40_141_c 24 Fumoto et al., 2013 NA
RiceFACE_Japan_A_2003_39,38_140,57_c 36 Shimono et al., 2008 Shimono et al., 2008 Rice yield enhancement by elevated CO2 is reduced in cool weather Global Change Biology (2008) 14, 276–284
RiceFACE_Japan_A_2003_39,38_140,57_c 36 Shimono et al., 2009. NA
RiceFACE_Japan_A_2003_39,38_140,57_c 36 Shimono et al., 2009 Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009
RiceFACE_Japan_A_2003_39,40_141_c 12 Fumoto et al., 2013 NA
RiceFACE_Japan_A_2004_39,38_140,57_c 8 Shimono et al., 2009. NA
RiceFACE_Japan_A_2004_39,38_140,57_c 8 Shimono et al., 2009 Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009
RiceFACE_Japan_A_2004_39,40_141_c 16 Fumoto et al., 2013 NA
RiceFACE_Japan_H_2003_39,38_140,57_c 8 Shimono et al., 2009. NA
RiceFACE_Japan_H_2003_39,38_140,57_c 8 Shimono et al., 2009 Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009
RiceFACE_Japan_H_2004_39,38_140,57_c 8 Shimono et al., 2009. NA
RiceFACE_Japan_H_2004_39,38_140,57_c 8 Shimono et al., 2009 Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009
RiceFACE_Japan_Ka_2003_39,38_140,57_c 8 Shimono et al., 2009. NA
RiceFACE_Japan_Ka_2003_39,38_140,57_c 8 Shimono et al., 2009 Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009
RiceFACE_Japan_Ka_2004_39,38_140,57_c 8 Shimono et al., 2009. NA
RiceFACE_Japan_Ka_2004_39,38_140,57_c 8 Shimono et al., 2009 Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009
RiceFACE_Japan_Ki_2003_39,38_140,57_c 8 Shimono et al., 2009. NA
RiceFACE_Japan_Ki_2003_39,38_140,57_c 8 Shimono et al., 2009 Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009
RiceFACE_Japan_Ki_2004_39,38_140,57_c 8 Shimono et al., 2009. NA
RiceFACE_Japan_Ki_2004_39,38_140,57_c 8 Shimono et al., 2009 Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009
SwissFACE_lolium2_c NA Gloser et al 2000 Gloser, V., Lüscher, A., Frehner, M., Blum, H., Nösberger, J., & Hartwig, U. A. (2000). Soil mineral nitrogen availability was unaffected by elevated atmospheric pCO2 in a four year old field experiment (Swiss FACE) Plant and Soil 227:291-299.
SwissFACE_lolium2_cf NA Gloser et al 2000 Gloser, V., Lüscher, A., Frehner, M., Blum, H., Nösberger, J., & Hartwig, U. A. (2000). Soil mineral nitrogen availability was unaffected by elevated atmospheric pCO2 in a four year old field experiment (Swiss FACE) Plant and Soil 227:291-299.
Tuscania POP EUROFACE_c 1 Finzi et al.,2007 Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., … & Ledford, J. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, 104(35), 14014-14019.

N-fertilisation experiments

For all variables listed below, may also get data from NutNet?

Root:shoot ratio

The following is available in MESI.

df %>% 
  filter(treatment == "f") %>% 
  filter(experiment_type == "field") %>% 
  filter(response == "root_shoot_ratio") %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep_c)) %>% 
  knitr::kable()
exp n
abag_f2 9
abag_f3 9
abag_f4 9
abag_f5 9
biocon_f 3
chaux-des-breuleux_f 5
duolun_2010b_f 5
duolun1_f 5
duolun7_f 18
duolun9_f 6
imgers_hg_2005_f 4
imgers_hg_2005_f2 4
imgers_hg_2008_f 4
imgers_mg_2008_f 4
imgers_pooled_2005_f 4
irvine_ranch_1_f 10
jrbp_face_f 8
niwot_ridge2_dm_fn 5
niwot_ridge2_wm_fn 5
ornl_face_liqui2_f 3
pepeekeo_f 3
salmisuo_f 5
swissface_lolium2_f 3
swissface_trifolium2_f 3
winnter_f 6

Look for relevant GCME data from CO2-only experiments

df_gcme_data %>% 
  filter(`Data type` == "root-shoot ratio" |
         `Data type` == "root:shoot (biomass)" |
         `Data type` == "root:shoot ratio" ) %>% 
  mutate(varnam = "root_shoot_ratio") %>% 
  mutate(rep = as.numeric(`Measurement replicates`)) %>% 
  rename(exp = `Experiment Name`) %>% 
  filter(str_ends(exp, "_f") | str_detect(exp, "_f")) %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep)) %>% 
  left_join(
    df_gcme_data %>% 
      filter(`Data type` == "root-shoot ratio" |
             `Data type` == "root:shoot (biomass)" |
             `Data type` == "root:shoot ratio" ) %>% 
      select(exp = "Experiment Name", ref = "Source Reference") %>% 
      distinct(),
    by = "exp"
  ) %>% 
  left_join(
    df_refs_gcme,
    by = c("exp", "ref")
  ) %>% 
  knitr::kable()
exp n ref full_ref
Duke_pinus1_f 1 Phillips et al.,2009 Phillips, R. P., Bernhardt, E. S., & Schlesinger, W. H. (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree physiology, 29(12), 1513-1523
Duke_pinus2_f 1 Phillips et al.,2009 Phillips, R. P., Bernhardt, E. S., & Schlesinger, W. H. (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree physiology, 29(12), 1513-1523
Luneberguer2008_fNP NA Friedrich et al 2012 NA
Luneburger2008_fd NA Friedrich et al 2012 NA
Luneburger2008_fN NA Friedrich et al 2012 Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71.
Luneburger2008_fNd NA Friedrich et al 2012 NA
Luneburger2008_fNPd NA Friedrich et al 2012 Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71.
Luneburger2008_fP NA Friedrich et al 2012 Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71.
Luneburger2008_fPd NA Friedrich et al 2012 Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71.
Luneburger2010_f NA Meyer-Grunefeldt et al 2015 Meyer-Grünefeldt, M., Friedrich, U., Klotz, M., Von Oheimb, G., & Härdtle, W. (2015). Nitrogen deposition and drought events have non-additive effects on plant growth–evidence from greenhouse experiments. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 149(2), 424-432.
Zurich_f NA Salmon et al 2014 Salmon, Y., Barnard, R. L., & Buchmann, N. (2014). Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux. Functional plant biology, 41(8), 850-859.
Zurich_fi NA Salmon et al 2014 Salmon, Y., Barnard, R. L., & Buchmann, N. (2014). Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux. Functional plant biology, 41(8), 850-859.
Zurich_fi+ NA Salmon et al 2014 Salmon, Y., Barnard, R. L., & Buchmann, N. (2014). Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux. Functional plant biology, 41(8), 850-859.

Inorganic N

The following is available in MESI.

df %>% 
  filter(treatment == "f") %>% 
  filter(experiment_type == "field") %>% 
  filter(response %in% c("soil_no3-n", "soil_nh4-n", "soil_nh4", "soil_no3", "soil_solution_nh4", "soil_solution_no3")) %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep_c)) %>% 
  knitr::kable()
exp n
abag_f 20
abag_f2 20
abag_f3 20
abag_f4 20
abag_f5 20
antu_f 12
antu_f2 12
biocon_f 36
bonanza_creek_2005_f 108
cuiliugou_f 112
dbr2_f 6
dbr2_f2 6
dbr2_f3 6
dbr2_f4 6
deqing_b_f 15
deqing_b_f3 27
deqing_d_f 21
deqing_d_f2 24
deqing_d_f3 21
deqing_f 5
deqing_f2 5
duolun2_f6 5
euroface_pooled_f 18
gaoyao_f 4
gaoyao_f2 4
gaoyao_f3 8
imgers_ng_2007b_f 50
jingtai_f 24
jingtai_f2 32
jingtai_f3 32
maoershan_larix_f 6
maoxian_f 24
menyuan_f 11
menyuan_f2 11
menyuan_f3 11
menyuan_f4 11
menyuan_f5 11
menyuan_f6 11
menyuan_f62 11
menyuan_f63 11
menyuan_f64 16
riceface_zhongcun_2011_f 72
shaxian_f 6
shaxian_f2 6
shaxian_f3 6
slattatjakka_f 80
sydney_f 48
sydney_f2 48
xiang_dao_f 12
xiaojin_b_f 15
xiaojin_b_f2 15
xiaojin_b_f3 12
yakeshi_f 6
yakeshi_f2 6

Look for relevant GCME data from CO2-only experiments

df_gcme_data %>% 
  filter(`Data type` %in% c("soil solution NO3-", "soil solution mineral N", "soil solution NH4+", "soil NH4+", "soil NH4-N", "soil NH4+-N", "soil NO3-N" , "soil nitrate" , "soil NO3-", "soil ammonium" )) %>% 
  mutate(rep = as.numeric(`Measurement replicates`)) %>% 
  rename(exp = `Experiment Name`) %>% 
  filter(str_ends(exp, "_f") | str_detect(exp, "_f")) %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep)) %>% 
  left_join(
    df_gcme_data %>% 
      filter(`Data type` %in% c("soil solution NO3-", "soil solution mineral N", "soil solution NH4+", "soil NH4+", "soil NH4-N", "soil NH4+-N", "soil NO3-N" , "soil nitrate" , "soil NO3-", "soil ammonium" )) %>% 
      select(exp = "Experiment Name", ref = "Source Reference") %>% 
      distinct(),
    by = "exp"
  ) %>% 
  left_join(
    df_refs_gcme,
    by = c("exp", "ref")
  ) %>% 
  knitr::kable()
exp n ref full_ref
BioCON_f NA Antoninka et al., 2009 Antoninka A, Wolf JE, Bowker M, Classen AT, Johnson NC. 2009. Linking above‐and belowground responses to global change at community and ecosystem scales. Global Change Biology, 15(4): 914-929.
BioCON_f NA Mueller et al., 2013 Mueller KE, Hobbie SE, Tilman D, Reich PB. 2013. Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long‐term experiment. Global Change Biology, 19(4): 1249-1261.
DUKE2_f 8 Drake et al., 2012 Drake JE, Oishi AC, Giasson MA, Oren R, Johnsen KH, Finzi, AC. 2012. Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO2] and N fertilization. Agricultural and Forest Meteorology, 165: 43-52.
EUROFACE7_pooled_f 90 Lagomarsino et al 2006 NA
EUROFACE7_pooled_f 90 Liberloo et al 2006 NA
RiceFACE_China_33N_120E_Or_7_f 144 Cheng et al., 2016 Cheng, Y., et al. Ten years of elevated atmospheric CO2 doesn’t alter soil nitrogen availability in a rice paddy. Soil Biology & Biochemistry 98 (2016) 99e108.
SwissFACE_lolium2_f 6 Fromin et al 2005 Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biology
SwissFACE_lolium2_f 6 Fromin et al 2005 Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biology and Biochemistry 37:1962–1965

BGB

The following is available in MESI.

df %>% 
  filter(treatment == "f") %>% 
  filter(experiment_type == "field") %>% 
  filter(response %in% c("bgb", "fine_root_biomass")) %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep_c)) %>% 
  knitr::kable()
exp n
38.53_-76.33_f 15
41.77_111.88_f 24
68.38_-104.54_f 4
abag_f2 18
abag_f3 18
abag_f4 18
abag_f5 18
abag_mature_f 18
abag_mature_f2 18
abag_mature_f3 18
abag_mature_f4 18
abag_mature_f5 18
alp_weissenstein2_f 15
arizona_f 16
bcnm_fk 20
bcnm_fn 20
bcnm_fnk 20
bcnm_fnp 20
bcnm_fnpk 20
bcnm_fp 20
bcnm_fpk 20
biocon_f 57
bordeaux_f 4
bordeaux_f2 4
changbai_mountain_f2 12
changshan_f 100
chaux-des-breuleux_f 10
climaite_f 6
climaite_f2 6
damxung_2013_f 8
damxung_b_f 26
damxung_b_f2 19
damxung_b_f3 12
damxung_f 60
daqinggou_fn 18
daqinggou_fnp 6
daqinggou_fp 6
dbr2_f 6
dbr2_f2 6
dbr2_f3 6
dbr2_f4 6
dukeface_f 4
duolun_2010b_f 5
duolun4_f 16
duolun7_f 55
duolun9_f 12
eastern_japan_f 10
euroface_pa_f 3
euroface_pe_f 3
euroface_pn_f 3
euroface_pooled_f 36
flakaliden_f 10
fruebuel2_f 15
harbin_f 3
hawaii_fn 10
hf_f_mh_f 3
hf_f_mh_f2 3
hf_f_pr_f 3
hf_f_pr_f2 3
imgers_hg_2008_f 20
imgers_mg_2008_f 20
imgers_ng_2006_f 6
imgers_ng_2006_f2 6
imgers_ng_2006_f3 6
imgers_ng_2006_f4 6
imgers_ng_2006_f5 6
imgers_ng_2007b_f 5
irvine_ranch_1_f 10
jilin_f 8
jrbp_face_f 20
liaoning_f 6
liudaogou_f 54
liujiang_b_f 3
liujiang_b_f2 3
liujiang_b_f3 3
luneburg_field_2009_f 28
maoershan_fraxinus_f 3
maoershan_larix_f 3
maoxian_f 6
maoxian_pc_f 5
maoxian_pp_f 5
massachusetts_f 80
massachusetts_f2 80
mbs_pt2_f 10
mes_f 4
michigan_c_f 3
michigan_e_f 36
michiganc_f 3
nemitz_f 28
niwot_ridge2_dm_f2np 5
niwot_ridge2_dm_fn 15
niwot_ridge2_dm_fnp 5
niwot_ridge2_dm_fp 5
niwot_ridge2_wm_fn 15
niwot_ridge2_wm_fnp 10
niwot_ridge2_wm_fp 5
puerto_b_f 3
quinta_f 10
riceface_nianyufarm_rotation_2001_f 24
riceface_zhongcun_2012_cf2 3
riceface_zhongcun_2012_f 3
riceface_zhongcun_2012_f2 3
rosinedal_f 20
rosinedal_f2 20
rothamsted_f 48
salmisuo_f 10
sanjiang_mire_maize_fn 3
sanjiang_mire_maize_fn2 3
sca_f 12
scbg_f 3
songen_f 48
swissface_lolium2_f 3
swissface_trifolium2_f 3
tu_2011_f 6
tu_2011_f2 6
tu_2011_f3 6
tu_b_f 3
tu_b_f2 3
tu_b_f3 3
white_mountains_f 9
winnter_f 6

Look for relevant GCME data from CO2-only experiments

df_gcme_data %>% 
  filter(`Data type` %in% c("belowground biomass",  "belowground biomass C", "belowground C", "root C")) %>% 
  mutate(rep = as.numeric(`Measurement replicates`)) %>% 
  rename(exp = `Experiment Name`) %>% 
  filter(str_detect(exp, "_f")) %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep)) %>% 
  left_join(
    df_gcme_data %>% 
      filter(`Data type` %in% c("belowground biomass",  "belowground biomass C", "belowground C", "root C")) %>% 
      select(exp = "Experiment Name", ref = "Source Reference") %>% 
      distinct(),
    by = "exp"
  ) %>% 
  left_join(
    df_refs_gcme,
    by = c("exp", "ref")
  ) %>% 
  knitr::kable()
## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion
exp n ref full_ref
Aber forest_spruce_f NA Emmett et al., 1995 Emmett BA, Brittain SA, Hughes S, Kennedy V (1995) Nitrogen additions (nano3 and nh4no3) at aber forest, wales .2. Response of trees and soil-nitrogen transformations. Forest Ecology and Management, 71, 61-73.
Aber forest_spruce_f+ NA Emmett et al., 1995 Emmett BA, Brittain SA, Hughes S, Kennedy V (1995) Nitrogen additions (nano3 and nh4no3) at aber forest, wales .2. Response of trees and soil-nitrogen transformations. Forest Ecology and Management, 71, 61-73.
Aber forest_spruce_fNH4 NA Emmett et al., 1995 Emmett BA, Brittain SA, Hughes S, Kennedy V (1995) Nitrogen additions (nano3 and nh4no3) at aber forest, wales .2. Response of trees and soil-nitrogen transformations. Forest Ecology and Management, 71, 61-73.
AlpFlix_fN NA Blanke et al. 2012 Blanke et al. 2012. Nitrogen deposition effects on subalpine grassland: The role of nutrient limitations and changes in mycorrhizal abundance. Acta Oecologica 45, 57-65
BioCON_f NA Antoninka et al., 2011 Antoninka A, Reich PB, Johnson NC, 2011. Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytologist, doi:10.1111/j.1469-8137.2011.03776.x
BioCON_f NA Antoninka et al., 2011 Antoninka A, Reich PB, Johnson NC. 2011. Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytologist, 192(1): 200-214.
BioCON_f NA Reich et al., 2001a Reich PB, Tilman D, Craine J, Ellsworth D, Tjoelker MG, Knops J, Bengtson W et al. 2001. Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytologist, 150(2): 435-448.
Bordeaux_f NA Trichet et al., 2008 Trichet P, Loustau D, Lambrot C, Linder S (2008) Manipulating nutrient and water availability in a maritime pine plantation: Effects on growth, production, and biomass allocation at canopy closure. Annals of Forest Science, 65,
Bordeaux_fP NA Trichet et al., 2008 Trichet P, Loustau D, Lambrot C, Linder S (2008) Manipulating nutrient and water availability in a maritime pine plantation: Effects on growth, production, and biomass allocation at canopy closure. Annals of Forest Science, 65,
Braunschweig FACE_f 3 Manderscheid et al., 2010 Manderscheid R, Pacholski A, Weigel H-J (2010) Effect of free air carbon dioxide enrichment combined with two nitrogen levels on growth, yield and yield quality of sugar beet: evidence for a sink limitation of beet growth under elevated CO2. European Jour
Braunschweig FACE4_f 6 Manderscheid et al., 2010 Manderscheid R, Pacholski A, Weigel H-J (2010) Effect of free air carbon dioxide enrichment combined with two nitrogen levels on growth, yield and yield quality of sugar beet: evidence for a sink limitation of beet growth under elevated CO2. European Jour
Braunschweig FACE4_fs 2 Manderscheid et al., 2010 Manderscheid R, Pacholski A, Weigel H-J (2010) Effect of free air carbon dioxide enrichment combined with two nitrogen levels on growth, yield and yield quality of sugar beet: evidence for a sink limitation of beet growth under elevated CO2. European Jour
DBR2_cc_f NA Mo et al., 2008(2) Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283.
DBR2_cc_f+ NA Mo et al., 2008(2) Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283.
DBR2_cc_f++ NA Mo et al., 2008(2) Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283.
DBR2_cc_f+++ NA Mo et al., 2008(2) Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283.
DBR2_ss_f NA Mo et al., 2008(2) Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283.
DBR2_ss_f+ NA Mo et al., 2008(2) Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283.
DBR2_ss_f++ NA Mo et al., 2008(2) Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283.
DBR2_ss_f+++ NA Mo et al., 2008(2) Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283.
DRI_f 3 Walker et al., 1997 NA
DUKE-Ph_pine1_f 10 Larigauderie et al., 1994 NA
DUKE-Ph_pine2_pp_f 5 King et al., 1996 King et al., 1996. Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosa seedlings as affected by varying CO2, temperature and nitrogen. Tree Physiology 16, 635-642.
DUKE-Ph_pine2_pt_f 5 King et al., 1996 King et al., 1996. Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosa seedlings as affected by varying CO2, temperature and nitrogen. Tree Physiology 16, 635-642.
DUKE-Ph_robinia_f 8 Uselman et al., 2000 Uselman et al., 2000. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant and Soil 222, 191-202.
Escambia County_f NA Leggett & Kelting, 2006 Leggett ZH, Kelting DL (2006) Fertilization effects on carbon pools in loblolly pine plantations on two upland sites. Soil Science Society of America Journal, 70, 279-286.
EUROFACE4_pa_f 3 Liberloo et al 2006 NA
EUROFACE4_pe_f 3 Liberloo et al 2006 NA
EUROFACE4_pn_f 3 Liberloo et al 2006 NA
FL_f NA Iivonen et al., 2006 Iivonen S, Kaakinen S, Jolkkonen A, Vapaavuori E, Linder S (2006) Influence of long-term nutrient optimization on biomass, carbon, and nitrogen acquisition and allocation in norway spruce. Canadian Journal of Forest Research-Revue Canadienne De Recherche
Glendevon_ag_f 2 Temperton, 1998 NA
Glendevon_bp_f 2 Jarvis et al., 1998 NA
Glendevon2_ag_f 1 Heyworth et al., 1998 NA
Glendevon3_ag_f 1 Temperton et al., 2003 NA
Glendevon3_psi_f 1 Jarvis et al., 1998 NA
Greene County_f NA Leggett & Kelting, 2006 Leggett ZH, Kelting DL (2006) Fertilization effects on carbon pools in loblolly pine plantations on two upland sites. Soil Science Society of America Journal, 70, 279-286.
Hangzhou_fm NA Wang et al., 2015 Wang et al., 2015. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice–barley cropping system. Biol Fertil Soils 51, 583-591
Hangzhou_fm+NPK NA Wang et al., 2015 Wang et al., 2015. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice–barley cropping system. Biol Fertil Soils 51, 583-591
Hangzhou_fNPK NA Wang et al., 2015 Wang et al., 2015. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice–barley cropping system. Biol Fertil Soils 51, 583-591
Headley_fe_c 1 Broadmeadow & Jackson, 2000 Broadmeadow & Jackson, 2000. Growth responses of Quercus petraea, Fraxinus excelsior and Pinus sylvestris to elevated carbon dioxide, ozone and water supply. New Phytologist 146, 437-451.
Headley_fe_ch 1 Crookshanks et al., 1998 Crookshanks M, Taylor G, Broadmeadow M (1998) Elevated co2 and tree root growth: Contrasting responses in fraxinus excelsior, quercus petraea and pinus sylvestris. New Phytologist, 138, 241-250.
HGC_ap_f 2 Bazzaz & Miao, 1993 NA
HGC_ar_f 2 Bazzaz & Miao, 1993 NA
HGC_ba2_f 2 Bazzaz & Miao, 1993 NA
HGC_fa_c 2 Bazzaz & Miao, 1993 Bazzaz FA, Miao SL (1993) Successional status, seed size, and responses of tree seedlings to co2, light, and nutrients. Ecology, 74, 104-112.
HGC_fa_cf 2 Bazzaz & Miao, 1993 Bazzaz FA, Miao SL (1993) Successional status, seed size, and responses of tree seedlings to co2, light, and nutrients. Ecology, 74, 104-112.
HGC_fa_f 2 Bazzaz & Miao, 1993 NA
JRBP_FACE3_f 5 Dukes et al., 2005 NA
JRBP_OTCsand_f 1 Cardon et al., 2001 NA
JRBP_OTCser_f 1 Cardon et al., 2001 NA
Luneberguer2008_fNP NA Friedrich et al 2012 NA
Luneburger2008_fd NA Friedrich et al 2012 NA
Luneburger2008_fN NA Friedrich et al 2012 Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71.
Luneburger2008_fNd NA Friedrich et al 2012 NA
Luneburger2008_fNPd NA Friedrich et al 2012 Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71.
Luneburger2008_fP NA Friedrich et al 2012 Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71.
Luneburger2008_fPd NA Friedrich et al 2012 Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71.
Luneburger2010_f NA Meyer-Grunefeldt et al 2015 Meyer-Grünefeldt, M., Friedrich, U., Klotz, M., Von Oheimb, G., & Härdtle, W. (2015). Nitrogen deposition and drought events have non-additive effects on plant growth–evidence from greenhouse experiments. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 149(2), 424-432.
MBS_pe_f 1 Pregitzer et al., 1995 NA
MBS_pt_f 1 Mikan et al., 2000 NA
MES_f NA Zhao & Liu, 2009 Zhao CZ, Liu Q (2009) Growth and physiological responses of picea asperata seedlings to elevated temperature and to nitrogen fertilization. Acta Physiologiae Plantarum, 31, 163-173.
NashField_pooled_fK NA Fornara et al. 2013 Fornara et al. 2013. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology 19, 3848-3857
NashField_pooled_fN NA Fornara et al. 2013 Fornara et al. 2013. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology 19, 3848-3857
NashField_pooled_fNP NA Fornara et al. 2013 Fornara et al. 2013. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology 19, 3848-3857
NashField_pooled_fP NA Fornara et al. 2013 Fornara et al. 2013. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology 19, 3848-3857
NashField_pooled_fPK NA Fornara et al. 2013 Fornara et al. 2013. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology 19, 3848-3857
Niwot Ridge2_dm_f NA Bowman et al., 1993 Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in 2 alpine tundra communities. Ecology, 74, 2085-2097.
Niwot Ridge2_dm_f+ NA Bowman et al., 1993 Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in 2 alpine tundra communities. Ecology, 74, 2085-2097.
Niwot Ridge2_wm_f NA Bowman et al., 1993 Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in 2 alpine tundra communities. Ecology, 74, 2085-2097.
Niwot Ridge2_wm_f+ NA Bowman et al., 1993 Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in 2 alpine tundra communities. Ecology, 74, 2085-2097.
RiceFACE_China_32N_120E_Or_Tr_f 12 Ma et al., 2007b Ma, H., et al. Responses of rice and winter wheat to free-air CO2 enrichment (China FACE) at rice/wheat rotation system. Plant Soil (2007) 294:137–146. (2007).
RiceFACE_China_33N_120E_Or_12_f 3 Du et al., 2017 Du, W., et al. Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. Science of the Total Environment 578 (2017) 408–416.
RiceFACE_China_33N_120E_Or_12_f+ 3 Du et al., 2017 Du, W., et al. Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. Science of the Total Environment 578 (2017) 408–416.
Savannah River_f NA Coyle et al., 2008 Coyle DR, Coleman MD, Aubrey DP (2008) Above- and below-ground biomass accumulation, production, and distribution of sweetgum and loblolly pine grown with irrigation and fertilization. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 38, 1335-1348.
SCBG_f 27 Deng et al., 2010 Deng Q, Zhou G, Liu J, Liu S, Duan H, Zhang D (2010) Responses of soil respiration to elevated carbon dioxide and nitrogen additions in young subtropical forest ecosystems in China. Biogeosciences 7, 315-328.
SCBG_f 27 Chen et al 2012 Chen, X., Liu, J., Deng, Q., Yan, J., & Zhang, D. (2012). Effects of elevated CO 2 and nitrogen addition on soil organic carbon fractions in a subtropical forest. Plant and Soil, 357(1-2), 25-34.
SCBG_f 27 Liu et al 2010 NA
SETRES_f NA Maier & Kress, 2000 Maier CA, Kress LW (2000) Soil co2 evolution and root respiration in 11 year-old loblolly pine (pinus taeda) plantations as affected by moisture and nutrient availability. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 30, 3
SwissFACE_lolium2_f NA Bazot et al., 2006 NA
SwissFACE_lolium2_f NA Hartwig et al 2002 Hartwig UA, Lüscher A, Nösberger J, Kessel CV (2002) Nitrogen-15 budget in model ecosystems of white clover and perennial ryegrass exposed for four years at elevated atmospheric pCO2. Global Change Biology 8:194–202
SwissFACE_trifolium2_f NA Hartwig et al 2002 Hartwig UA, Lüscher A, Nösberger J, Kessel CV (2002) Nitrogen-15 budget in model ecosystems of white clover and perennial ryegrass exposed for four years at elevated atmospheric pCO2. Global Change Biology 8:194–202
TL Inlet_f NA Shaver et al., 1998 Shaver et al., 1998. Biomass and CO2 flux in wet sedge tundras: Responses to nutrients, temperature, and light. Ecological Monographs 68, 75-97.
TL_f NA Mack et al., 2004 Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 431, 440-443.
TL5_f NA DeMarco et al., 2014 DeMarco et al., 2014. Long-term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra. Ecosphere 5, 72.
TL5_fw NA DeMarco et al., 2014 DeMarco et al., 2014. Long-term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra. Ecosphere 5, 72.
Zurich_f NA Salmon et al 2014 Salmon, Y., Barnard, R. L., & Buchmann, N. (2014). Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux. Functional plant biology, 41(8), 850-859.
Zurich_fi NA Salmon et al 2014 Salmon, Y., Barnard, R. L., & Buchmann, N. (2014). Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux. Functional plant biology, 41(8), 850-859.
Zurich_fi+ NA Salmon et al 2014 Salmon, Y., Barnard, R. L., & Buchmann, N. (2014). Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux. Functional plant biology, 41(8), 850-859.

BNPP

The following is available in MESI.

df %>% 
  filter(treatment == "f") %>% 
  filter(experiment_type == "field") %>% 
  filter(response %in% c("root_production", "fine_root_production", "root_production")) %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep_c)) %>% 
  knitr::kable()
exp n
biocon_f 32
changbai_mountain_f 6
changbai_mountain_f2 6
chiriqui_f 8
duolun_2010b_f 30
duolun1_f 59
duolun7_f 36
duolun9_f 30
hamr_f 1
hamr_f2 1
irvine_ranch_1_f 5
jrbp_face_f 46
maoershan_larix_f 24
ornl_face_liqui2_f 10
pepeekeo_f 3
rosinedal_f 3
santa_rosa_f 24
santa_rosa_f2 24
santa_rosa_f3 24
trebon_basin_biosphere_reserve_f 1
trebon_basin_biosphere_reserve_f2 1

Look for relevant GCME data from CO2-only experiments

df_gcme_data %>% 
  filter(`Data type` %in% c("Fine root production", "fine root production", "BNPP" )) %>% 
  mutate(rep = as.numeric(`Measurement replicates`)) %>% 
  rename(exp = `Experiment Name`) %>% 
  filter(str_detect(exp, "_f")) %>% 
  group_by(exp) %>% 
  summarise(n = sum(rep)) %>% 
  left_join(
    df_gcme_data %>% 
      filter(`Data type` %in% c("Fine root production", "fine root production", "BNPP" )) %>% 
      select(exp = "Experiment Name", ref = "Source Reference") %>% 
      distinct(),
    by = "exp"
  ) %>% 
  left_join(
    df_refs_gcme,
    by = c("exp", "ref")
  ) %>% 
  knitr::kable()
exp n ref full_ref
Boulder_f NA Haynes & Gower, 1995 Haynes BE, Gower ST (1995) Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern wisconsin. Tree Physiology, 15, 317-325.
DRI_f 12 Phillips et al., 2006 NA
Duolun_3_f NA Yan et al., 2011 NA
IBGE_fN NA Bustamente et al. 2012 Bustamente et al. 2012. Effects of nutrient additions on plant biomass and diversity of the herbaceous-subshrub layer of a Brazilian savanna (Cerrado). Plant Ecology 213, 795-808
IBGE_fNP NA Bustamente et al. 2012 Bustamente et al. 2012. Effects of nutrient additions on plant biomass and diversity of the herbaceous-subshrub layer of a Brazilian savanna (Cerrado). Plant Ecology 213, 795-808
IBGE_fP NA Bustamente et al. 2012 Bustamente et al. 2012. Effects of nutrient additions on plant biomass and diversity of the herbaceous-subshrub layer of a Brazilian savanna (Cerrado). Plant Ecology 213, 795-808
JRBP_FACE3_f 2 Henry et al., 2006 Henry HAL, Chiariello NR, Vitousek PM, Mooney HA, Field CB (2006) Interactive effects of fire, elevated carbon dioxide, nitrogen deposition, and precipitation on a california annual grassland. Ecosystems, 9, 1066-1075.
ORNERP_liqui2_f 12 Iversen and Norby.,2008 Iversen, C. M., & Norby, R. J. (2008). Nitrogen limitation in a sweetgum plantation: implications for carbon allocation and storage. Canadian Journal of Forest Research, 38(5), 1021-1032.
Santa Rosa_pd_f NA Lee & Jose, 2003 Lee KH, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263-273.
Santa Rosa_pd_f+ NA Lee & Jose, 2003 Lee KH, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263-273.
Santa Rosa_pt_f NA Lee & Jose, 2003 Lee KH, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263-273.
Santa Rosa_pt_f+ NA Lee & Jose, 2003 Lee KH, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263-273.
Savannah River_f NA Coyle et al., 2008 Coyle DR, Coleman MD, Aubrey DP (2008) Above- and below-ground biomass accumulation, production, and distribution of sweetgum and loblolly pine grown with irrigation and fertilization. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 38, 1335-1348.
SETRES_f NA Albaugh et al., 1998 Albaugh et al., 1998. Leaf area and above- and belowground growth responses of loblolly pine to nutrient and water additions. Forest Science 44, 317-328.