library(tidyverse) # for working with ease
The MESI data.
df <- read_csv("../data/mesi_main.csv")
## Warning: One or more parsing issues, see `problems()` for details
The GCME data (from a version of the db obtained by Kevin on 2019 03 25, eported tabs as CSV and read here).
df_gcme_data <- read_csv("../data-raw/table_var_exp_names_Data_tbl.csv")
## Warning: One or more parsing issues, see `problems()` for details
df_refs_gcme <- read_csv("../data-raw/table_var_exp_names_References.csv") %>%
select(1:3) %>%
select(exp = "Experiment Name", ref = "Reference", full_ref = "Full Reference")
The following is available in MESI.
df %>%
filter(treatment == "c") %>%
filter(experiment_type == "field") %>%
filter(response == "root_shoot_ratio") %>%
group_by(exp) %>%
summarise(n = sum(rep_c)) %>%
knitr::kable()
exp | n |
---|---|
46.77_9.87_c | 3 |
climaite_c | 6 |
duolun7_c | 12 |
eucface_c | 3 |
euroface_pa_c | 9 |
euroface_pe_c | 9 |
euroface_pn_c | 9 |
euroface_pooled_c | 3 |
jrbp_face_c | 8 |
maricopaface_cotton91_c | 68 |
maricopaface_wheat94_c | 4 |
ornl_face_liqui_c | 2 |
sca_c | 3 |
swissface_chalk_c | 12 |
swissface_forest_c | 24 |
swissface_lolium_c | 6 |
Look for relevant GCME data from CO2-only experiments
df_gcme_data %>%
filter(`Data type` == "root-shoot ratio" |
`Data type` == "root:shoot (biomass)" |
`Data type` == "root:shoot ratio" ) %>%
mutate(varnam = "root_shoot_ratio") %>%
mutate(rep = as.numeric(`Measurement replicates`)) %>%
rename(exp = `Experiment Name`) %>%
filter(str_ends(exp, "_c") | str_detect(exp, "_c")) %>%
group_by(exp) %>%
summarise(n = sum(rep)) %>%
left_join(
df_gcme_data %>%
filter(`Data type` == "root-shoot ratio" |
`Data type` == "root:shoot (biomass)" |
`Data type` == "root:shoot ratio" ) %>%
select(exp = "Experiment Name", ref = "Source Reference") %>%
distinct(),
by = "exp"
) %>%
left_join(
df_refs_gcme,
by = c("exp", "ref")
) %>%
knitr::kable()
exp | n | ref | full_ref |
---|---|---|---|
Duke_pinus1_c | 1 | Phillips et al.,2009 | Phillips, R. P., Bernhardt, E. S., & Schlesinger, W. H. (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree physiology, 29(12), 1513-1523 |
Duke_pinus1_cf | 1 | Phillips et al.,2009 | Phillips, R. P., Bernhardt, E. S., & Schlesinger, W. H. (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree physiology, 29(12), 1513-1523 |
Duke_pinus2_c | 1 | Phillips et al.,2009 | Phillips, R. P., Bernhardt, E. S., & Schlesinger, W. H. (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree physiology, 29(12), 1513-1523 |
Duke_pinus2_cf | 1 | Phillips et al.,2009 | Phillips, R. P., Bernhardt, E. S., & Schlesinger, W. H. (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree physiology, 29(12), 1513-1523 |
EUROFACE4_pa_c | 3 | Liberloo et al 2006 | NA |
EUROFACE4_pe_c | 3 | Liberloo et al 2006 | NA |
EUROFACE4_pn_c | 3 | Liberloo et al 2006 | NA |
MaricopaFACE_cotton91_c | 68 | Mauney et al., 1994 | NA |
MaricopaFACE_cotton91_cd | 68 | Mauney et al., 1994 | Mauney, J. R., Kimball, B. A., Pinter Jr, P. J., LaMorte, R. L., Lewin, K. F., Nagy, J., & Hendrey, G. R. (1994). Growth and yield of cotton in response to a free-air carbon dioxide enrichment (FACE) environment. Agricultural and Forest Meteorology, 70(1-4), 49-67. |
MaricopaFACE_cotton91_d | 68 | Mauney et al., 1994 | Mauney, J. R., Kimball, B. A., Pinter Jr, P. J., LaMorte, R. L., Lewin, K. F., Nagy, J., & Hendrey, G. R. (1994). Growth and yield of cotton in response to a free-air carbon dioxide enrichment (FACE) environment. Agricultural and Forest Meteorology, 70(1-4), 49-67. |
MaricopaFACE_wheat_93_c | 4 | Wall et al., 2006 | NA |
MaricopaFACE_wheat_93_ci | 4 | Wall et al., 2006 | NA |
POPFACE_pa_c | 3 | Calfapietera et al 2003a | NA |
POPFACE_pe_c | 3 | Calfapietera et al 2003a | NA |
POPFACE_pn_c | 3 | Calfapietera et al 2003a | NA |
TL_6_c | NA | Bassirirad et al. 1996 | Bassirirad, H. et al. Response of Eriophorum vaginatum to CO2 enrichment at different soil temperatures: effects on growth, root respiration and PO4 3- uptake kinetics. New Phytol. (1996), 133, 423-430. |
TL_6_cw- | NA | Bassirirad et al. 1996 | Bassirirad, H. et al. Response of Eriophorum vaginatum to CO2 enrichment at different soil temperatures: effects on growth, root respiration and PO4 3- uptake kinetics. New Phytol. (1996), 133, 423-430. |
TL_6_cw+ | NA | Bassirirad et al. 1996 | Bassirirad, H. et al. Response of Eriophorum vaginatum to CO2 enrichment at different soil temperatures: effects on growth, root respiration and PO4 3- uptake kinetics. New Phytol. (1996), 133, 423-430. |
UA2007_cw | NA | Buscher et al 2012 | Büscher, M., Zavalloni, C., de Boulois, H. D., Vicca, S., Van den Berge, J., Declerck, S., … & Nijs, I. (2012). Effects of arbuscular mycorrhizal fungi on grassland productivity are altered by future climate and below-ground resource availability. Environmental and experimental botany, 81, 62-71. |
The following is available in MESI.
df %>%
filter(treatment == "c") %>%
filter(experiment_type == "field") %>%
filter(response %in% c("soil_no3-n", "soil_nh4-n", "soil_nh4", "soil_no3", "soil_solution_nh4", "soil_solution_no3")) %>%
group_by(exp) %>%
summarise(n = sum(rep_c)) %>%
knitr::kable()
exp | n |
---|---|
aspenface_pooled_c | 12 |
biocon_c | 21 |
climaite_c | 54 |
dukeface_c | 32 |
euroface_pooled_c | 18 |
ornl_face_liqui2_c | NA |
riceface_nianyufarm_triticum_2012_c | 30 |
riceface_zhongcun_2011_c | 72 |
soyfacesoy8_c | 48 |
Look for relevant GCME data from CO2-only experiments
df_gcme_data %>%
filter(`Data type` %in% c("soil solution NO3-", "soil solution mineral N", "soil solution NH4+", "soil NH4+", "soil NH4-N", "soil NH4+-N", "soil NO3-N" , "soil nitrate" , "soil NO3-", "soil ammonium" )) %>%
mutate(rep = as.numeric(`Measurement replicates`)) %>%
rename(exp = `Experiment Name`) %>%
filter(str_ends(exp, "_c") | str_detect(exp, "_c")) %>%
group_by(exp) %>%
summarise(n = sum(rep)) %>%
left_join(
df_gcme_data %>%
filter(`Data type` %in% c("soil solution NO3-", "soil solution mineral N", "soil solution NH4+", "soil NH4+", "soil NH4-N", "soil NH4+-N", "soil NO3-N" , "soil nitrate" , "soil NO3-", "soil ammonium" )) %>%
select(exp = "Experiment Name", ref = "Source Reference") %>%
distinct(),
by = "exp"
) %>%
left_join(
df_refs_gcme,
by = c("exp", "ref")
) %>%
knitr::kable()
exp | n | ref | full_ref |
---|---|---|---|
BioCON_c | 48 | Craine & Reich, 2001 | Craine JM & Reich PB. 2001. Elevated CO2 and nitrogen supply alter leaf longevity of grassland species. New Phytologist, 150(2): 397-403. |
BioCON_c | 48 | Antoninka et al., 2009 | Antoninka A, Wolf JE, Bowker M, Classen AT, Johnson NC. 2009. Linking above‐and belowground responses to global change at community and ecosystem scales. Global Change Biology, 15(4): 914-929. |
BioCON_c | 48 | Tu et al., 2017 | Tu Q, He Z, Wu L, Xue K, Xie G, Chain P, Zhou J. 2017. Metagenomic reconstruction of nitrogen cycling pathways in a CO 2-enriched grassland ecosystem. Soil Biology and Biochemistry, 106: 99-108. |
BioCON_cf | 38 | Antoninka et al., 2009 | Antoninka A, Wolf JE, Bowker M, Classen AT, Johnson NC. 2009. Linking above‐and belowground responses to global change at community and ecosystem scales. Global Change Biology, 15(4): 914-929. |
BioCON_cf | 38 | Craine & Reich, 2001 | Craine JM & Reich PB. 2001. Elevated CO2 and nitrogen supply alter leaf longevity of grassland species. New Phytologist, 150(2): 397-403. |
Brandbjerg_c | 24 | Andresen et al 2009 | Andresen LC, Michelsen A, Jonasson S, Beier C, Ambus P (2009) Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought. Acta Oecologica, 35, 786–796. |
Brandbjerg_c | 24 | Andresen et al 2010 | Andresen LC, Michelsen A, Ambus P, Beier C (2010) Belowground heathland responses after 2 years of combined warming, elevated CO2 and summer drought. Biogeochemistry, 101, 27–42. |
Brandbjerg_c | 24 | Carter et al 2011 | NA |
Brandbjerg_cd | 24 | Andresen et al 2009 | Andresen LC, Michelsen A, Jonasson S, Beier C, Ambus P (2009) Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought. Acta Oecologica, 35, 786–796. |
Brandbjerg_cd | 24 | Andresen et al 2010 | Andresen LC, Michelsen A, Ambus P, Beier C (2010) Belowground heathland responses after 2 years of combined warming, elevated CO2 and summer drought. Biogeochemistry, 101, 27–42. |
Brandbjerg_cd | 24 | Carter et al 2011 | NA |
Brandbjerg_cw | 24 | Andresen et al 2009 | Andresen LC, Michelsen A, Jonasson S, Beier C, Ambus P (2009) Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought. Acta Oecologica, 35, 786–796. |
Brandbjerg_cw | 24 | Andresen et al 2010 | Andresen LC, Michelsen A, Ambus P, Beier C (2010) Belowground heathland responses after 2 years of combined warming, elevated CO2 and summer drought. Biogeochemistry, 101, 27–42. |
Brandbjerg_cw | 24 | Carter et al 2011 | NA |
Brandbjerg_cwd | 24 | Andresen et al 2009 | Andresen LC, Michelsen A, Jonasson S, Beier C, Ambus P (2009) Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought. Acta Oecologica, 35, 786–796. |
Brandbjerg_cwd | 24 | Andresen et al 2010 | Andresen LC, Michelsen A, Ambus P, Beier C (2010) Belowground heathland responses after 2 years of combined warming, elevated CO2 and summer drought. Biogeochemistry, 101, 27–42. |
Brandbjerg_cwd | 24 | Carter et al 2011 | NA |
DRI_c | 10 | Johnson et al., 2000 | Johnson DW, Cheng W, Ball JT (2000) Effects of [co2] and nitrogen fertilization on soils planted with ponderosa pine. Plant and Soil, 224, 99-113. |
DUKE2_c | 32 | Drake et al., 2012 | Drake JE, Oishi AC, Giasson MA, Oren R, Johnsen KH, Finzi, AC. 2012. Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO2] and N fertilization. Agricultural and Forest Meteorology, 165: 43-52. |
DUKE2_c | 32 | Jackson et al., 2009 | Jackson RB, Cook CW, Pippen JS, Palme SM. 2009. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm‐temperate forest. Ecology, 90(12): 3352-3366. |
DUKE2_cf | 8 | Drake et al., 2012 | Drake JE, Oishi AC, Giasson MA, Oren R, Johnsen KH, Finzi, AC. 2012. Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO2] and N fertilization. Agricultural and Forest Meteorology, 165: 43-52. |
EucFACE_c | 60 | Hasegawa et al 2016 | Hasegawa S, Macdonald CA, Power SA (2016) Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Glob Change Biol 22:1628–1643 |
EucFACE_c | 60 | Ochoa-Hueso et al 2017 | Ochoa-Hueso R, Hughes J, Delgado-Baquerizo M, Drake JE,
Tjoelker MG, Piñeiro J, Power SA (2017) Rhizosphere-driven increase in
nitrogen and phosphorus availability under elevated atmospheric
CO |
EUROFACE7_pooled_c | 90 | Lagomarsino et al 2006 | NA |
EUROFACE7_pooled_c | 90 | Liberloo et al 2006 | NA |
EUROFACE7_pooled_cf | 90 | Lagomarsino et al 2006 | NA |
EUROFACE7_pooled_cf | 90 | Liberloo et al 2006 | NA |
FACTS II FACE3_pt_c | 3 | Liu et al., 2009 | Liu L, King JS, Booker FL, Giardina CP, Lee Allen H, Hu S (2009) Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO 2 : a microcosm study. Global Change Biology 15:441–453 |
FACTS II FACE7_pooled_c | 12 | Zak et al., 2007b | Zak DR, Holmes WE, Pregitzer KS (2007) Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems. Ecology 88:2630–2639 |
GiFACE_c | 84 | Brenzinger et al. 2015 | Brenzinger K (2015) pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil. PhD Dissertation, Philipps-Universität Marburg, Marburg an der Lahn, 218 pp. |
GiFACE_c | 84 | Müller et al. 2009 | Müller C, Rütting T, Abbasi MK et al. (2009) Effect of elevated CO2 on soil N dynamics in a temperate grassland soil. Soil Biology and Biochemistry, 41, 1996–2001. |
GiFACE_c | 84 | Kammann et al. 2008 | Kammann C, Müller C, Grünhage L, Jäger H-J (2008) Elevated CO2 stimulates N2O emissions in permanent grassland. Soil Biology and Biochemistry, 40, 2194–2205. |
GiFACE_c | 84 | Regan et al. 2011 | Regan K, Kammann C, Hartung K et al. (2011) Can differences in microbial abundances help explain enhanced N2O emissions in a permanent grassland under elevated atmospheric CO2? Global Change Biology, 17, 3176–3186. |
GiFACE_ci- | 36 | Regan et al. 2011 | Regan K, Kammann C, Hartung K et al. (2011) Can differences in microbial abundances help explain enhanced N2O emissions in a permanent grassland under elevated atmospheric CO2? Global Change Biology, 17, 3176–3186. |
GiFACE_ci+ | 36 | Regan et al. 2011 | Regan K, Kammann C, Hartung K et al. (2011) Can differences in microbial abundances help explain enhanced N2O emissions in a permanent grassland under elevated atmospheric CO2? Global Change Biology, 17, 3176–3186. |
MaricopaFACE_wheat_kimball_cd | 224 | Kimball et al., 2000 | NA |
MaricopaFACE_wheat_kimball_cdf | 448 | Kimball et al., 2000 | NA |
MaricopaFACE_wheat_kimball_cf | 224 | Kimball et al., 2000 | NA |
New Zealand FACE_c | 48 | Deng et al. 2016 | Deng Q, Cheng X, Bowatte S, Newton PCD, Zhang Q (2016) Rhizospheric carbon-nitrogen interactions in a mixed-species pasture after 13 years of elevated CO2. Agriculture, Ecosystems & Environment, 235, 134–141. |
ORNERP_liqui2_c | NA | Iversen et al.,2011 | Iversen, C. M., Hooker, T. D., Classen, A. T., & Norby, R. J. (2011). Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2]. Global Change Biology, 17(2), 1130-1139. |
RiceFACE_China_32N_120E_Tr_1_c | 30 | Zhang et al., 2014 | Zhang, Y., et al. Availability of soil nitrogen and phosphorus under elevated [CO2] and temperature in the Taihu Lake region, China. J. Plant Nutr. Soil Sci. 2014, 177, 343–348. |
RiceFACE_China_32N_120E_Tr_1_cw | 30 | Zhang et al., 2014 | Zhang, Y., et al. Availability of soil nitrogen and phosphorus under elevated [CO2] and temperature in the Taihu Lake region, China. J. Plant Nutr. Soil Sci. 2014, 177, 343–348. |
RiceFACE_China_33N_120E_Or_7_c | 72 | Cheng et al., 2016 | Cheng, Y., et al. Ten years of elevated atmospheric CO2 doesn’t alter soil nitrogen availability in a rice paddy. Soil Biology & Biochemistry 98 (2016) 99e108. |
RiceFACE_China_33N_120E_Or_7_cf | 144 | Cheng et al., 2016 | Cheng, Y., et al. Ten years of elevated atmospheric CO2 doesn’t alter soil nitrogen availability in a rice paddy. Soil Biology & Biochemistry 98 (2016) 99e108. |
SoyFACEsoy8_c | NA | Pereira et al. 2011 | Engil Isadora Pujol Pereiraa, Haegeun Chungb, Kate Scowc, Michael J. Sadowskyd, Chris van Kessela, Johan Sixa |
ST FACE_c | 6 | Dawes et al., 2011 | Dawes et al., 2011. Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytologist 191, 806-818 |
ST FACE_c | 6 | Dawes et al., 2011 | Dawes et al., 2011. Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytologist 191, 806-818 |
ST FACE_cw | 6 | Dawes et al., 2011 | Dawes et al., 2011. Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytologist 191, 806-818 |
ST FACE_cw | 6 | Dawes et al., 2011 | Dawes et al., 2011. Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytologist 191, 806-818 |
ST FACE_ld_c | 80 | Hagedorn et al. 2013 | Hagedorn F, Hiltbrunner D, Streit K et al. (2013) Nine years of CO2 enrichment at the alpine treeline stimulates soil respiration but does not alter soil microbial communities. Soil Biology and Biochemistry, 57, 390–400. |
ST FACE_pu_c | 80 | Hagedorn et al. 2013 | Hagedorn F, Hiltbrunner D, Streit K et al. (2013) Nine years of CO2 enrichment at the alpine treeline stimulates soil respiration but does not alter soil microbial communities. Soil Biology and Biochemistry, 57, 390–400. |
SwissFACE_lolium2_c | NA | Fromin et al 2005 | Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biology |
SwissFACE_lolium2_c | NA | Fromin et al 2005 | Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biology and Biochemistry 37:1962–1965 |
SwissFACE_lolium2_cf | 6 | Fromin et al 2005 | Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biology |
SwissFACE_lolium2_cf | 6 | Fromin et al 2005 | Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biology and Biochemistry 37:1962–1965 |
TasFACE_c | 24 | Hayden et al. 2012 | Hayden HL, Mele PM, Bougoure DS et al. (2012) Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environmental Microbiology, 14, 3081–3096. |
TasFACE_cw | 24 | Hayden et al. 2012 | Hayden HL, Mele PM, Bougoure DS et al. (2012) Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environmental Microbiology, 14, 3081–3096. |
The following is available in MESI.
df %>%
filter(treatment == "c") %>%
filter(experiment_type == "field") %>%
filter(response %in% c("root_n_uptake", "root_nh4_uptake", "root_no3_uptake")) %>%
group_by(exp) %>%
summarise(n = sum(rep_c)) %>%
knitr::kable()
exp | n |
---|---|
aspenface_c | 6 |
aspenface_pt_c | 9 |
aspenface_ptbp_c | 9 |
climaite_c | 36 |
euroface_pa_c | 6 |
euroface_pe_c | 6 |
euroface_pn_c | 6 |
euroface_pooled_c | 6 |
ornl_face_liqui_c | 2 |
ornl_face_liqui2_c | 2 |
riceface_nianyufarm_2014_c | 30 |
riceface_nianyufarm_triticum_2014_c | 24 |
riceface_zhongcun_2012_c | 6 |
riceface_zhongcun_2014_c | 6 |
Look for relevant GCME data from CO2-only experiments
df_gcme_data %>%
filter(`Data type` %in% c("N uptake", "NH4+ uptake", "NO3- uptake")) %>%
mutate(rep = as.numeric(`Measurement replicates`)) %>%
rename(exp = `Experiment Name`) %>%
filter(str_ends(exp, "_c") | str_detect(exp, "_c")) %>%
group_by(exp) %>%
summarise(n = sum(rep)) %>%
left_join(
df_gcme_data %>%
filter(`Data type` %in% c("N uptake", "NH4+ uptake", "NO3- uptake")) %>%
select(exp = "Experiment Name", ref = "Source Reference") %>%
distinct(),
by = "exp"
) %>%
left_join(
df_refs_gcme,
by = c("exp", "ref")
) %>%
knitr::kable()
exp | n | ref | full_ref |
---|---|---|---|
Brandbjerg_c | 24 | Arndal et al 2013a | Arndal MF, Merrild MP, Michelsen A, et al (2013) Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species. Plant and Soil 369:615–629. doi: 10.1007/s11104-013-1601-8 |
Brandbjerg_c | 24 | Arndal et al 2013b | Arndal MF, Schmidt IK, Kongstad J, et al (2013) Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem. Funct Plant Biol 41:1–10. |
Brandbjerg_cd | 24 | Arndal et al 2013a | Arndal MF, Merrild MP, Michelsen A, et al (2013) Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species. Plant and Soil 369:615–629. doi: 10.1007/s11104-013-1601-8 |
Brandbjerg_cd | 24 | Arndal et al 2013b | Arndal MF, Schmidt IK, Kongstad J, et al (2013) Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem. Funct Plant Biol 41:1–10. |
Brandbjerg_cw | 24 | Arndal et al 2013a | Arndal MF, Merrild MP, Michelsen A, et al (2013) Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species. Plant and Soil 369:615–629. doi: 10.1007/s11104-013-1601-8 |
Brandbjerg_cw | 24 | Arndal et al 2013b | Arndal MF, Schmidt IK, Kongstad J, et al (2013) Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem. Funct Plant Biol 41:1–10. |
Brandbjerg_cwd | 24 | Arndal et al 2013a | Arndal MF, Merrild MP, Michelsen A, et al (2013) Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species. Plant and Soil 369:615–629. doi: 10.1007/s11104-013-1601-8 |
Brandbjerg_cwd | 24 | Arndal et al 2013b | Arndal MF, Schmidt IK, Kongstad J, et al (2013) Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem. Funct Plant Biol 41:1–10. |
Durham_DukeFACE_c | 11 | Finzi et al.,2007 | Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., … & Ledford, J. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, 104(35), 14014-14019. |
Durham_DukeFACE_c | 11 | George K et al.,2003 | George, K., Norby, R. J., Hamilton, J. G., & DeLucia, E. H. (2003). Fine‐root respiration in a loblolly pine and sweetgum forest growing in elevated CO2. New Phytologist, 160(3), 511-522. |
FACTS II FACE3_pt_c | 9 | Finzi et al., 2007 | Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iverson CM, Jackson RB, Kubiske ME, Ledford HR, Liberloo M, Oren R, Polle A, Pritchard SG, Zak DR, Schlesinger WH, Ceulemans R (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. 2007. PNAS 104(35):14014-14019. PNAS 104:14014–14019 |
FACTS II FACE3_ptbp_c | 9 | Finzi et al., 2007 | Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iverson CM, Jackson RB, Kubiske ME, Ledford HR, Liberloo M, Oren R, Polle A, Pritchard SG, Zak DR, Schlesinger WH, Ceulemans R (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. 2007. PNAS 104(35):14014-14019. PNAS 104:14014–14019 |
ORNERP_liqui_c | 5 | Finzi et al.,2007 | Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., … & Ledford, J. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, 104(35), 14014-14019. |
ORNERP_liqui2_c | NA | George K et al.,2003 | George, K., Norby, R. J., Hamilton, J. G., & DeLucia, E. H. (2003). Fine‐root respiration in a loblolly pine and sweetgum forest growing in elevated CO2. New Phytologist, 160(3), 511-522. |
POPFACE_pa_c | 6 | Finzi et al 2007 | NA |
POPFACE_pe_c | 6 | Finzi et al 2007 | NA |
POPFACE_pn_c | 6 | Finzi et al 2007 | NA |
Rhine-aspenFACE_c | 6 | Finzi et al.,2007 | Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., … & Ledford, J. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, 104(35), 14014-14019. |
RiceFACE_China_32N_120E_Or_Tr_7_c | 54 | Cai et al., 2016 | Cai, C., et al. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology (2016) 22, 856–874, doi: 10.1111/gcb.13065. |
RiceFACE_China_32N_120E_Or_Tr_7_cw | 54 | Cai et al., 2016 | Cai, C., et al. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology (2016) 22, 856–874, doi: 10.1111/gcb.13065. |
RiceFACE_China_33N_120E_Or_5_c | 12 | Zhu et al., 2015 | Zhu, C. et al. An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment. Sci. Rep. 5, 12719; doi: 10.1038/srep12719 (2015). |
RiceFACE_Japan_A_1998_39,38_140,57_c | 12 | Kim et al., 2000 | NA |
RiceFACE_Japan_A_1998_39,38_140,57_c | 12 | Kim et al., 2003 | Kim et al., 2003. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global change Biology (2003) 9, 826-837 |
RiceFACE_Japan_A_1998_39,38_140,57_cf | 12 | Kim et al., 2000 | NA |
RiceFACE_Japan_A_1998_39,38_140,57_cf | 12 | Kim et al., 2003 | NA |
RiceFACE_Japan_A_1998_39,38_140,57_cf+ | 12 | Kim et al., 2000 | NA |
RiceFACE_Japan_A_1998_39,38_140,57_cf+ | 12 | Kim et al., 2003 | Kim et al., 2003. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global change Biology (2003) 9, 826-839 |
RiceFACE_Japan_A_1998_39,40_141_c | 24 | Fumoto et al., 2013 | Fumoto et al., 2013. Application of a process-based biogeochemistry model, DNDC-Rice, on a rice field under free-air CO2 enrichment (FACE). in Journal of Agricultural Meteorology 69(3):173-190 · January 2013 |
RiceFACE_Japan_A_1999_35,38_139,60_c | 20 | Yamakawa et al., 2004 | Yamakawa et al., 2004. Nutrient uptake by rice and soil solution composition under atmospheric |
CO2 enrichment. Plant and Soil 259: 367–372, 2004. | |||
RiceFACE_Japan_A_1999_39,40_141_c | 24 | Fumoto et al., 2013 | NA |
RiceFACE_Japan_A_2000_39,40_141_c | 24 | Fumoto et al., 2013 | NA |
RiceFACE_Japan_A_2003_39,38_140,57_c | 36 | Shimono et al., 2008 | Shimono et al., 2008 Rice yield enhancement by elevated CO2 is reduced in cool weather Global Change Biology (2008) 14, 276–284 |
RiceFACE_Japan_A_2003_39,38_140,57_c | 36 | Shimono et al., 2009. | NA |
RiceFACE_Japan_A_2003_39,38_140,57_c | 36 | Shimono et al., 2009 | Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009 |
RiceFACE_Japan_A_2003_39,40_141_c | 12 | Fumoto et al., 2013 | NA |
RiceFACE_Japan_A_2004_39,38_140,57_c | 8 | Shimono et al., 2009. | NA |
RiceFACE_Japan_A_2004_39,38_140,57_c | 8 | Shimono et al., 2009 | Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009 |
RiceFACE_Japan_A_2004_39,40_141_c | 16 | Fumoto et al., 2013 | NA |
RiceFACE_Japan_H_2003_39,38_140,57_c | 8 | Shimono et al., 2009. | NA |
RiceFACE_Japan_H_2003_39,38_140,57_c | 8 | Shimono et al., 2009 | Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009 |
RiceFACE_Japan_H_2004_39,38_140,57_c | 8 | Shimono et al., 2009. | NA |
RiceFACE_Japan_H_2004_39,38_140,57_c | 8 | Shimono et al., 2009 | Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009 |
RiceFACE_Japan_Ka_2003_39,38_140,57_c | 8 | Shimono et al., 2009. | NA |
RiceFACE_Japan_Ka_2003_39,38_140,57_c | 8 | Shimono et al., 2009 | Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009 |
RiceFACE_Japan_Ka_2004_39,38_140,57_c | 8 | Shimono et al., 2009. | NA |
RiceFACE_Japan_Ka_2004_39,38_140,57_c | 8 | Shimono et al., 2009 | Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009 |
RiceFACE_Japan_Ki_2003_39,38_140,57_c | 8 | Shimono et al., 2009. | NA |
RiceFACE_Japan_Ki_2003_39,38_140,57_c | 8 | Shimono et al., 2009 | Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009 |
RiceFACE_Japan_Ki_2004_39,38_140,57_c | 8 | Shimono et al., 2009. | NA |
RiceFACE_Japan_Ki_2004_39,38_140,57_c | 8 | Shimono et al., 2009 | Shimono et al., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, Vol. 60, No. 2, pp. 523–532, 2009 |
SwissFACE_lolium2_c | NA | Gloser et al 2000 | Gloser, V., Lüscher, A., Frehner, M., Blum, H., Nösberger, J., & Hartwig, U. A. (2000). Soil mineral nitrogen availability was unaffected by elevated atmospheric pCO2 in a four year old field experiment (Swiss FACE) Plant and Soil 227:291-299. |
SwissFACE_lolium2_cf | NA | Gloser et al 2000 | Gloser, V., Lüscher, A., Frehner, M., Blum, H., Nösberger, J., & Hartwig, U. A. (2000). Soil mineral nitrogen availability was unaffected by elevated atmospheric pCO2 in a four year old field experiment (Swiss FACE) Plant and Soil 227:291-299. |
Tuscania POP EUROFACE_c | 1 | Finzi et al.,2007 | Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., … & Ledford, J. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, 104(35), 14014-14019. |
For all variables listed below, may also get data from NutNet?
The following is available in MESI.
df %>%
filter(treatment == "f") %>%
filter(experiment_type == "field") %>%
filter(response == "root_shoot_ratio") %>%
group_by(exp) %>%
summarise(n = sum(rep_c)) %>%
knitr::kable()
exp | n |
---|---|
abag_f2 | 9 |
abag_f3 | 9 |
abag_f4 | 9 |
abag_f5 | 9 |
biocon_f | 3 |
chaux-des-breuleux_f | 5 |
duolun_2010b_f | 5 |
duolun1_f | 5 |
duolun7_f | 18 |
duolun9_f | 6 |
imgers_hg_2005_f | 4 |
imgers_hg_2005_f2 | 4 |
imgers_hg_2008_f | 4 |
imgers_mg_2008_f | 4 |
imgers_pooled_2005_f | 4 |
irvine_ranch_1_f | 10 |
jrbp_face_f | 8 |
niwot_ridge2_dm_fn | 5 |
niwot_ridge2_wm_fn | 5 |
ornl_face_liqui2_f | 3 |
pepeekeo_f | 3 |
salmisuo_f | 5 |
swissface_lolium2_f | 3 |
swissface_trifolium2_f | 3 |
winnter_f | 6 |
Look for relevant GCME data from CO2-only experiments
df_gcme_data %>%
filter(`Data type` == "root-shoot ratio" |
`Data type` == "root:shoot (biomass)" |
`Data type` == "root:shoot ratio" ) %>%
mutate(varnam = "root_shoot_ratio") %>%
mutate(rep = as.numeric(`Measurement replicates`)) %>%
rename(exp = `Experiment Name`) %>%
filter(str_ends(exp, "_f") | str_detect(exp, "_f")) %>%
group_by(exp) %>%
summarise(n = sum(rep)) %>%
left_join(
df_gcme_data %>%
filter(`Data type` == "root-shoot ratio" |
`Data type` == "root:shoot (biomass)" |
`Data type` == "root:shoot ratio" ) %>%
select(exp = "Experiment Name", ref = "Source Reference") %>%
distinct(),
by = "exp"
) %>%
left_join(
df_refs_gcme,
by = c("exp", "ref")
) %>%
knitr::kable()
exp | n | ref | full_ref |
---|---|---|---|
Duke_pinus1_f | 1 | Phillips et al.,2009 | Phillips, R. P., Bernhardt, E. S., & Schlesinger, W. H. (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree physiology, 29(12), 1513-1523 |
Duke_pinus2_f | 1 | Phillips et al.,2009 | Phillips, R. P., Bernhardt, E. S., & Schlesinger, W. H. (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree physiology, 29(12), 1513-1523 |
Luneberguer2008_fNP | NA | Friedrich et al 2012 | NA |
Luneburger2008_fd | NA | Friedrich et al 2012 | NA |
Luneburger2008_fN | NA | Friedrich et al 2012 | Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71. |
Luneburger2008_fNd | NA | Friedrich et al 2012 | NA |
Luneburger2008_fNPd | NA | Friedrich et al 2012 | Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71. |
Luneburger2008_fP | NA | Friedrich et al 2012 | Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71. |
Luneburger2008_fPd | NA | Friedrich et al 2012 | Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71. |
Luneburger2010_f | NA | Meyer-Grunefeldt et al 2015 | Meyer-Grünefeldt, M., Friedrich, U., Klotz, M., Von Oheimb, G., & Härdtle, W. (2015). Nitrogen deposition and drought events have non-additive effects on plant growth–evidence from greenhouse experiments. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 149(2), 424-432. |
Zurich_f | NA | Salmon et al 2014 | Salmon, Y., Barnard, R. L., & Buchmann, N. (2014). Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux. Functional plant biology, 41(8), 850-859. |
Zurich_fi | NA | Salmon et al 2014 | Salmon, Y., Barnard, R. L., & Buchmann, N. (2014). Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux. Functional plant biology, 41(8), 850-859. |
Zurich_fi+ | NA | Salmon et al 2014 | Salmon, Y., Barnard, R. L., & Buchmann, N. (2014). Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux. Functional plant biology, 41(8), 850-859. |
The following is available in MESI.
df %>%
filter(treatment == "f") %>%
filter(experiment_type == "field") %>%
filter(response %in% c("soil_no3-n", "soil_nh4-n", "soil_nh4", "soil_no3", "soil_solution_nh4", "soil_solution_no3")) %>%
group_by(exp) %>%
summarise(n = sum(rep_c)) %>%
knitr::kable()
exp | n |
---|---|
abag_f | 20 |
abag_f2 | 20 |
abag_f3 | 20 |
abag_f4 | 20 |
abag_f5 | 20 |
antu_f | 12 |
antu_f2 | 12 |
biocon_f | 36 |
bonanza_creek_2005_f | 108 |
cuiliugou_f | 112 |
dbr2_f | 6 |
dbr2_f2 | 6 |
dbr2_f3 | 6 |
dbr2_f4 | 6 |
deqing_b_f | 15 |
deqing_b_f3 | 27 |
deqing_d_f | 21 |
deqing_d_f2 | 24 |
deqing_d_f3 | 21 |
deqing_f | 5 |
deqing_f2 | 5 |
duolun2_f6 | 5 |
euroface_pooled_f | 18 |
gaoyao_f | 4 |
gaoyao_f2 | 4 |
gaoyao_f3 | 8 |
imgers_ng_2007b_f | 50 |
jingtai_f | 24 |
jingtai_f2 | 32 |
jingtai_f3 | 32 |
maoershan_larix_f | 6 |
maoxian_f | 24 |
menyuan_f | 11 |
menyuan_f2 | 11 |
menyuan_f3 | 11 |
menyuan_f4 | 11 |
menyuan_f5 | 11 |
menyuan_f6 | 11 |
menyuan_f62 | 11 |
menyuan_f63 | 11 |
menyuan_f64 | 16 |
riceface_zhongcun_2011_f | 72 |
shaxian_f | 6 |
shaxian_f2 | 6 |
shaxian_f3 | 6 |
slattatjakka_f | 80 |
sydney_f | 48 |
sydney_f2 | 48 |
xiang_dao_f | 12 |
xiaojin_b_f | 15 |
xiaojin_b_f2 | 15 |
xiaojin_b_f3 | 12 |
yakeshi_f | 6 |
yakeshi_f2 | 6 |
Look for relevant GCME data from CO2-only experiments
df_gcme_data %>%
filter(`Data type` %in% c("soil solution NO3-", "soil solution mineral N", "soil solution NH4+", "soil NH4+", "soil NH4-N", "soil NH4+-N", "soil NO3-N" , "soil nitrate" , "soil NO3-", "soil ammonium" )) %>%
mutate(rep = as.numeric(`Measurement replicates`)) %>%
rename(exp = `Experiment Name`) %>%
filter(str_ends(exp, "_f") | str_detect(exp, "_f")) %>%
group_by(exp) %>%
summarise(n = sum(rep)) %>%
left_join(
df_gcme_data %>%
filter(`Data type` %in% c("soil solution NO3-", "soil solution mineral N", "soil solution NH4+", "soil NH4+", "soil NH4-N", "soil NH4+-N", "soil NO3-N" , "soil nitrate" , "soil NO3-", "soil ammonium" )) %>%
select(exp = "Experiment Name", ref = "Source Reference") %>%
distinct(),
by = "exp"
) %>%
left_join(
df_refs_gcme,
by = c("exp", "ref")
) %>%
knitr::kable()
exp | n | ref | full_ref |
---|---|---|---|
BioCON_f | NA | Antoninka et al., 2009 | Antoninka A, Wolf JE, Bowker M, Classen AT, Johnson NC. 2009. Linking above‐and belowground responses to global change at community and ecosystem scales. Global Change Biology, 15(4): 914-929. |
BioCON_f | NA | Mueller et al., 2013 | Mueller KE, Hobbie SE, Tilman D, Reich PB. 2013. Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long‐term experiment. Global Change Biology, 19(4): 1249-1261. |
DUKE2_f | 8 | Drake et al., 2012 | Drake JE, Oishi AC, Giasson MA, Oren R, Johnsen KH, Finzi, AC. 2012. Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO2] and N fertilization. Agricultural and Forest Meteorology, 165: 43-52. |
EUROFACE7_pooled_f | 90 | Lagomarsino et al 2006 | NA |
EUROFACE7_pooled_f | 90 | Liberloo et al 2006 | NA |
RiceFACE_China_33N_120E_Or_7_f | 144 | Cheng et al., 2016 | Cheng, Y., et al. Ten years of elevated atmospheric CO2 doesn’t alter soil nitrogen availability in a rice paddy. Soil Biology & Biochemistry 98 (2016) 99e108. |
SwissFACE_lolium2_f | 6 | Fromin et al 2005 | Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biology |
SwissFACE_lolium2_f | 6 | Fromin et al 2005 | Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biology and Biochemistry 37:1962–1965 |
The following is available in MESI.
df %>%
filter(treatment == "f") %>%
filter(experiment_type == "field") %>%
filter(response %in% c("bgb", "fine_root_biomass")) %>%
group_by(exp) %>%
summarise(n = sum(rep_c)) %>%
knitr::kable()
exp | n |
---|---|
38.53_-76.33_f | 15 |
41.77_111.88_f | 24 |
68.38_-104.54_f | 4 |
abag_f2 | 18 |
abag_f3 | 18 |
abag_f4 | 18 |
abag_f5 | 18 |
abag_mature_f | 18 |
abag_mature_f2 | 18 |
abag_mature_f3 | 18 |
abag_mature_f4 | 18 |
abag_mature_f5 | 18 |
alp_weissenstein2_f | 15 |
arizona_f | 16 |
bcnm_fk | 20 |
bcnm_fn | 20 |
bcnm_fnk | 20 |
bcnm_fnp | 20 |
bcnm_fnpk | 20 |
bcnm_fp | 20 |
bcnm_fpk | 20 |
biocon_f | 57 |
bordeaux_f | 4 |
bordeaux_f2 | 4 |
changbai_mountain_f2 | 12 |
changshan_f | 100 |
chaux-des-breuleux_f | 10 |
climaite_f | 6 |
climaite_f2 | 6 |
damxung_2013_f | 8 |
damxung_b_f | 26 |
damxung_b_f2 | 19 |
damxung_b_f3 | 12 |
damxung_f | 60 |
daqinggou_fn | 18 |
daqinggou_fnp | 6 |
daqinggou_fp | 6 |
dbr2_f | 6 |
dbr2_f2 | 6 |
dbr2_f3 | 6 |
dbr2_f4 | 6 |
dukeface_f | 4 |
duolun_2010b_f | 5 |
duolun4_f | 16 |
duolun7_f | 55 |
duolun9_f | 12 |
eastern_japan_f | 10 |
euroface_pa_f | 3 |
euroface_pe_f | 3 |
euroface_pn_f | 3 |
euroface_pooled_f | 36 |
flakaliden_f | 10 |
fruebuel2_f | 15 |
harbin_f | 3 |
hawaii_fn | 10 |
hf_f_mh_f | 3 |
hf_f_mh_f2 | 3 |
hf_f_pr_f | 3 |
hf_f_pr_f2 | 3 |
imgers_hg_2008_f | 20 |
imgers_mg_2008_f | 20 |
imgers_ng_2006_f | 6 |
imgers_ng_2006_f2 | 6 |
imgers_ng_2006_f3 | 6 |
imgers_ng_2006_f4 | 6 |
imgers_ng_2006_f5 | 6 |
imgers_ng_2007b_f | 5 |
irvine_ranch_1_f | 10 |
jilin_f | 8 |
jrbp_face_f | 20 |
liaoning_f | 6 |
liudaogou_f | 54 |
liujiang_b_f | 3 |
liujiang_b_f2 | 3 |
liujiang_b_f3 | 3 |
luneburg_field_2009_f | 28 |
maoershan_fraxinus_f | 3 |
maoershan_larix_f | 3 |
maoxian_f | 6 |
maoxian_pc_f | 5 |
maoxian_pp_f | 5 |
massachusetts_f | 80 |
massachusetts_f2 | 80 |
mbs_pt2_f | 10 |
mes_f | 4 |
michigan_c_f | 3 |
michigan_e_f | 36 |
michiganc_f | 3 |
nemitz_f | 28 |
niwot_ridge2_dm_f2np | 5 |
niwot_ridge2_dm_fn | 15 |
niwot_ridge2_dm_fnp | 5 |
niwot_ridge2_dm_fp | 5 |
niwot_ridge2_wm_fn | 15 |
niwot_ridge2_wm_fnp | 10 |
niwot_ridge2_wm_fp | 5 |
puerto_b_f | 3 |
quinta_f | 10 |
riceface_nianyufarm_rotation_2001_f | 24 |
riceface_zhongcun_2012_cf2 | 3 |
riceface_zhongcun_2012_f | 3 |
riceface_zhongcun_2012_f2 | 3 |
rosinedal_f | 20 |
rosinedal_f2 | 20 |
rothamsted_f | 48 |
salmisuo_f | 10 |
sanjiang_mire_maize_fn | 3 |
sanjiang_mire_maize_fn2 | 3 |
sca_f | 12 |
scbg_f | 3 |
songen_f | 48 |
swissface_lolium2_f | 3 |
swissface_trifolium2_f | 3 |
tu_2011_f | 6 |
tu_2011_f2 | 6 |
tu_2011_f3 | 6 |
tu_b_f | 3 |
tu_b_f2 | 3 |
tu_b_f3 | 3 |
white_mountains_f | 9 |
winnter_f | 6 |
Look for relevant GCME data from CO2-only experiments
df_gcme_data %>%
filter(`Data type` %in% c("belowground biomass", "belowground biomass C", "belowground C", "root C")) %>%
mutate(rep = as.numeric(`Measurement replicates`)) %>%
rename(exp = `Experiment Name`) %>%
filter(str_detect(exp, "_f")) %>%
group_by(exp) %>%
summarise(n = sum(rep)) %>%
left_join(
df_gcme_data %>%
filter(`Data type` %in% c("belowground biomass", "belowground biomass C", "belowground C", "root C")) %>%
select(exp = "Experiment Name", ref = "Source Reference") %>%
distinct(),
by = "exp"
) %>%
left_join(
df_refs_gcme,
by = c("exp", "ref")
) %>%
knitr::kable()
## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion
exp | n | ref | full_ref |
---|---|---|---|
Aber forest_spruce_f | NA | Emmett et al., 1995 | Emmett BA, Brittain SA, Hughes S, Kennedy V (1995) Nitrogen additions (nano3 and nh4no3) at aber forest, wales .2. Response of trees and soil-nitrogen transformations. Forest Ecology and Management, 71, 61-73. |
Aber forest_spruce_f+ | NA | Emmett et al., 1995 | Emmett BA, Brittain SA, Hughes S, Kennedy V (1995) Nitrogen additions (nano3 and nh4no3) at aber forest, wales .2. Response of trees and soil-nitrogen transformations. Forest Ecology and Management, 71, 61-73. |
Aber forest_spruce_fNH4 | NA | Emmett et al., 1995 | Emmett BA, Brittain SA, Hughes S, Kennedy V (1995) Nitrogen additions (nano3 and nh4no3) at aber forest, wales .2. Response of trees and soil-nitrogen transformations. Forest Ecology and Management, 71, 61-73. |
AlpFlix_fN | NA | Blanke et al. 2012 | Blanke et al. 2012. Nitrogen deposition effects on subalpine grassland: The role of nutrient limitations and changes in mycorrhizal abundance. Acta Oecologica 45, 57-65 |
BioCON_f | NA | Antoninka et al., 2011 | Antoninka A, Reich PB, Johnson NC, 2011. Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytologist, doi:10.1111/j.1469-8137.2011.03776.x |
BioCON_f | NA | Antoninka et al., 2011 | Antoninka A, Reich PB, Johnson NC. 2011. Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytologist, 192(1): 200-214. |
BioCON_f | NA | Reich et al., 2001a | Reich PB, Tilman D, Craine J, Ellsworth D, Tjoelker MG, Knops J, Bengtson W et al. 2001. Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytologist, 150(2): 435-448. |
Bordeaux_f | NA | Trichet et al., 2008 | Trichet P, Loustau D, Lambrot C, Linder S (2008) Manipulating nutrient and water availability in a maritime pine plantation: Effects on growth, production, and biomass allocation at canopy closure. Annals of Forest Science, 65, |
Bordeaux_fP | NA | Trichet et al., 2008 | Trichet P, Loustau D, Lambrot C, Linder S (2008) Manipulating nutrient and water availability in a maritime pine plantation: Effects on growth, production, and biomass allocation at canopy closure. Annals of Forest Science, 65, |
Braunschweig FACE_f | 3 | Manderscheid et al., 2010 | Manderscheid R, Pacholski A, Weigel H-J (2010) Effect of free air carbon dioxide enrichment combined with two nitrogen levels on growth, yield and yield quality of sugar beet: evidence for a sink limitation of beet growth under elevated CO2. European Jour |
Braunschweig FACE4_f | 6 | Manderscheid et al., 2010 | Manderscheid R, Pacholski A, Weigel H-J (2010) Effect of free air carbon dioxide enrichment combined with two nitrogen levels on growth, yield and yield quality of sugar beet: evidence for a sink limitation of beet growth under elevated CO2. European Jour |
Braunschweig FACE4_fs | 2 | Manderscheid et al., 2010 | Manderscheid R, Pacholski A, Weigel H-J (2010) Effect of free air carbon dioxide enrichment combined with two nitrogen levels on growth, yield and yield quality of sugar beet: evidence for a sink limitation of beet growth under elevated CO2. European Jour |
DBR2_cc_f | NA | Mo et al., 2008(2) | Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283. |
DBR2_cc_f+ | NA | Mo et al., 2008(2) | Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283. |
DBR2_cc_f++ | NA | Mo et al., 2008(2) | Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283. |
DBR2_cc_f+++ | NA | Mo et al., 2008(2) | Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283. |
DBR2_ss_f | NA | Mo et al., 2008(2) | Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283. |
DBR2_ss_f+ | NA | Mo et al., 2008(2) | Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283. |
DBR2_ss_f++ | NA | Mo et al., 2008(2) | Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283. |
DBR2_ss_f+++ | NA | Mo et al., 2008(2) | Mo JM, Li DJ, Gundersen P (2008) Seedling growth response of two tropical tree species to nitrogen deposition in southern china. European Journal of Forest Research, 127, 275-283. |
DRI_f | 3 | Walker et al., 1997 | NA |
DUKE-Ph_pine1_f | 10 | Larigauderie et al., 1994 | NA |
DUKE-Ph_pine2_pp_f | 5 | King et al., 1996 | King et al., 1996. Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosa seedlings as affected by varying CO2, temperature and nitrogen. Tree Physiology 16, 635-642. |
DUKE-Ph_pine2_pt_f | 5 | King et al., 1996 | King et al., 1996. Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosa seedlings as affected by varying CO2, temperature and nitrogen. Tree Physiology 16, 635-642. |
DUKE-Ph_robinia_f | 8 | Uselman et al., 2000 | Uselman et al., 2000. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant and Soil 222, 191-202. |
Escambia County_f | NA | Leggett & Kelting, 2006 | Leggett ZH, Kelting DL (2006) Fertilization effects on carbon pools in loblolly pine plantations on two upland sites. Soil Science Society of America Journal, 70, 279-286. |
EUROFACE4_pa_f | 3 | Liberloo et al 2006 | NA |
EUROFACE4_pe_f | 3 | Liberloo et al 2006 | NA |
EUROFACE4_pn_f | 3 | Liberloo et al 2006 | NA |
FL_f | NA | Iivonen et al., 2006 | Iivonen S, Kaakinen S, Jolkkonen A, Vapaavuori E, Linder S (2006) Influence of long-term nutrient optimization on biomass, carbon, and nitrogen acquisition and allocation in norway spruce. Canadian Journal of Forest Research-Revue Canadienne De Recherche |
Glendevon_ag_f | 2 | Temperton, 1998 | NA |
Glendevon_bp_f | 2 | Jarvis et al., 1998 | NA |
Glendevon2_ag_f | 1 | Heyworth et al., 1998 | NA |
Glendevon3_ag_f | 1 | Temperton et al., 2003 | NA |
Glendevon3_psi_f | 1 | Jarvis et al., 1998 | NA |
Greene County_f | NA | Leggett & Kelting, 2006 | Leggett ZH, Kelting DL (2006) Fertilization effects on carbon pools in loblolly pine plantations on two upland sites. Soil Science Society of America Journal, 70, 279-286. |
Hangzhou_fm | NA | Wang et al., 2015 | Wang et al., 2015. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice–barley cropping system. Biol Fertil Soils 51, 583-591 |
Hangzhou_fm+NPK | NA | Wang et al., 2015 | Wang et al., 2015. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice–barley cropping system. Biol Fertil Soils 51, 583-591 |
Hangzhou_fNPK | NA | Wang et al., 2015 | Wang et al., 2015. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice–barley cropping system. Biol Fertil Soils 51, 583-591 |
Headley_fe_c | 1 | Broadmeadow & Jackson, 2000 | Broadmeadow & Jackson, 2000. Growth responses of Quercus petraea, Fraxinus excelsior and Pinus sylvestris to elevated carbon dioxide, ozone and water supply. New Phytologist 146, 437-451. |
Headley_fe_ch | 1 | Crookshanks et al., 1998 | Crookshanks M, Taylor G, Broadmeadow M (1998) Elevated co2 and tree root growth: Contrasting responses in fraxinus excelsior, quercus petraea and pinus sylvestris. New Phytologist, 138, 241-250. |
HGC_ap_f | 2 | Bazzaz & Miao, 1993 | NA |
HGC_ar_f | 2 | Bazzaz & Miao, 1993 | NA |
HGC_ba2_f | 2 | Bazzaz & Miao, 1993 | NA |
HGC_fa_c | 2 | Bazzaz & Miao, 1993 | Bazzaz FA, Miao SL (1993) Successional status, seed size, and responses of tree seedlings to co2, light, and nutrients. Ecology, 74, 104-112. |
HGC_fa_cf | 2 | Bazzaz & Miao, 1993 | Bazzaz FA, Miao SL (1993) Successional status, seed size, and responses of tree seedlings to co2, light, and nutrients. Ecology, 74, 104-112. |
HGC_fa_f | 2 | Bazzaz & Miao, 1993 | NA |
JRBP_FACE3_f | 5 | Dukes et al., 2005 | NA |
JRBP_OTCsand_f | 1 | Cardon et al., 2001 | NA |
JRBP_OTCser_f | 1 | Cardon et al., 2001 | NA |
Luneberguer2008_fNP | NA | Friedrich et al 2012 | NA |
Luneburger2008_fd | NA | Friedrich et al 2012 | NA |
Luneburger2008_fN | NA | Friedrich et al 2012 | Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71. |
Luneburger2008_fNd | NA | Friedrich et al 2012 | NA |
Luneburger2008_fNPd | NA | Friedrich et al 2012 | Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71. |
Luneburger2008_fP | NA | Friedrich et al 2012 | Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71. |
Luneburger2008_fPd | NA | Friedrich et al 2012 | Friedrich, U., von Oheimb, G., Kriebitzsch, W. U., Schleßelmann, K., Weber, M. S., & Härdtle, W. (2012). Nitrogen deposition increases susceptibility to drought-experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and soil, 353(1-2), 59-71. |
Luneburger2010_f | NA | Meyer-Grunefeldt et al 2015 | Meyer-Grünefeldt, M., Friedrich, U., Klotz, M., Von Oheimb, G., & Härdtle, W. (2015). Nitrogen deposition and drought events have non-additive effects on plant growth–evidence from greenhouse experiments. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 149(2), 424-432. |
MBS_pe_f | 1 | Pregitzer et al., 1995 | NA |
MBS_pt_f | 1 | Mikan et al., 2000 | NA |
MES_f | NA | Zhao & Liu, 2009 | Zhao CZ, Liu Q (2009) Growth and physiological responses of picea asperata seedlings to elevated temperature and to nitrogen fertilization. Acta Physiologiae Plantarum, 31, 163-173. |
NashField_pooled_fK | NA | Fornara et al. 2013 | Fornara et al. 2013. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology 19, 3848-3857 |
NashField_pooled_fN | NA | Fornara et al. 2013 | Fornara et al. 2013. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology 19, 3848-3857 |
NashField_pooled_fNP | NA | Fornara et al. 2013 | Fornara et al. 2013. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology 19, 3848-3857 |
NashField_pooled_fP | NA | Fornara et al. 2013 | Fornara et al. 2013. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology 19, 3848-3857 |
NashField_pooled_fPK | NA | Fornara et al. 2013 | Fornara et al. 2013. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology 19, 3848-3857 |
Niwot Ridge2_dm_f | NA | Bowman et al., 1993 | Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in 2 alpine tundra communities. Ecology, 74, 2085-2097. |
Niwot Ridge2_dm_f+ | NA | Bowman et al., 1993 | Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in 2 alpine tundra communities. Ecology, 74, 2085-2097. |
Niwot Ridge2_wm_f | NA | Bowman et al., 1993 | Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in 2 alpine tundra communities. Ecology, 74, 2085-2097. |
Niwot Ridge2_wm_f+ | NA | Bowman et al., 1993 | Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in 2 alpine tundra communities. Ecology, 74, 2085-2097. |
RiceFACE_China_32N_120E_Or_Tr_f | 12 | Ma et al., 2007b | Ma, H., et al. Responses of rice and winter wheat to free-air CO2 enrichment (China FACE) at rice/wheat rotation system. Plant Soil (2007) 294:137–146. (2007). |
RiceFACE_China_33N_120E_Or_12_f | 3 | Du et al., 2017 | Du, W., et al. Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. Science of the Total Environment 578 (2017) 408–416. |
RiceFACE_China_33N_120E_Or_12_f+ | 3 | Du et al., 2017 | Du, W., et al. Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. Science of the Total Environment 578 (2017) 408–416. |
Savannah River_f | NA | Coyle et al., 2008 | Coyle DR, Coleman MD, Aubrey DP (2008) Above- and below-ground biomass accumulation, production, and distribution of sweetgum and loblolly pine grown with irrigation and fertilization. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 38, 1335-1348. |
SCBG_f | 27 | Deng et al., 2010 | Deng Q, Zhou G, Liu J, Liu S, Duan H, Zhang D (2010) Responses of soil respiration to elevated carbon dioxide and nitrogen additions in young subtropical forest ecosystems in China. Biogeosciences 7, 315-328. |
SCBG_f | 27 | Chen et al 2012 | Chen, X., Liu, J., Deng, Q., Yan, J., & Zhang, D. (2012). Effects of elevated CO 2 and nitrogen addition on soil organic carbon fractions in a subtropical forest. Plant and Soil, 357(1-2), 25-34. |
SCBG_f | 27 | Liu et al 2010 | NA |
SETRES_f | NA | Maier & Kress, 2000 | Maier CA, Kress LW (2000) Soil co2 evolution and root respiration in 11 year-old loblolly pine (pinus taeda) plantations as affected by moisture and nutrient availability. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 30, 3 |
SwissFACE_lolium2_f | NA | Bazot et al., 2006 | NA |
SwissFACE_lolium2_f | NA | Hartwig et al 2002 | Hartwig UA, Lüscher A, Nösberger J, Kessel CV (2002) Nitrogen-15 budget in model ecosystems of white clover and perennial ryegrass exposed for four years at elevated atmospheric pCO2. Global Change Biology 8:194–202 |
SwissFACE_trifolium2_f | NA | Hartwig et al 2002 | Hartwig UA, Lüscher A, Nösberger J, Kessel CV (2002) Nitrogen-15 budget in model ecosystems of white clover and perennial ryegrass exposed for four years at elevated atmospheric pCO2. Global Change Biology 8:194–202 |
TL Inlet_f | NA | Shaver et al., 1998 | Shaver et al., 1998. Biomass and CO2 flux in wet sedge tundras: Responses to nutrients, temperature, and light. Ecological Monographs 68, 75-97. |
TL_f | NA | Mack et al., 2004 | Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 431, 440-443. |
TL5_f | NA | DeMarco et al., 2014 | DeMarco et al., 2014. Long-term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra. Ecosphere 5, 72. |
TL5_fw | NA | DeMarco et al., 2014 | DeMarco et al., 2014. Long-term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra. Ecosphere 5, 72. |
Zurich_f | NA | Salmon et al 2014 | Salmon, Y., Barnard, R. L., & Buchmann, N. (2014). Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux. Functional plant biology, 41(8), 850-859. |
Zurich_fi | NA | Salmon et al 2014 | Salmon, Y., Barnard, R. L., & Buchmann, N. (2014). Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux. Functional plant biology, 41(8), 850-859. |
Zurich_fi+ | NA | Salmon et al 2014 | Salmon, Y., Barnard, R. L., & Buchmann, N. (2014). Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux. Functional plant biology, 41(8), 850-859. |
The following is available in MESI.
df %>%
filter(treatment == "f") %>%
filter(experiment_type == "field") %>%
filter(response %in% c("root_production", "fine_root_production", "root_production")) %>%
group_by(exp) %>%
summarise(n = sum(rep_c)) %>%
knitr::kable()
exp | n |
---|---|
biocon_f | 32 |
changbai_mountain_f | 6 |
changbai_mountain_f2 | 6 |
chiriqui_f | 8 |
duolun_2010b_f | 30 |
duolun1_f | 59 |
duolun7_f | 36 |
duolun9_f | 30 |
hamr_f | 1 |
hamr_f2 | 1 |
irvine_ranch_1_f | 5 |
jrbp_face_f | 46 |
maoershan_larix_f | 24 |
ornl_face_liqui2_f | 10 |
pepeekeo_f | 3 |
rosinedal_f | 3 |
santa_rosa_f | 24 |
santa_rosa_f2 | 24 |
santa_rosa_f3 | 24 |
trebon_basin_biosphere_reserve_f | 1 |
trebon_basin_biosphere_reserve_f2 | 1 |
Look for relevant GCME data from CO2-only experiments
df_gcme_data %>%
filter(`Data type` %in% c("Fine root production", "fine root production", "BNPP" )) %>%
mutate(rep = as.numeric(`Measurement replicates`)) %>%
rename(exp = `Experiment Name`) %>%
filter(str_detect(exp, "_f")) %>%
group_by(exp) %>%
summarise(n = sum(rep)) %>%
left_join(
df_gcme_data %>%
filter(`Data type` %in% c("Fine root production", "fine root production", "BNPP" )) %>%
select(exp = "Experiment Name", ref = "Source Reference") %>%
distinct(),
by = "exp"
) %>%
left_join(
df_refs_gcme,
by = c("exp", "ref")
) %>%
knitr::kable()
exp | n | ref | full_ref |
---|---|---|---|
Boulder_f | NA | Haynes & Gower, 1995 | Haynes BE, Gower ST (1995) Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern wisconsin. Tree Physiology, 15, 317-325. |
DRI_f | 12 | Phillips et al., 2006 | NA |
Duolun_3_f | NA | Yan et al., 2011 | NA |
IBGE_fN | NA | Bustamente et al. 2012 | Bustamente et al. 2012. Effects of nutrient additions on plant biomass and diversity of the herbaceous-subshrub layer of a Brazilian savanna (Cerrado). Plant Ecology 213, 795-808 |
IBGE_fNP | NA | Bustamente et al. 2012 | Bustamente et al. 2012. Effects of nutrient additions on plant biomass and diversity of the herbaceous-subshrub layer of a Brazilian savanna (Cerrado). Plant Ecology 213, 795-808 |
IBGE_fP | NA | Bustamente et al. 2012 | Bustamente et al. 2012. Effects of nutrient additions on plant biomass and diversity of the herbaceous-subshrub layer of a Brazilian savanna (Cerrado). Plant Ecology 213, 795-808 |
JRBP_FACE3_f | 2 | Henry et al., 2006 | Henry HAL, Chiariello NR, Vitousek PM, Mooney HA, Field CB (2006) Interactive effects of fire, elevated carbon dioxide, nitrogen deposition, and precipitation on a california annual grassland. Ecosystems, 9, 1066-1075. |
ORNERP_liqui2_f | 12 | Iversen and Norby.,2008 | Iversen, C. M., & Norby, R. J. (2008). Nitrogen limitation in a sweetgum plantation: implications for carbon allocation and storage. Canadian Journal of Forest Research, 38(5), 1021-1032. |
Santa Rosa_pd_f | NA | Lee & Jose, 2003 | Lee KH, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263-273. |
Santa Rosa_pd_f+ | NA | Lee & Jose, 2003 | Lee KH, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263-273. |
Santa Rosa_pt_f | NA | Lee & Jose, 2003 | Lee KH, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263-273. |
Santa Rosa_pt_f+ | NA | Lee & Jose, 2003 | Lee KH, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263-273. |
Savannah River_f | NA | Coyle et al., 2008 | Coyle DR, Coleman MD, Aubrey DP (2008) Above- and below-ground biomass accumulation, production, and distribution of sweetgum and loblolly pine grown with irrigation and fertilization. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 38, 1335-1348. |
SETRES_f | NA | Albaugh et al., 1998 | Albaugh et al., 1998. Leaf area and above- and belowground growth responses of loblolly pine to nutrient and water additions. Forest Science 44, 317-328. |