Cargar Librerías

library(caret)
## Loading required package: ggplot2
## Loading required package: lattice

Base de datos

datos <- read.csv("/cloud/project/breast-cancer-wisconsin.data", header=FALSE)

Análisis Exploratorio de los datos

**Resumen del set de datos

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
glimpse(datos)
## Rows: 699
## Columns: 11
## $ V1  <int> 1000025, 1002945, 1015425, 1016277, 1017023, 1017122, 1018099, 101…
## $ V2  <int> 5, 5, 3, 6, 4, 8, 1, 2, 2, 4, 1, 2, 5, 1, 8, 7, 4, 4, 10, 6, 7, 10…
## $ V3  <int> 1, 4, 1, 8, 1, 10, 1, 1, 1, 2, 1, 1, 3, 1, 7, 4, 1, 1, 7, 1, 3, 5,…
## $ V4  <int> 1, 4, 1, 8, 1, 10, 1, 2, 1, 1, 1, 1, 3, 1, 5, 6, 1, 1, 7, 1, 2, 5,…
## $ V5  <int> 1, 5, 1, 1, 3, 8, 1, 1, 1, 1, 1, 1, 3, 1, 10, 4, 1, 1, 6, 1, 10, 3…
## $ V6  <int> 2, 7, 2, 3, 2, 7, 2, 2, 2, 2, 1, 2, 2, 2, 7, 6, 2, 2, 4, 2, 5, 6, …
## $ V7  <chr> "1", "10", "2", "4", "1", "10", "10", "1", "1", "1", "1", "1", "3"…
## $ V8  <int> 3, 3, 3, 3, 3, 9, 3, 3, 1, 2, 3, 2, 4, 3, 5, 4, 2, 3, 4, 3, 5, 7, …
## $ V9  <int> 1, 2, 1, 7, 1, 7, 1, 1, 1, 1, 1, 1, 4, 1, 5, 3, 1, 1, 1, 1, 4, 10,…
## $ V10 <int> 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 4, 1, …
## $ V11 <int> 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, …
datos$V7 <- ifelse(datos$V7 == '?', '1', datos$V7)
datos$V11 <- as.factor(datos$V11)

datos$V7 <- as.integer(datos$V7)
glimpse(datos)
## Rows: 699
## Columns: 11
## $ V1  <int> 1000025, 1002945, 1015425, 1016277, 1017023, 1017122, 1018099, 101…
## $ V2  <int> 5, 5, 3, 6, 4, 8, 1, 2, 2, 4, 1, 2, 5, 1, 8, 7, 4, 4, 10, 6, 7, 10…
## $ V3  <int> 1, 4, 1, 8, 1, 10, 1, 1, 1, 2, 1, 1, 3, 1, 7, 4, 1, 1, 7, 1, 3, 5,…
## $ V4  <int> 1, 4, 1, 8, 1, 10, 1, 2, 1, 1, 1, 1, 3, 1, 5, 6, 1, 1, 7, 1, 2, 5,…
## $ V5  <int> 1, 5, 1, 1, 3, 8, 1, 1, 1, 1, 1, 1, 3, 1, 10, 4, 1, 1, 6, 1, 10, 3…
## $ V6  <int> 2, 7, 2, 3, 2, 7, 2, 2, 2, 2, 1, 2, 2, 2, 7, 6, 2, 2, 4, 2, 5, 6, …
## $ V7  <int> 1, 10, 2, 4, 1, 10, 10, 1, 1, 1, 1, 1, 3, 3, 9, 1, 1, 1, 10, 1, 10…
## $ V8  <int> 3, 3, 3, 3, 3, 9, 3, 3, 1, 2, 3, 2, 4, 3, 5, 4, 2, 3, 4, 3, 5, 7, …
## $ V9  <int> 1, 2, 1, 7, 1, 7, 1, 1, 1, 1, 1, 1, 4, 1, 5, 3, 1, 1, 1, 1, 4, 10,…
## $ V10 <int> 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 4, 1, …
## $ V11 <fct> 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, …
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ tibble  3.1.8     ✔ purrr   0.3.5
## ✔ tidyr   1.2.1     ✔ stringr 1.4.1
## ✔ readr   2.1.3     ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ✖ purrr::lift()   masks caret::lift()
sapply(datos, function(x) sum(is.na(x)))
##  V1  V2  V3  V4  V5  V6  V7  V8  V9 V10 V11 
##   0   0   0   0   0   0   0   0   0   0   0
ggplot(data = datos, aes(x = V11, y = ..count.., fill = V11)) +
  geom_bar() +
  scale_fill_manual(values = c("gray50", "orangered2")) +
  labs(title = "Tipo de Tumor") +
  theme_bw() +
  theme(legend.position = "bottom")

table(datos$V11)
## 
##   2   4 
## 458 241
prop.table(table(datos$V11)) %>% round(digits = 3)
## 
##     2     4 
## 0.655 0.345

División de los datos en entrenamiento (65,5%) y test (34,5%)

set.seed(100)
IndicesEntrenamiento <- createDataPartition(y = datos$V11,
                                            p = 0.655,
                                            list = FALSE)
Entrenamiento <- datos[IndicesEntrenamiento,]
Test <- datos[-IndicesEntrenamiento,]

Se verifica la proporción en la data

round(prop.table(table(datos$V11)),3)
## 
##     2     4 
## 0.655 0.345
round(prop.table(table(Entrenamiento$V11)),3)
## 
##     2     4 
## 0.655 0.345
round(prop.table(table(Test$V11)),3)
## 
##     2     4 
## 0.656 0.344

Algoritmos disponibles en CARET (239)

names(getModelInfo())
##   [1] "ada"                 "AdaBag"              "AdaBoost.M1"        
##   [4] "adaboost"            "amdai"               "ANFIS"              
##   [7] "avNNet"              "awnb"                "awtan"              
##  [10] "bag"                 "bagEarth"            "bagEarthGCV"        
##  [13] "bagFDA"              "bagFDAGCV"           "bam"                
##  [16] "bartMachine"         "bayesglm"            "binda"              
##  [19] "blackboost"          "blasso"              "blassoAveraged"     
##  [22] "bridge"              "brnn"                "BstLm"              
##  [25] "bstSm"               "bstTree"             "C5.0"               
##  [28] "C5.0Cost"            "C5.0Rules"           "C5.0Tree"           
##  [31] "cforest"             "chaid"               "CSimca"             
##  [34] "ctree"               "ctree2"              "cubist"             
##  [37] "dda"                 "deepboost"           "DENFIS"             
##  [40] "dnn"                 "dwdLinear"           "dwdPoly"            
##  [43] "dwdRadial"           "earth"               "elm"                
##  [46] "enet"                "evtree"              "extraTrees"         
##  [49] "fda"                 "FH.GBML"             "FIR.DM"             
##  [52] "foba"                "FRBCS.CHI"           "FRBCS.W"            
##  [55] "FS.HGD"              "gam"                 "gamboost"           
##  [58] "gamLoess"            "gamSpline"           "gaussprLinear"      
##  [61] "gaussprPoly"         "gaussprRadial"       "gbm_h2o"            
##  [64] "gbm"                 "gcvEarth"            "GFS.FR.MOGUL"       
##  [67] "GFS.LT.RS"           "GFS.THRIFT"          "glm.nb"             
##  [70] "glm"                 "glmboost"            "glmnet_h2o"         
##  [73] "glmnet"              "glmStepAIC"          "gpls"               
##  [76] "hda"                 "hdda"                "hdrda"              
##  [79] "HYFIS"               "icr"                 "J48"                
##  [82] "JRip"                "kernelpls"           "kknn"               
##  [85] "knn"                 "krlsPoly"            "krlsRadial"         
##  [88] "lars"                "lars2"               "lasso"              
##  [91] "lda"                 "lda2"                "leapBackward"       
##  [94] "leapForward"         "leapSeq"             "Linda"              
##  [97] "lm"                  "lmStepAIC"           "LMT"                
## [100] "loclda"              "logicBag"            "LogitBoost"         
## [103] "logreg"              "lssvmLinear"         "lssvmPoly"          
## [106] "lssvmRadial"         "lvq"                 "M5"                 
## [109] "M5Rules"             "manb"                "mda"                
## [112] "Mlda"                "mlp"                 "mlpKerasDecay"      
## [115] "mlpKerasDecayCost"   "mlpKerasDropout"     "mlpKerasDropoutCost"
## [118] "mlpML"               "mlpSGD"              "mlpWeightDecay"     
## [121] "mlpWeightDecayML"    "monmlp"              "msaenet"            
## [124] "multinom"            "mxnet"               "mxnetAdam"          
## [127] "naive_bayes"         "nb"                  "nbDiscrete"         
## [130] "nbSearch"            "neuralnet"           "nnet"               
## [133] "nnls"                "nodeHarvest"         "null"               
## [136] "OneR"                "ordinalNet"          "ordinalRF"          
## [139] "ORFlog"              "ORFpls"              "ORFridge"           
## [142] "ORFsvm"              "ownn"                "pam"                
## [145] "parRF"               "PART"                "partDSA"            
## [148] "pcaNNet"             "pcr"                 "pda"                
## [151] "pda2"                "penalized"           "PenalizedLDA"       
## [154] "plr"                 "pls"                 "plsRglm"            
## [157] "polr"                "ppr"                 "pre"                
## [160] "PRIM"                "protoclass"          "qda"                
## [163] "QdaCov"              "qrf"                 "qrnn"               
## [166] "randomGLM"           "ranger"              "rbf"                
## [169] "rbfDDA"              "Rborist"             "rda"                
## [172] "regLogistic"         "relaxo"              "rf"                 
## [175] "rFerns"              "RFlda"               "rfRules"            
## [178] "ridge"               "rlda"                "rlm"                
## [181] "rmda"                "rocc"                "rotationForest"     
## [184] "rotationForestCp"    "rpart"               "rpart1SE"           
## [187] "rpart2"              "rpartCost"           "rpartScore"         
## [190] "rqlasso"             "rqnc"                "RRF"                
## [193] "RRFglobal"           "rrlda"               "RSimca"             
## [196] "rvmLinear"           "rvmPoly"             "rvmRadial"          
## [199] "SBC"                 "sda"                 "sdwd"               
## [202] "simpls"              "SLAVE"               "slda"               
## [205] "smda"                "snn"                 "sparseLDA"          
## [208] "spikeslab"           "spls"                "stepLDA"            
## [211] "stepQDA"             "superpc"             "svmBoundrangeString"
## [214] "svmExpoString"       "svmLinear"           "svmLinear2"         
## [217] "svmLinear3"          "svmLinearWeights"    "svmLinearWeights2"  
## [220] "svmPoly"             "svmRadial"           "svmRadialCost"      
## [223] "svmRadialSigma"      "svmRadialWeights"    "svmSpectrumString"  
## [226] "tan"                 "tanSearch"           "treebag"            
## [229] "vbmpRadial"          "vglmAdjCat"          "vglmContRatio"      
## [232] "vglmCumulative"      "widekernelpls"       "WM"                 
## [235] "wsrf"                "xgbDART"             "xgbLinear"          
## [238] "xgbTree"             "xyf"

Ejemplos

modelLookup(model="rpart") #Algoritmo Arbol Cart
##   model parameter                label forReg forClass probModel
## 1 rpart        cp Complexity Parameter   TRUE     TRUE      TRUE
modelLookup(model="knn")   # k vecinos
##   model parameter      label forReg forClass probModel
## 1   knn         k #Neighbors   TRUE     TRUE      TRUE
modelLookup(model="rf")    # R Forets
##   model parameter                         label forReg forClass probModel
## 1    rf      mtry #Randomly Selected Predictors   TRUE     TRUE      TRUE
modelLookup(model="glm")   # Regresión L
##   model parameter     label forReg forClass probModel
## 1   glm parameter parameter   TRUE     TRUE      TRUE

Algortitmo de Árbol CART

modelLookup(model="rpart")
##   model parameter                label forReg forClass probModel
## 1 rpart        cp Complexity Parameter   TRUE     TRUE      TRUE

**Modelo con validación cruzada”

ctrl= trainControl(method = "cv", number = 10)
set.seed(123)
modelo_cart = train(V11~., 
                    data=datos,
                    method="rpart",
                    trControl=ctrl,
                    metric="Accuracy",
                    tuneLength=10)
modelo_cart
## CART 
## 
## 699 samples
##  10 predictor
##   2 classes: '2', '4' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 629, 629, 629, 629, 629, 630, ... 
## Resampling results across tuning parameters:
## 
##   cp          Accuracy   Kappa    
##   0.00000000  0.9427927  0.8732828
##   0.08667589  0.9072388  0.7973820
##   0.17335178  0.9072388  0.7973820
##   0.26002766  0.9072388  0.7973820
##   0.34670355  0.9072388  0.7973820
##   0.43337944  0.9072388  0.7973820
##   0.52005533  0.9072388  0.7973820
##   0.60673121  0.9072388  0.7973820
##   0.69340710  0.9072388  0.7973820
##   0.78008299  0.7921249  0.4473301
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.
plot(modelo_cart)

### Predicción de la clase

CLASE.CART = predict(modelo_cart, data=Test)
head(CLASE.CART)
## [1] 2 4 2 4 2 4
## Levels: 2 4
PROBA.CART = predict(modelo_cart, data=Test, type="prob")
PROBA.CART = PROBA.CART[,2]

Regresión Logística

modelLookup("glm")
##   model parameter     label forReg forClass probModel
## 1   glm parameter parameter   TRUE     TRUE      TRUE

Modelo con validación cruzada

ctrl= trainControl(method = "cv", number = 10)
set.seed(123)
modelo_RL = train(V11~., 
                    data=datos,
                    method="glm",
                    family="binomial",
                    trControl=ctrl,
                    metric="Accuracy",
                    tuneLength=5)
modelo_RL
## Generalized Linear Model 
## 
## 699 samples
##  10 predictor
##   2 classes: '2', '4' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 629, 629, 629, 629, 629, 630, ... 
## Resampling results:
## 
##   Accuracy   Kappa    
##   0.9656096  0.9236944
varImp(modelo_RL)
## glm variable importance
## 
##     Overall
## V7  100.000
## V2   84.104
## V8   55.361
## V5   42.675
## V10  36.108
## V9   31.631
## V4   31.428
## V6    7.023
## V1    2.145
## V3    0.000
plot(varImp(modelo_RL))

Componentes principales

parametros <- preProcess(datos, method=c('pca'), pcaComp = 2)
datos.pca <- predict(parametros, datos)
head(datos.pca)
##   V11       PC1         PC2
## 1   2  1.450506 -0.17319005
## 2   2 -1.468439 -0.16709276
## 3   2  1.574232 -0.16115648
## 4   2 -1.505934  0.05178307
## 5   2  1.325875 -0.15311485
## 6   4 -5.050669  0.02838723
plot(datos.pca$PC1, datos.pca$PC2, col=datos.pca$V11)

```