DADOS
#Curvas
curvas=read.csv("C:/Users/Samsung/Documents/Doutorado CENA_USP/Aulas e disciplinas/Metodos agronomicos/Pratica 1/curva.csv")
str(curvas)
'data.frame': 5 obs. of 5 variables:
$ Score1 : int 1 2 3 4 5
$ Prato1 : int 6 8 29 44 35
$ Altura2: int 6 14 26 37 56
$ MF1 : int 1296 2016 5728 6536 7780
$ MF2 : int 1528 2024 4700 6188 7484
curvas
#Metodos indiretos
indireto=read.csv("C:/Users/Samsung/Documents/Doutorado CENA_USP/Aulas e disciplinas/Metodos agronomicos/Pratica 1/indireto.csv")
str(indireto)
'data.frame': 100 obs. of 3 variables:
$ Estacoes: int 1 2 3 4 5 6 7 8 9 10 ...
$ Nota1 : num 1.5 2.5 2 4 3.5 4 4 3.5 3 2.5 ...
$ Altura2 : int 14 13 12 14 11 15 11 8 6 14 ...
indireto
#Metodos destrutivos
destrutivo=read.csv("C:/Users/Samsung/Documents/Doutorado CENA_USP/Aulas e disciplinas/Metodos agronomicos/Pratica 1/destrutivo.csv")
destrutivo$Metodo=as.factor(destrutivo$Metodo)
destrutivo$MF=as.numeric(destrutivo$MF)
str(destrutivo)
'data.frame': 14 obs. of 3 variables:
$ ID : chr "Felipe" "Isaac" "Talita" "Vagner" ...
$ Metodo: Factor w/ 2 levels "Coordenadas",..: 2 2 2 2 2 2 2 2 1 1 ...
$ MF : num 3832 5388 7492 5324 5552 ...
destrutivo
CURVAS DE CALIBRAÇÃO
Escore visual
score=lm(MF1~Score1,data=curvas)
summary(score)
Call:
lm(formula = MF1 ~ Score1, data = curvas)
Residuals:
1 2 3 4 5
122.4 -906.4 1056.8 116.0 -388.8
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -575.2 881.2 -0.653 0.56050
Score1 1748.8 265.7 6.582 0.00714 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 840.2 on 3 degrees of freedom
Multiple R-squared: 0.9352, Adjusted R-squared: 0.9136
F-statistic: 43.32 on 1 and 3 DF, p-value: 0.007137
library(ggplot2)
p1=ggplot(curvas,aes(y=MF1,x=Score1))+
geom_smooth(color='black', method='lm', formula=y ~ x, se=F)+geom_point(size = 2)+
scale_x_continuous(name="Escores visuais",breaks=seq(1,5,1))+
scale_y_continuous(name=expression(paste("Massa de forragem (kg MS ",ha^-1,")")),breaks=seq(1000,8000,1000))+
theme(axis.line = element_line(colour = "black", size = 0.7, linetype = "solid"),
panel.background = element_rect(fill = "transparent"),
axis.title.x = element_text(size = 14),
axis.title.y = element_text(size = 14),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12))+
annotate(geom="text", x=2, y=8000,
label=expression(paste("y = 1748.8x - 575.2 ", R^2, " = 0.9352")), size= 5, color="black")+
annotate(geom="text", x=2, y=7000,
label=expression(paste("EP = 840.2 P-value = 0.007")), size= 5, color="black")
p1

Disco medidor
prato=lm(MF1~Prato1,data=curvas)
summary(prato)
Call:
lm(formula = MF1 ~ Prato1, data = curvas)
Residuals:
1 2 3 4 5
-431.50 -31.47 320.88 -1270.88 1412.97
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 767.6 973.8 0.788 0.4881
Prato1 160.0 34.0 4.706 0.0182 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1140 on 3 degrees of freedom
Multiple R-squared: 0.8807, Adjusted R-squared: 0.8409
F-statistic: 22.14 on 1 and 3 DF, p-value: 0.01816
p2=ggplot(curvas,aes(y=MF1,x=Prato1))+
geom_smooth(color='black', method='lm', formula=y ~ x, se=F)+geom_point(size = 2)+
scale_x_continuous(name="Leituras do prato",breaks=seq(0,45,5))+
scale_y_continuous(name=expression(paste("Massa de forragem (kg MS ",ha^-1,")")),breaks=seq(1000,8000,1000))+
theme(axis.line = element_line(colour = "black", size = 0.7, linetype = "solid"),
panel.background = element_rect(fill = "transparent"),
axis.title.x = element_text(size = 14),
axis.title.y = element_text(size = 14),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12))+
annotate(geom="text", x=15, y=8000,
label=expression(paste("y = 160.0x + 767.6 ", R^2, " = 0.8807")), size= 5, color="black")+
annotate(geom="text", x=15, y=7000,
label=expression(paste("EP = 1140 P-value = 0.0182")), size= 5, color="black")
p2

Altura
altura=lm(MF2~Altura2,data=curvas)
summary(altura)
Call:
lm(formula = MF2 ~ Altura2, data = curvas)
Residuals:
1 2 3 4 5
-65.97 -594.13 545.64 625.42 -510.95
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 825.85 551.90 1.496 0.23145
Altura2 128.02 16.77 7.632 0.00467 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 660.1 on 3 degrees of freedom
Multiple R-squared: 0.951, Adjusted R-squared: 0.9347
F-statistic: 58.25 on 1 and 3 DF, p-value: 0.00467
p3=ggplot(curvas,aes(y=MF2,x=Altura2))+
geom_smooth(color='black', method='lm', formula=y ~ x, se=F)+geom_point(size = 2)+
scale_x_continuous(name="Medidas de altura",breaks=seq(0,60,5))+
scale_y_continuous(name=expression(paste("Massa de forragem (kg MS ",ha^-1,")")),breaks=seq(1000,8000,1000))+
theme(axis.line = element_line(colour = "black", size = 0.7, linetype = "solid"),
panel.background = element_rect(fill = "transparent"),
axis.title.x = element_text(size = 14),
axis.title.y = element_text(size = 14),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12))+
annotate(geom="text", x=20, y=8000,
label=expression(paste("y = 128.02x + 825.85 ", R^2, " = 0.951")), size= 5, color="black")+
annotate(geom="text", x=20, y=7000,
label=expression(paste("EP = 660.1 P-value = 0.0047")), size= 5, color="black")
p3

MF POR METODOS INDIRETOS
Escore visual
indireto$MF1=(1748.8*indireto$Nota1)-575.2
indireto
#Escore médio
psych::describeBy(indireto[,2])
Warning: no grouping variable requested
#MF média
psych::describeBy(indireto[,4])
Warning: no grouping variable requested
Altura
indireto$MF2=(128.02*indireto$Altura2)+825.85
indireto
#Altura média
psych::describeBy(indireto[,3])
Warning: no grouping variable requested
#MF média
psych::describeBy(indireto[,5])
Warning: no grouping variable requested
Disco medidor
Somatoria.100.leituras=25139-22722
Somatoria.100.leituras
[1] 2417
Valor.medio=Somatoria.100.leituras/100
Valor.medio
[1] 24.17
MF.disco=(160*Valor.medio)+767.6
MF.disco
[1] 4634.8
MF POR METODOS DESTRUTIVOS
a1=lm(MF~Metodo, data=destrutivo)
anova(a1)
Analysis of Variance Table
Response: MF
Df Sum Sq Mean Sq F value Pr(>F)
Metodo 1 21761282 21761282 18.448 0.001041 **
Residuals 12 14155285 1179607
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias=emmeans(a1,~Metodo)
pairs(medias)
contrast estimate SE df t.ratio p.value
Coordenadas - Dirigido -2519 587 12 -4.295 0.0010
multcomp::cld(medias)
Metodo emmean SE df lower.CL upper.CL .group
Coordenadas 3007 443 12 2041 3973 1
Dirigido 5526 384 12 4689 6363 2
Confidence level used: 0.95
significance level used: alpha = 0.05
#COORDENADAS
psych::describeBy(destrutivo[c(9:14),3])
Warning: no grouping variable requested
#DIRIGIDO
psych::describeBy(destrutivo[c(1:8),3])
Warning: no grouping variable requested
LS0tDQp0aXRsZTogIkFuZXhvIDMgLSBPdXRwdXQgZG8gUiINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazoNCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogMQ0KLS0tDQoNCioqKg0KDQojICoqREFET1MqKg0KDQpgYGB7cn0NCiNDdXJ2YXMNCmN1cnZhcz1yZWFkLmNzdigiQzovVXNlcnMvU2Ftc3VuZy9Eb2N1bWVudHMvRG91dG9yYWRvIENFTkFfVVNQL0F1bGFzIGUgZGlzY2lwbGluYXMvTWV0b2RvcyBhZ3Jvbm9taWNvcy9QcmF0aWNhIDEvY3VydmEuY3N2IikNCnN0cihjdXJ2YXMpDQpjdXJ2YXMNCg0KI01ldG9kb3MgaW5kaXJldG9zDQppbmRpcmV0bz1yZWFkLmNzdigiQzovVXNlcnMvU2Ftc3VuZy9Eb2N1bWVudHMvRG91dG9yYWRvIENFTkFfVVNQL0F1bGFzIGUgZGlzY2lwbGluYXMvTWV0b2RvcyBhZ3Jvbm9taWNvcy9QcmF0aWNhIDEvaW5kaXJldG8uY3N2IikNCnN0cihpbmRpcmV0bykNCmluZGlyZXRvDQoNCiNNZXRvZG9zIGRlc3RydXRpdm9zDQpkZXN0cnV0aXZvPXJlYWQuY3N2KCJDOi9Vc2Vycy9TYW1zdW5nL0RvY3VtZW50cy9Eb3V0b3JhZG8gQ0VOQV9VU1AvQXVsYXMgZSBkaXNjaXBsaW5hcy9NZXRvZG9zIGFncm9ub21pY29zL1ByYXRpY2EgMS9kZXN0cnV0aXZvLmNzdiIpDQpkZXN0cnV0aXZvJE1ldG9kbz1hcy5mYWN0b3IoZGVzdHJ1dGl2byRNZXRvZG8pDQpkZXN0cnV0aXZvJE1GPWFzLm51bWVyaWMoZGVzdHJ1dGl2byRNRikNCnN0cihkZXN0cnV0aXZvKQ0KZGVzdHJ1dGl2bw0KYGBgDQoNCiMgKipDVVJWQVMgREUgQ0FMSUJSQcOHw4NPKioNCg0KIyMjICoqRXNjb3JlIHZpc3VhbCoqDQoNCmBgYHtyfQ0Kc2NvcmU9bG0oTUYxflNjb3JlMSxkYXRhPWN1cnZhcykNCnN1bW1hcnkoc2NvcmUpDQoNCmxpYnJhcnkoZ2dwbG90MikNCg0KcDE9Z2dwbG90KGN1cnZhcyxhZXMoeT1NRjEseD1TY29yZTEpKSsNCiAgZ2VvbV9zbW9vdGgoY29sb3I9J2JsYWNrJywgbWV0aG9kPSdsbScsIGZvcm11bGE9eSB+IHgsIHNlPUYpK2dlb21fcG9pbnQoc2l6ZSA9IDIpKw0KICBzY2FsZV94X2NvbnRpbnVvdXMobmFtZT0iRXNjb3JlcyB2aXN1YWlzIixicmVha3M9c2VxKDEsNSwxKSkrDQogIHNjYWxlX3lfY29udGludW91cyhuYW1lPWV4cHJlc3Npb24ocGFzdGUoIk1hc3NhIGRlIGZvcnJhZ2VtIChrZyBNUyAiLGhhXi0xLCIpIikpLGJyZWFrcz1zZXEoMTAwMCw4MDAwLDEwMDApKSsNCiAgdGhlbWUoYXhpcy5saW5lID0gZWxlbWVudF9saW5lKGNvbG91ciA9ICJibGFjayIsIHNpemUgPSAwLjcsIGxpbmV0eXBlID0gInNvbGlkIiksDQogIHBhbmVsLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoZmlsbCA9ICJ0cmFuc3BhcmVudCIpLA0KICBheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSwNCiAgYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksDQogIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiksDQogIGF4aXMudGV4dC55ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMikpKw0KICBhbm5vdGF0ZShnZW9tPSJ0ZXh0IiwgeD0yLCB5PTgwMDAsIA0KICBsYWJlbD1leHByZXNzaW9uKHBhc3RlKCJ5ID0gMTc0OC44eCAtIDU3NS4yICAgICIsIFJeMiwgIiA9IDAuOTM1MiIpKSwgc2l6ZT0gNSwgY29sb3I9ImJsYWNrIikrDQogIGFubm90YXRlKGdlb209InRleHQiLCB4PTIsIHk9NzAwMCwgDQogIGxhYmVsPWV4cHJlc3Npb24ocGFzdGUoIkVQID0gODQwLjIgICAgUC12YWx1ZSA9IDAuMDA3IikpLCBzaXplPSA1LCBjb2xvcj0iYmxhY2siKQ0KcDENCmBgYA0KDQojIyMgKipEaXNjbyBtZWRpZG9yKioNCg0KYGBge3J9DQpwcmF0bz1sbShNRjF+UHJhdG8xLGRhdGE9Y3VydmFzKQ0Kc3VtbWFyeShwcmF0bykNCg0KcDI9Z2dwbG90KGN1cnZhcyxhZXMoeT1NRjEseD1QcmF0bzEpKSsNCiAgZ2VvbV9zbW9vdGgoY29sb3I9J2JsYWNrJywgbWV0aG9kPSdsbScsIGZvcm11bGE9eSB+IHgsIHNlPUYpK2dlb21fcG9pbnQoc2l6ZSA9IDIpKw0KICBzY2FsZV94X2NvbnRpbnVvdXMobmFtZT0iTGVpdHVyYXMgZG8gcHJhdG8iLGJyZWFrcz1zZXEoMCw0NSw1KSkrDQogIHNjYWxlX3lfY29udGludW91cyhuYW1lPWV4cHJlc3Npb24ocGFzdGUoIk1hc3NhIGRlIGZvcnJhZ2VtIChrZyBNUyAiLGhhXi0xLCIpIikpLGJyZWFrcz1zZXEoMTAwMCw4MDAwLDEwMDApKSsNCiAgdGhlbWUoYXhpcy5saW5lID0gZWxlbWVudF9saW5lKGNvbG91ciA9ICJibGFjayIsIHNpemUgPSAwLjcsIGxpbmV0eXBlID0gInNvbGlkIiksDQogIHBhbmVsLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoZmlsbCA9ICJ0cmFuc3BhcmVudCIpLA0KICBheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSwNCiAgYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksDQogIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiksDQogIGF4aXMudGV4dC55ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMikpKw0KICBhbm5vdGF0ZShnZW9tPSJ0ZXh0IiwgeD0xNSwgeT04MDAwLCANCiAgbGFiZWw9ZXhwcmVzc2lvbihwYXN0ZSgieSA9IDE2MC4weCArIDc2Ny42ICAgICIsIFJeMiwgIiA9IDAuODgwNyIpKSwgc2l6ZT0gNSwgY29sb3I9ImJsYWNrIikrDQogIGFubm90YXRlKGdlb209InRleHQiLCB4PTE1LCB5PTcwMDAsIA0KICBsYWJlbD1leHByZXNzaW9uKHBhc3RlKCJFUCA9IDExNDAgICAgUC12YWx1ZSA9IDAuMDE4MiIpKSwgc2l6ZT0gNSwgY29sb3I9ImJsYWNrIikNCnAyDQpgYGANCg0KIyMjICoqQWx0dXJhKioNCg0KYGBge3J9DQphbHR1cmE9bG0oTUYyfkFsdHVyYTIsZGF0YT1jdXJ2YXMpDQpzdW1tYXJ5KGFsdHVyYSkNCg0KcDM9Z2dwbG90KGN1cnZhcyxhZXMoeT1NRjIseD1BbHR1cmEyKSkrDQogIGdlb21fc21vb3RoKGNvbG9yPSdibGFjaycsIG1ldGhvZD0nbG0nLCBmb3JtdWxhPXkgfiB4LCBzZT1GKStnZW9tX3BvaW50KHNpemUgPSAyKSsNCiAgc2NhbGVfeF9jb250aW51b3VzKG5hbWU9Ik1lZGlkYXMgZGUgYWx0dXJhIixicmVha3M9c2VxKDAsNjAsNSkpKw0KICBzY2FsZV95X2NvbnRpbnVvdXMobmFtZT1leHByZXNzaW9uKHBhc3RlKCJNYXNzYSBkZSBmb3JyYWdlbSAoa2cgTVMgIixoYV4tMSwiKSIpKSxicmVha3M9c2VxKDEwMDAsODAwMCwxMDAwKSkrDQogIHRoZW1lKGF4aXMubGluZSA9IGVsZW1lbnRfbGluZShjb2xvdXIgPSAiYmxhY2siLCBzaXplID0gMC43LCBsaW5ldHlwZSA9ICJzb2xpZCIpLA0KICBwYW5lbC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGZpbGwgPSAidHJhbnNwYXJlbnQiKSwNCiAgYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksDQogIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpLA0KICBheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTIpLA0KICBheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTIpKSsNCiAgYW5ub3RhdGUoZ2VvbT0idGV4dCIsIHg9MjAsIHk9ODAwMCwgDQogIGxhYmVsPWV4cHJlc3Npb24ocGFzdGUoInkgPSAxMjguMDJ4ICsgODI1Ljg1ICAgICIsIFJeMiwgIiA9IDAuOTUxIikpLCBzaXplPSA1LCBjb2xvcj0iYmxhY2siKSsNCiAgYW5ub3RhdGUoZ2VvbT0idGV4dCIsIHg9MjAsIHk9NzAwMCwgDQogIGxhYmVsPWV4cHJlc3Npb24ocGFzdGUoIkVQID0gNjYwLjEgICAgUC12YWx1ZSA9IDAuMDA0NyIpKSwgc2l6ZT0gNSwgY29sb3I9ImJsYWNrIikNCnAzDQpgYGANCg0KIyAqKk1GIFBPUiBNRVRPRE9TIElORElSRVRPUyoqDQoNCiMjIyAqKkVzY29yZSB2aXN1YWwqKg0KDQpgYGB7cn0NCmluZGlyZXRvJE1GMT0oMTc0OC44KmluZGlyZXRvJE5vdGExKS01NzUuMg0KaW5kaXJldG8NCiNFc2NvcmUgbcOpZGlvIA0KcHN5Y2g6OmRlc2NyaWJlQnkoaW5kaXJldG9bLDJdKQ0KI01GIG3DqWRpYQ0KcHN5Y2g6OmRlc2NyaWJlQnkoaW5kaXJldG9bLDRdKQ0KYGBgDQoNCiMjIyAqKkFsdHVyYSoqDQoNCmBgYHtyfQ0KaW5kaXJldG8kTUYyPSgxMjguMDIqaW5kaXJldG8kQWx0dXJhMikrODI1Ljg1DQppbmRpcmV0bw0KI0FsdHVyYSBtw6lkaWEgDQpwc3ljaDo6ZGVzY3JpYmVCeShpbmRpcmV0b1ssM10pDQojTUYgbcOpZGlhDQpwc3ljaDo6ZGVzY3JpYmVCeShpbmRpcmV0b1ssNV0pDQpgYGANCg0KIyMjICoqRGlzY28gbWVkaWRvcioqDQoNCmBgYHtyfQ0KU29tYXRvcmlhLjEwMC5sZWl0dXJhcz0yNTEzOS0yMjcyMg0KU29tYXRvcmlhLjEwMC5sZWl0dXJhcw0KVmFsb3IubWVkaW89U29tYXRvcmlhLjEwMC5sZWl0dXJhcy8xMDANClZhbG9yLm1lZGlvDQpNRi5kaXNjbz0oMTYwKlZhbG9yLm1lZGlvKSs3NjcuNg0KTUYuZGlzY28NCmBgYA0KDQojICoqTUYgUE9SIE1FVE9ET1MgREVTVFJVVElWT1MqKg0KDQpgYGB7cn0NCmExPWxtKE1Gfk1ldG9kbywgZGF0YT1kZXN0cnV0aXZvKQ0KYW5vdmEoYTEpDQptZWRpYXM9ZW1tZWFucyhhMSx+TWV0b2RvKQ0KcGFpcnMobWVkaWFzKQ0KbXVsdGNvbXA6OmNsZChtZWRpYXMpDQoNCiNDT09SREVOQURBUw0KcHN5Y2g6OmRlc2NyaWJlQnkoZGVzdHJ1dGl2b1tjKDk6MTQpLDNdKQ0KDQojRElSSUdJRE8NCnBzeWNoOjpkZXNjcmliZUJ5KGRlc3RydXRpdm9bYygxOjgpLDNdKQ0KYGBgDQoNCg0KDQo=