DADOS

#Curvas
curvas=read.csv("C:/Users/Samsung/Documents/Doutorado CENA_USP/Aulas e disciplinas/Metodos agronomicos/Pratica 1/curva.csv")
str(curvas)
'data.frame':   5 obs. of  5 variables:
 $ Score1 : int  1 2 3 4 5
 $ Prato1 : int  6 8 29 44 35
 $ Altura2: int  6 14 26 37 56
 $ MF1    : int  1296 2016 5728 6536 7780
 $ MF2    : int  1528 2024 4700 6188 7484
curvas

#Metodos indiretos
indireto=read.csv("C:/Users/Samsung/Documents/Doutorado CENA_USP/Aulas e disciplinas/Metodos agronomicos/Pratica 1/indireto.csv")
str(indireto)
'data.frame':   100 obs. of  3 variables:
 $ Estacoes: int  1 2 3 4 5 6 7 8 9 10 ...
 $ Nota1   : num  1.5 2.5 2 4 3.5 4 4 3.5 3 2.5 ...
 $ Altura2 : int  14 13 12 14 11 15 11 8 6 14 ...
indireto

#Metodos destrutivos
destrutivo=read.csv("C:/Users/Samsung/Documents/Doutorado CENA_USP/Aulas e disciplinas/Metodos agronomicos/Pratica 1/destrutivo.csv")
destrutivo$Metodo=as.factor(destrutivo$Metodo)
destrutivo$MF=as.numeric(destrutivo$MF)
str(destrutivo)
'data.frame':   14 obs. of  3 variables:
 $ ID    : chr  "Felipe" "Isaac" "Talita" "Vagner" ...
 $ Metodo: Factor w/ 2 levels "Coordenadas",..: 2 2 2 2 2 2 2 2 1 1 ...
 $ MF    : num  3832 5388 7492 5324 5552 ...
destrutivo

CURVAS DE CALIBRAÇÃO

Escore visual

score=lm(MF1~Score1,data=curvas)
summary(score)

Call:
lm(formula = MF1 ~ Score1, data = curvas)

Residuals:
     1      2      3      4      5 
 122.4 -906.4 1056.8  116.0 -388.8 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   -575.2      881.2  -0.653  0.56050   
Score1        1748.8      265.7   6.582  0.00714 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 840.2 on 3 degrees of freedom
Multiple R-squared:  0.9352,    Adjusted R-squared:  0.9136 
F-statistic: 43.32 on 1 and 3 DF,  p-value: 0.007137
library(ggplot2)

p1=ggplot(curvas,aes(y=MF1,x=Score1))+
  geom_smooth(color='black', method='lm', formula=y ~ x, se=F)+geom_point(size = 2)+
  scale_x_continuous(name="Escores visuais",breaks=seq(1,5,1))+
  scale_y_continuous(name=expression(paste("Massa de forragem (kg MS ",ha^-1,")")),breaks=seq(1000,8000,1000))+
  theme(axis.line = element_line(colour = "black", size = 0.7, linetype = "solid"),
  panel.background = element_rect(fill = "transparent"),
  axis.title.x = element_text(size = 14),
  axis.title.y = element_text(size = 14),
  axis.text.x = element_text(size = 12),
  axis.text.y = element_text(size = 12))+
  annotate(geom="text", x=2, y=8000, 
  label=expression(paste("y = 1748.8x - 575.2    ", R^2, " = 0.9352")), size= 5, color="black")+
  annotate(geom="text", x=2, y=7000, 
  label=expression(paste("EP = 840.2    P-value = 0.007")), size= 5, color="black")
p1

Disco medidor

prato=lm(MF1~Prato1,data=curvas)
summary(prato)

Call:
lm(formula = MF1 ~ Prato1, data = curvas)

Residuals:
       1        2        3        4        5 
 -431.50   -31.47   320.88 -1270.88  1412.97 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)    767.6      973.8   0.788   0.4881  
Prato1         160.0       34.0   4.706   0.0182 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1140 on 3 degrees of freedom
Multiple R-squared:  0.8807,    Adjusted R-squared:  0.8409 
F-statistic: 22.14 on 1 and 3 DF,  p-value: 0.01816
p2=ggplot(curvas,aes(y=MF1,x=Prato1))+
  geom_smooth(color='black', method='lm', formula=y ~ x, se=F)+geom_point(size = 2)+
  scale_x_continuous(name="Leituras do prato",breaks=seq(0,45,5))+
  scale_y_continuous(name=expression(paste("Massa de forragem (kg MS ",ha^-1,")")),breaks=seq(1000,8000,1000))+
  theme(axis.line = element_line(colour = "black", size = 0.7, linetype = "solid"),
  panel.background = element_rect(fill = "transparent"),
  axis.title.x = element_text(size = 14),
  axis.title.y = element_text(size = 14),
  axis.text.x = element_text(size = 12),
  axis.text.y = element_text(size = 12))+
  annotate(geom="text", x=15, y=8000, 
  label=expression(paste("y = 160.0x + 767.6    ", R^2, " = 0.8807")), size= 5, color="black")+
  annotate(geom="text", x=15, y=7000, 
  label=expression(paste("EP = 1140    P-value = 0.0182")), size= 5, color="black")
p2

Altura

altura=lm(MF2~Altura2,data=curvas)
summary(altura)

Call:
lm(formula = MF2 ~ Altura2, data = curvas)

Residuals:
      1       2       3       4       5 
 -65.97 -594.13  545.64  625.42 -510.95 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   825.85     551.90   1.496  0.23145   
Altura2       128.02      16.77   7.632  0.00467 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 660.1 on 3 degrees of freedom
Multiple R-squared:  0.951, Adjusted R-squared:  0.9347 
F-statistic: 58.25 on 1 and 3 DF,  p-value: 0.00467
p3=ggplot(curvas,aes(y=MF2,x=Altura2))+
  geom_smooth(color='black', method='lm', formula=y ~ x, se=F)+geom_point(size = 2)+
  scale_x_continuous(name="Medidas de altura",breaks=seq(0,60,5))+
  scale_y_continuous(name=expression(paste("Massa de forragem (kg MS ",ha^-1,")")),breaks=seq(1000,8000,1000))+
  theme(axis.line = element_line(colour = "black", size = 0.7, linetype = "solid"),
  panel.background = element_rect(fill = "transparent"),
  axis.title.x = element_text(size = 14),
  axis.title.y = element_text(size = 14),
  axis.text.x = element_text(size = 12),
  axis.text.y = element_text(size = 12))+
  annotate(geom="text", x=20, y=8000, 
  label=expression(paste("y = 128.02x + 825.85    ", R^2, " = 0.951")), size= 5, color="black")+
  annotate(geom="text", x=20, y=7000, 
  label=expression(paste("EP = 660.1    P-value = 0.0047")), size= 5, color="black")
p3

MF POR METODOS INDIRETOS

Escore visual

indireto$MF1=(1748.8*indireto$Nota1)-575.2
indireto
#Escore médio 
psych::describeBy(indireto[,2])
Warning: no grouping variable requested
#MF média
psych::describeBy(indireto[,4])
Warning: no grouping variable requested

Altura

indireto$MF2=(128.02*indireto$Altura2)+825.85
indireto
#Altura média 
psych::describeBy(indireto[,3])
Warning: no grouping variable requested
#MF média
psych::describeBy(indireto[,5])
Warning: no grouping variable requested

Disco medidor

Somatoria.100.leituras=25139-22722
Somatoria.100.leituras
[1] 2417
Valor.medio=Somatoria.100.leituras/100
Valor.medio
[1] 24.17
MF.disco=(160*Valor.medio)+767.6
MF.disco
[1] 4634.8

MF POR METODOS DESTRUTIVOS

a1=lm(MF~Metodo, data=destrutivo)
anova(a1)
Analysis of Variance Table

Response: MF
          Df   Sum Sq  Mean Sq F value   Pr(>F)   
Metodo     1 21761282 21761282  18.448 0.001041 **
Residuals 12 14155285  1179607                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias=emmeans(a1,~Metodo)
pairs(medias)
 contrast               estimate  SE df t.ratio p.value
 Coordenadas - Dirigido    -2519 587 12 -4.295  0.0010 
multcomp::cld(medias)
 Metodo      emmean  SE df lower.CL upper.CL .group
 Coordenadas   3007 443 12     2041     3973  1    
 Dirigido      5526 384 12     4689     6363   2   

Confidence level used: 0.95 
significance level used: alpha = 0.05 
#COORDENADAS
psych::describeBy(destrutivo[c(9:14),3])
Warning: no grouping variable requested
#DIRIGIDO
psych::describeBy(destrutivo[c(1:8),3])
Warning: no grouping variable requested
LS0tDQp0aXRsZTogIkFuZXhvIDMgLSBPdXRwdXQgZG8gUiINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazoNCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogMQ0KLS0tDQoNCioqKg0KDQojICoqREFET1MqKg0KDQpgYGB7cn0NCiNDdXJ2YXMNCmN1cnZhcz1yZWFkLmNzdigiQzovVXNlcnMvU2Ftc3VuZy9Eb2N1bWVudHMvRG91dG9yYWRvIENFTkFfVVNQL0F1bGFzIGUgZGlzY2lwbGluYXMvTWV0b2RvcyBhZ3Jvbm9taWNvcy9QcmF0aWNhIDEvY3VydmEuY3N2IikNCnN0cihjdXJ2YXMpDQpjdXJ2YXMNCg0KI01ldG9kb3MgaW5kaXJldG9zDQppbmRpcmV0bz1yZWFkLmNzdigiQzovVXNlcnMvU2Ftc3VuZy9Eb2N1bWVudHMvRG91dG9yYWRvIENFTkFfVVNQL0F1bGFzIGUgZGlzY2lwbGluYXMvTWV0b2RvcyBhZ3Jvbm9taWNvcy9QcmF0aWNhIDEvaW5kaXJldG8uY3N2IikNCnN0cihpbmRpcmV0bykNCmluZGlyZXRvDQoNCiNNZXRvZG9zIGRlc3RydXRpdm9zDQpkZXN0cnV0aXZvPXJlYWQuY3N2KCJDOi9Vc2Vycy9TYW1zdW5nL0RvY3VtZW50cy9Eb3V0b3JhZG8gQ0VOQV9VU1AvQXVsYXMgZSBkaXNjaXBsaW5hcy9NZXRvZG9zIGFncm9ub21pY29zL1ByYXRpY2EgMS9kZXN0cnV0aXZvLmNzdiIpDQpkZXN0cnV0aXZvJE1ldG9kbz1hcy5mYWN0b3IoZGVzdHJ1dGl2byRNZXRvZG8pDQpkZXN0cnV0aXZvJE1GPWFzLm51bWVyaWMoZGVzdHJ1dGl2byRNRikNCnN0cihkZXN0cnV0aXZvKQ0KZGVzdHJ1dGl2bw0KYGBgDQoNCiMgKipDVVJWQVMgREUgQ0FMSUJSQcOHw4NPKioNCg0KIyMjICoqRXNjb3JlIHZpc3VhbCoqDQoNCmBgYHtyfQ0Kc2NvcmU9bG0oTUYxflNjb3JlMSxkYXRhPWN1cnZhcykNCnN1bW1hcnkoc2NvcmUpDQoNCmxpYnJhcnkoZ2dwbG90MikNCg0KcDE9Z2dwbG90KGN1cnZhcyxhZXMoeT1NRjEseD1TY29yZTEpKSsNCiAgZ2VvbV9zbW9vdGgoY29sb3I9J2JsYWNrJywgbWV0aG9kPSdsbScsIGZvcm11bGE9eSB+IHgsIHNlPUYpK2dlb21fcG9pbnQoc2l6ZSA9IDIpKw0KICBzY2FsZV94X2NvbnRpbnVvdXMobmFtZT0iRXNjb3JlcyB2aXN1YWlzIixicmVha3M9c2VxKDEsNSwxKSkrDQogIHNjYWxlX3lfY29udGludW91cyhuYW1lPWV4cHJlc3Npb24ocGFzdGUoIk1hc3NhIGRlIGZvcnJhZ2VtIChrZyBNUyAiLGhhXi0xLCIpIikpLGJyZWFrcz1zZXEoMTAwMCw4MDAwLDEwMDApKSsNCiAgdGhlbWUoYXhpcy5saW5lID0gZWxlbWVudF9saW5lKGNvbG91ciA9ICJibGFjayIsIHNpemUgPSAwLjcsIGxpbmV0eXBlID0gInNvbGlkIiksDQogIHBhbmVsLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoZmlsbCA9ICJ0cmFuc3BhcmVudCIpLA0KICBheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSwNCiAgYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksDQogIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiksDQogIGF4aXMudGV4dC55ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMikpKw0KICBhbm5vdGF0ZShnZW9tPSJ0ZXh0IiwgeD0yLCB5PTgwMDAsIA0KICBsYWJlbD1leHByZXNzaW9uKHBhc3RlKCJ5ID0gMTc0OC44eCAtIDU3NS4yICAgICIsIFJeMiwgIiA9IDAuOTM1MiIpKSwgc2l6ZT0gNSwgY29sb3I9ImJsYWNrIikrDQogIGFubm90YXRlKGdlb209InRleHQiLCB4PTIsIHk9NzAwMCwgDQogIGxhYmVsPWV4cHJlc3Npb24ocGFzdGUoIkVQID0gODQwLjIgICAgUC12YWx1ZSA9IDAuMDA3IikpLCBzaXplPSA1LCBjb2xvcj0iYmxhY2siKQ0KcDENCmBgYA0KDQojIyMgKipEaXNjbyBtZWRpZG9yKioNCg0KYGBge3J9DQpwcmF0bz1sbShNRjF+UHJhdG8xLGRhdGE9Y3VydmFzKQ0Kc3VtbWFyeShwcmF0bykNCg0KcDI9Z2dwbG90KGN1cnZhcyxhZXMoeT1NRjEseD1QcmF0bzEpKSsNCiAgZ2VvbV9zbW9vdGgoY29sb3I9J2JsYWNrJywgbWV0aG9kPSdsbScsIGZvcm11bGE9eSB+IHgsIHNlPUYpK2dlb21fcG9pbnQoc2l6ZSA9IDIpKw0KICBzY2FsZV94X2NvbnRpbnVvdXMobmFtZT0iTGVpdHVyYXMgZG8gcHJhdG8iLGJyZWFrcz1zZXEoMCw0NSw1KSkrDQogIHNjYWxlX3lfY29udGludW91cyhuYW1lPWV4cHJlc3Npb24ocGFzdGUoIk1hc3NhIGRlIGZvcnJhZ2VtIChrZyBNUyAiLGhhXi0xLCIpIikpLGJyZWFrcz1zZXEoMTAwMCw4MDAwLDEwMDApKSsNCiAgdGhlbWUoYXhpcy5saW5lID0gZWxlbWVudF9saW5lKGNvbG91ciA9ICJibGFjayIsIHNpemUgPSAwLjcsIGxpbmV0eXBlID0gInNvbGlkIiksDQogIHBhbmVsLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoZmlsbCA9ICJ0cmFuc3BhcmVudCIpLA0KICBheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSwNCiAgYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksDQogIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMiksDQogIGF4aXMudGV4dC55ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxMikpKw0KICBhbm5vdGF0ZShnZW9tPSJ0ZXh0IiwgeD0xNSwgeT04MDAwLCANCiAgbGFiZWw9ZXhwcmVzc2lvbihwYXN0ZSgieSA9IDE2MC4weCArIDc2Ny42ICAgICIsIFJeMiwgIiA9IDAuODgwNyIpKSwgc2l6ZT0gNSwgY29sb3I9ImJsYWNrIikrDQogIGFubm90YXRlKGdlb209InRleHQiLCB4PTE1LCB5PTcwMDAsIA0KICBsYWJlbD1leHByZXNzaW9uKHBhc3RlKCJFUCA9IDExNDAgICAgUC12YWx1ZSA9IDAuMDE4MiIpKSwgc2l6ZT0gNSwgY29sb3I9ImJsYWNrIikNCnAyDQpgYGANCg0KIyMjICoqQWx0dXJhKioNCg0KYGBge3J9DQphbHR1cmE9bG0oTUYyfkFsdHVyYTIsZGF0YT1jdXJ2YXMpDQpzdW1tYXJ5KGFsdHVyYSkNCg0KcDM9Z2dwbG90KGN1cnZhcyxhZXMoeT1NRjIseD1BbHR1cmEyKSkrDQogIGdlb21fc21vb3RoKGNvbG9yPSdibGFjaycsIG1ldGhvZD0nbG0nLCBmb3JtdWxhPXkgfiB4LCBzZT1GKStnZW9tX3BvaW50KHNpemUgPSAyKSsNCiAgc2NhbGVfeF9jb250aW51b3VzKG5hbWU9Ik1lZGlkYXMgZGUgYWx0dXJhIixicmVha3M9c2VxKDAsNjAsNSkpKw0KICBzY2FsZV95X2NvbnRpbnVvdXMobmFtZT1leHByZXNzaW9uKHBhc3RlKCJNYXNzYSBkZSBmb3JyYWdlbSAoa2cgTVMgIixoYV4tMSwiKSIpKSxicmVha3M9c2VxKDEwMDAsODAwMCwxMDAwKSkrDQogIHRoZW1lKGF4aXMubGluZSA9IGVsZW1lbnRfbGluZShjb2xvdXIgPSAiYmxhY2siLCBzaXplID0gMC43LCBsaW5ldHlwZSA9ICJzb2xpZCIpLA0KICBwYW5lbC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGZpbGwgPSAidHJhbnNwYXJlbnQiKSwNCiAgYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNCksDQogIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpLA0KICBheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTIpLA0KICBheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTIpKSsNCiAgYW5ub3RhdGUoZ2VvbT0idGV4dCIsIHg9MjAsIHk9ODAwMCwgDQogIGxhYmVsPWV4cHJlc3Npb24ocGFzdGUoInkgPSAxMjguMDJ4ICsgODI1Ljg1ICAgICIsIFJeMiwgIiA9IDAuOTUxIikpLCBzaXplPSA1LCBjb2xvcj0iYmxhY2siKSsNCiAgYW5ub3RhdGUoZ2VvbT0idGV4dCIsIHg9MjAsIHk9NzAwMCwgDQogIGxhYmVsPWV4cHJlc3Npb24ocGFzdGUoIkVQID0gNjYwLjEgICAgUC12YWx1ZSA9IDAuMDA0NyIpKSwgc2l6ZT0gNSwgY29sb3I9ImJsYWNrIikNCnAzDQpgYGANCg0KIyAqKk1GIFBPUiBNRVRPRE9TIElORElSRVRPUyoqDQoNCiMjIyAqKkVzY29yZSB2aXN1YWwqKg0KDQpgYGB7cn0NCmluZGlyZXRvJE1GMT0oMTc0OC44KmluZGlyZXRvJE5vdGExKS01NzUuMg0KaW5kaXJldG8NCiNFc2NvcmUgbcOpZGlvIA0KcHN5Y2g6OmRlc2NyaWJlQnkoaW5kaXJldG9bLDJdKQ0KI01GIG3DqWRpYQ0KcHN5Y2g6OmRlc2NyaWJlQnkoaW5kaXJldG9bLDRdKQ0KYGBgDQoNCiMjIyAqKkFsdHVyYSoqDQoNCmBgYHtyfQ0KaW5kaXJldG8kTUYyPSgxMjguMDIqaW5kaXJldG8kQWx0dXJhMikrODI1Ljg1DQppbmRpcmV0bw0KI0FsdHVyYSBtw6lkaWEgDQpwc3ljaDo6ZGVzY3JpYmVCeShpbmRpcmV0b1ssM10pDQojTUYgbcOpZGlhDQpwc3ljaDo6ZGVzY3JpYmVCeShpbmRpcmV0b1ssNV0pDQpgYGANCg0KIyMjICoqRGlzY28gbWVkaWRvcioqDQoNCmBgYHtyfQ0KU29tYXRvcmlhLjEwMC5sZWl0dXJhcz0yNTEzOS0yMjcyMg0KU29tYXRvcmlhLjEwMC5sZWl0dXJhcw0KVmFsb3IubWVkaW89U29tYXRvcmlhLjEwMC5sZWl0dXJhcy8xMDANClZhbG9yLm1lZGlvDQpNRi5kaXNjbz0oMTYwKlZhbG9yLm1lZGlvKSs3NjcuNg0KTUYuZGlzY28NCmBgYA0KDQojICoqTUYgUE9SIE1FVE9ET1MgREVTVFJVVElWT1MqKg0KDQpgYGB7cn0NCmExPWxtKE1Gfk1ldG9kbywgZGF0YT1kZXN0cnV0aXZvKQ0KYW5vdmEoYTEpDQptZWRpYXM9ZW1tZWFucyhhMSx+TWV0b2RvKQ0KcGFpcnMobWVkaWFzKQ0KbXVsdGNvbXA6OmNsZChtZWRpYXMpDQoNCiNDT09SREVOQURBUw0KcHN5Y2g6OmRlc2NyaWJlQnkoZGVzdHJ1dGl2b1tjKDk6MTQpLDNdKQ0KDQojRElSSUdJRE8NCnBzeWNoOjpkZXNjcmliZUJ5KGRlc3RydXRpdm9bYygxOjgpLDNdKQ0KYGBgDQoNCg0KDQo=