HELLO!
WELCOME TO MY WEBSITE
Teknik Informatika UIN MAULANA MALIK IBRAHIM MALANG|| Lalu Egiq Fahalik Anggara_220605110066 |kelas C
KALKULUS by Prof. Dr. Suhartono, M.Kom
BAB 6 MENYESUAIKAN FUNGSI KE DATA
Seringkali, Anda memiliki gagasan tentang bentuk fungsi untuk model dan Anda perlu memilih parameter yang akan membuat fungsi model cocok untuk observasi. Proses pemilihan parameter untuk mencocokkan pengamatan disebut model fitting .
Sebagai ilustrasi, data dalam file “utilities.csv” mencatat suhu rata-rata setiap bulan (dalam derajat F) serta penggunaan gas alam bulanan (dalam kaki kubik, ccf). Ada, seperti yang Anda duga, hubungan yang kuat antara keduanya.
library(mosaicCalc)
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
## Loading required package: mosaicCore
##
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
##
## count, tally
##
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
##
## D
Utils <- read.csv("http://www.mosaic-web.org/go/datasets/utilities.csv")
gf_point(ccf ~ temp, data = Utils) %>%
gf_labs(y = "Natural gas usage (ccf/month)",
x = "Average outdoor temperature (F)")
library(mosaicCalc)
f <- fitModel(ccf ~ A * temp + B, data = Utils)
Output dari fitModel()adalah fungsi dari bentuk matematika yang sama seperti yang Anda tentukan dalam argumen pertama (di sini, ccf ~ A * temp + B) dengan nilai numerik tertentu yang diberikan ke parameter untuk membuat fungsi paling cocok dengan data. Bagaimana cara fitModel()mengetahui besaran mana dalam bentuk matematika yang merupakan variabel dan mana yang merupakan parameter? Apa pun yang terkandung dalam data yang digunakan untuk pemasangan adalah variabel (di sini temp); hal-hal lain (di sini, Adan B) adalah parameter.
gf_point(ccf ~ temp, data = Utils) %>%
slice_plot(f(temp) ~ temp)
Anda dapat menambahkan fungsi lain ke dalam campuran dengan mudah. Misalnya, Anda mungkin berpikir itu sqrt(temp)berhasil di sana. Cobalah!
f2 <- fitModel(
ccf ~ A * temp + B + C *sqrt(temp),
data = Utils)
gf_point(
ccf ~ temp, data = Utils) %>%
slice_plot(f2(temp) ~ temp)
Contoh ini hanya melibatkan satu variabel input. Di seluruh ilmu alam
dan sosial, teknik yang sangat penting dan banyak digunakan adalah
dengan menggunakan banyak variabel dalam suatu proyeksi. Sebagai
ilustrasi, lihatlah data di “used-hondas.csv”harga mobil bekas
Honda.
Hondas <- read.csv("http://www.mosaic-web.org/go/datasets/used-hondas.csv")
head(Hondas)
## Price Year Mileage Location Color Age
## 1 20746 2006 18394 St.Paul Grey 1
## 2 19787 2007 8 St.Paul Black 0
## 3 17987 2005 39998 St.Paul Grey 2
## 4 17588 2004 35882 St.Paul Black 3
## 5 16987 2004 25306 St.Paul Grey 3
## 6 16987 2005 33399 St.Paul Black 2
Seperti yang Anda lihat, kumpulan data menyertakan variabel Price, Age, dan Mileage. Tampaknya masuk akal untuk berpikir bahwa harga akan tergantung pada jarak tempuh dan usia mobil. Berikut adalah model yang sangat sederhana yang menggunakan kedua variabel:
library(mosaicCalc)
carPrice1 <- fitModel(
Price ~ A + B * Age + C * Mileage, data = Hondas
)
Anda dapat memplot fungsi yang dipasang:
library(mosaicCalc)
contour_plot(
carPrice1(Age = age, Mileage = miles) ~ age + miles,
domain(age=2:8, miles=range(0, 60000)))
carPrice2 <- fitModel(
Price ~ A + B * Age + C * Mileage + D * Age * Mileage,
data = Hondas)
Latihan 1
contour_plot(
carPrice2(Age=age, Mileage=miles) ~ age + miles,
domain(age = range(0, 8), miles = range(0, 60000)))
Latihan 2
logPrice2 <- fitModel(
logPrice ~ A + B * Age + C * Mileage + D * Age * Mileage,
data = Hondas %>% mutate(logPrice = log10(Price)))
contour_plot(
logPrice2(Age=age, Mileage=miles) ~ age + miles,
domain(age = range(0, 8), miles = range(0, 60000)))
contour_plot(
logPrice2(Age=age, Mileage=miles) ~ age + miles,
domain(age = range(2, 8), miles = range(0, 6000)))
## Warning: Computation failed in `stat_contour_fill()`:
## factor level [2] is duplicated
Latihan 3: Tetap dekat dengan data
carPrice3 <- fitModel(
Price ~ A + B * Age + C * Mileage + D * Age * Mileage +
E * Age^2 + F * Mileage^2 + G * Age^2 * Mileage +
H * Age * Mileage^2,
data = Hondas)
gf_point(Mileage ~ Age, data = Hondas, fill = NA) %>%
contour_plot(
carPrice3(Age=Age, Mileage=Mileage) ~ Age + Mileage)
Kurva dan model linier
Utilities = read.csv("http://www.mosaic-web.org/go/datasets/utilities.csv")
gf_point(ccf ~ temp, data = Utilities)
project(ccf ~ temp + 1, data = Utilities)
## (Intercept) temp
## 253.098208 -3.464251
model_fun = makeFun( 253.098 - 3.464*temp ~ temp)
gf_point(ccf ~ temp, data=Utils) %>%
slice_plot(model_fun(temp) ~ temp)
project(ccf ~ temp + sqrt(temp) + 1, data = Utils)
## (Intercept) temp sqrt(temp)
## 447.029273 1.377666 -63.208025
mod2 <- makeFun(447.03 + 1.378*temp - 63.21*sqrt(temp) ~ temp)
gf_point(ccf ~ temp, data=Utils) %>% # the data
slice_plot(mod2(temp) ~ temp) %>%
gf_labs(x = "Temperature (F)",
y = "Natural gas used (ccf)")
Hondas = read.csv("http://www.mosaic-web.org/go/datasets/used-hondas.csv")
head(Hondas)
## Price Year Mileage Location Color Age
## 1 20746 2006 18394 St.Paul Grey 1
## 2 19787 2007 8 St.Paul Black 0
## 3 17987 2005 39998 St.Paul Grey 2
## 4 17588 2004 35882 St.Paul Black 3
## 5 16987 2004 25306 St.Paul Grey 3
## 6 16987 2005 33399 St.Paul Black 2
project(Price ~ Age + Mileage + 1, data = Hondas)
## (Intercept) Age Mileage
## 2.133049e+04 -5.382931e+02 -7.668922e-02
car_price <- makeFun(21330-5.383e2*age-7.669e-2*miles ~ age & miles)
contour_plot(car_price(age, miles) ~ age + miles,
domain(age=range(2, 8), miles=range(0, 60000))) %>%
gf_labs(title = "Miles per gallon")
project(Price ~ Age + Mileage + Age*Mileage + 1, data = Hondas)
## (Intercept) Age Mileage Age:Mileage
## 2.213744e+04 -7.494928e+02 -9.413962e-02 3.450033e-03
car_price2 <- makeFun(22137 - 7.495e2*age - 9.414e-2*miles +
3.450e-3*age*miles ~ age & miles)
contour_plot(
car_price2(Age, Mileage) ~ Age + Mileage,
domain(Age = range(0, 10), Mileage = range(0, 100000))) %>%
gf_labs(title = "Price of car (USD)")
Latihan 1: Menyesuaikan Polinomial
Utilities = read.csv("http://www.mosaic-web.org/go/datasets/utilities.csv")
project(ccf ~ 1 + temp + I(temp^2), data = Utilities)
## (Intercept) temp I(temp^2)
## 317.58743630 -6.85301947 0.03609138
ccfQuad <- makeFun(317.587 - 6.853*T + 0.0361*T^2 ~ T)
gf_point(ccf ~ temp, data = Utilities) %>%
slice_plot(ccfQuad(temp) ~ temp)
ccfQuad(T=72)
## [1] 11.3134
jawaban:
project(ccf ~ 1 + temp + I(temp^2) + I(temp^3), data = Utils)
## (Intercept) temp I(temp^2) I(temp^3)
## 2.550709e+02 -1.427408e+00 -9.643482e-02 9.609511e-04
ccfCubic <-
makeFun(2.551e2 - 1.427*T -
9.643e-2*T^2 + 9.6095e-4*T^3 ~ T)
gf_point(ccf ~ temp, data = Utils) %>%
slice_plot(ccfCubic(temp) ~ temp)
ccfCubic(32)
## [1] 142.1801
jawaban:
project(ccf ~ 1 + temp + I(temp^2) + I(temp^3) + I(temp^4),
data = Utils)
## (Intercept) temp I(temp^2) I(temp^3) I(temp^4)
## 1.757579e+02 8.225746e+00 -4.815403e-01 7.102673e-03 -3.384490e-05
ccfQuad <- makeFun(1.7576e2 + 8.225*T -4.815e-1*T^2 +
7.103e-3*T^3 - 3.384e-5*T^4 ~ T)
gf_point(ccf ~ temp, data = Utils) %>%
slice_plot(ccfQuad(temp) ~ temp) %>%
gf_labs(y = "Natural gas use (ccf)", x = "Temperature (F)")
library(mosaicCalc)
ccfQuad(32)
## [1] 143.1713
Latihan 2: Regresi Berganda
Cars = read.csv("http://www.mosaic-web.org/go/datasets/cardata.csv")
head(Cars)
## mpg pounds horsepower cylinders tons constant
## 1 16.9 3967.60 155 8 2.0 1
## 2 15.5 3689.14 142 8 1.8 1
## 3 19.2 3280.55 125 8 1.6 1
## 4 18.5 3585.40 150 8 1.8 1
## 5 30.0 1961.05 68 4 1.0 1
## 6 27.5 2329.60 95 4 1.2 1
Berapa nilai model untuk input 2000 pound? {14.9,19.4,21.1,25.0, 28.8 ,33.9,35.2} MENJAWAB:
project(mpg ~ pounds + 1, data = Cars)
## (Intercept) pounds
## 43.188646127 -0.007200773
43.1886 - 0.00720*2000
## [1] 28.7886
Gunakan data agar sesuai dengan model ekonomi bahan bakar berikut (variabel mpg): =kamu0+kamu1+kamu2. a. Berapa nilai model untuk input 2000 pound dan 150 tenaga kuda? {14.9, 19.4 ,21.1,25.0,28.8,33.9,35.2} b. Berapa nilai model untuk input 2000 pound dan 50 tenaga kuda? {14.9,19.4,21.1,25.0,28.8, 33.9 ,35.2}
jawaban
project(mpg ~ pounds + horsepower + 1, data = Cars)
## (Intercept) pounds horsepower
## 46.932738241 -0.002902265 -0.144930546
mod_fun <- makeFun(46.933 - 0.00290*lbs - 0.1449*hp ~ lbs + hp)
mod_fun(lbs = 2000, hp = 50)
## [1] 33.888
Fungsi dengan parameter nonlinier a. Fungsi eksponensial
Families <- read.csv("http://www.mosaic-web.org/go/datasets/Income-Housing.csv")
gf_point(TwoVehicles ~ Income, data = Families)
kguess <- log(0.5) / 25000
kguess
## [1] -2.772589e-05
project( TwoVehicles ~ 1 + exp(Income*kguess), data = Families)
## (Intercept) exp(Income * kguess)
## 110.4263 -101.5666
f <- makeFun( 110.43 - 101.57*exp(Income * k) ~ Income, k = kguess)
gf_point(TwoVehicles ~ Income, data = Families) %>%
slice_plot(f(Income) ~ Income)
f(Income = 10000)
## [1] 33.45433
f(Income = 50000)
## [1] 85.0375
Mengoptimalkan tebakan
sum_square_resids <- Vectorize(function(k) {
sum((Families$TwoVehicles - f(Income=Families$Income, k)) ^ 2)
})
slice_plot(
sum_square_resids(k) ~ k,
domain(k = range(log(0.5)/40000,log(0.5)/20000)))
DAFTAR PUSTAKA