This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
Note: this analysis was performed using the open source software R and Rstudio.
Your explanation here
Your explanation here
data <- read.csv("avocado.csv")
head(data)
## date average_price total_volume type year geography
## 1 2017/12/3 1.39 139970 conventional 2017 Albany
## 2 2017/12/3 1.44 3577 organic 2017 Albany
## 3 2017/12/3 1.07 504933 conventional 2017 Atlanta
## 4 2017/12/3 1.62 10609 organic 2017 Atlanta
## 5 2017/12/3 1.43 658939 conventional 2017 Baltimore/Washington
## 6 2017/12/3 1.58 38754 organic 2017 Baltimore/Washington
## Mileage
## 1 2832
## 2 2832
## 3 2199
## 4 2199
## 5 2679
## 6 2679
#install.packages('plyr')
library(plyr)
mean(data$average_price)
## [1] 1.358841
median(data$average_price)
## [1] 1.32
cor(data$total_volume,data$average_price)
## [1] -0.4169306
To calculate Price Elasticity of Demand we use the formula: PE = (ΔQ/ΔP) * (P/Q) # (Iacobacci, 2015, p.134-135).
(ΔQ/ΔP) is determined by the coefficient in our regression analysis below. Here Beta represents the change in the dependent variable y with respect to x (i.e. Δy/Δx = (ΔQ/ΔP)). To determine (P/Q) we will use the average price and average sales volume (Salem, 2014).
plot(total_volume ~ average_price, data)
regr <- lm(total_volume ~ average_price, data)
abline(regr, col='red')
summary(regr)
##
## Call:
## lm(formula = total_volume ~ average_price, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -679205 -277566 -128592 118917 4901891
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1179545 17117 68.91 <2e-16 ***
## average_price -628687 12198 -51.54 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 480300 on 12626 degrees of freedom
## Multiple R-squared: 0.1738, Adjusted R-squared: 0.1738
## F-statistic: 2657 on 1 and 12626 DF, p-value: < 2.2e-16
coefficients(regr)
## (Intercept) average_price
## 1179544.8 -628686.6
Beta <- regr$coefficients[["average_price"]]
P <- mean(data$average_price)
Q <- mean(data$total_volume)
elasticity <-Beta*P/Q
elasticity
## [1] -2.626474
Your conclusions here:
Ref: Salem, 2014. Price Elasticity with R. http://www.salemmarafi.com/code/price-elasticity-with-r/
365datascience. https://365datascience.com/trending/price-elasticity/