library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.1 ✔ stringr 1.4.1
## ✔ readr 2.1.2 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(moderndive)
df = data.frame(x = c(-3.64, -2.6, -2.1, 2.9, 4.2), y = c(-5.6, 22.6, -8.85, -4.1, 26)) %>% as_tibble()
df
ggplot(df, aes(x, y)) +
geom_point() +
geom_smooth(method = lm, se = FALSE)
## `geom_smooth()` using formula 'y ~ x'
get_regression_table(lm(y~x, df))
y = 1.694 * x + 6.430
df %>% mutate(error = y - (1.694 * x + 6.430)) -> df
df
df %>% summarise(MSE = mean(error**2))
df %>% arrange(desc(abs(error)))
x = 8
1.694 * x + 6.430
## [1] 19.982
pnorm(10, mean = 8, sd = 5, lower.tail = TRUE, log.p = FALSE)
## [1] 0.6554217
pnorm(7, mean = 8, sd = 5, lower.tail = FALSE, log.p = FALSE)
## [1] 0.5792597
qnorm(0.75, mean = 8, sd = 5, lower.tail = TRUE, log.p = FALSE)
## [1] 11.37245
qnorm(0.4, mean = 8, sd = 5, lower.tail = FALSE, log.p = FALSE)
## [1] 9.266736
dnorm(9, mean = 8, sd = 5, log = FALSE)
## [1] 0.07820854
dnorm(6, mean = 8, sd = 5, log = FALSE)
## [1] 0.07365403
g <- function(x, mean, sd) dnorm(x, mean = mean, sd = sd)
g(6, 8, 5)
## [1] 0.07365403