Image by Gordon Johnson from Pixabay

Image by Gordon Johnson from Pixabay

Data Import

  1. Download flag.csv and flag.names to your working directory. Make sure to set your working directory appropriately!

  2. Let’s look at some information about this file. Open flag.names in RStudio by double clicking it in the files pane in bottom left. Read through this file.

  1. Import the flag.csv data into R. Store it in a data.frame named flag_df.
# fill in your code here
getwd()
## [1] "C:/Users/Jerome/Documents/0000_Work_Files/0000_Montgomery_College/Data_Science_101/Data_101_Fall_2022/Homework_8_Due_31Oct2022/project2a files"
flag_df <- read.csv("flag.csv")
  1. Check to make sure the class of flag_df is data.frame. Then find the dimensions of flag_df.
# fill in your code here
class(flag_df)
## [1] "data.frame"
dim(flag_df)
## [1] 194  31
  1. Print out the first 5 lines and the last 5 lines of flag_df.
# fill in your code here
head(flag_df,5)
##   X           name landmass zone area population language religion bars stripes
## 1 1    Afghanistan        5    1  648         16       10        2    0       3
## 2 2        Albania        3    1   29          3        6        6    0       0
## 3 3        Algeria        4    1 2388         20        8        2    2       0
## 4 4 American-Samoa        6    3    0          0        1        1    0       0
## 5 5        Andorra        3    1    0          0        6        0    3       0
##   colours red green blue gold white black orange mainhue circles crosses
## 1       5   1     1    0    1     1     1      0   green       0       0
## 2       3   1     0    0    1     0     1      0     red       0       0
## 3       3   1     1    0    0     1     0      0   green       0       0
## 4       5   1     0    1    1     1     0      1    blue       0       0
## 5       3   1     0    1    1     0     0      0    gold       0       0
##   saltires quarters sunstars crescent triangle icon animate text topleft
## 1        0        0        1        0        0    1       0    0   black
## 2        0        0        1        0        0    0       1    0     red
## 3        0        0        1        1        0    0       0    0   green
## 4        0        0        0        0        1    1       1    0    blue
## 5        0        0        0        0        0    0       0    0    blue
##   botright
## 1    green
## 2      red
## 3    white
## 4      red
## 5      red
tail(flag_df,5)
##       X          name landmass zone area population language religion bars
## 190 190 Western-Samoa        6    3    3          0        1        1    0
## 191 191    Yugoslavia        3    1  256         22        6        6    0
## 192 192         Zaire        4    2  905         28       10        5    0
## 193 193        Zambia        4    2  753          6       10        5    3
## 194 194      Zimbabwe        4    2  391          8       10        5    0
##     stripes colours red green blue gold white black orange mainhue circles
## 190       0       3   1     0    1    0     1     0      0     red       0
## 191       3       4   1     0    1    1     1     0      0     red       0
## 192       0       4   1     1    0    1     0     0      1   green       1
## 193       0       4   1     1    0    0     0     1      1   green       0
## 194       7       5   1     1    0    1     1     1      0   green       0
##     crosses saltires quarters sunstars crescent triangle icon animate text
## 190       0        0        1        5        0        0    0       0    0
## 191       0        0        0        1        0        0    0       0    0
## 192       0        0        0        0        0        0    1       1    0
## 193       0        0        0        0        0        0    0       1    0
## 194       0        0        0        1        0        1    1       1    0
##     topleft botright
## 190    blue      red
## 191    blue      red
## 192   green    green
## 193   green    brown
## 194   green    green
  1. Print out the summary statistics of each variable of flag_df.
# fill in your code here
summary(flag_df)
##        X              name              landmass          zone      
##  Min.   :  1.00   Length:194         Min.   :1.000   Min.   :1.000  
##  1st Qu.: 49.25   Class :character   1st Qu.:3.000   1st Qu.:1.000  
##  Median : 97.50   Mode  :character   Median :4.000   Median :2.000  
##  Mean   : 97.50                      Mean   :3.572   Mean   :2.211  
##  3rd Qu.:145.75                      3rd Qu.:5.000   3rd Qu.:4.000  
##  Max.   :194.00                      Max.   :6.000   Max.   :4.000  
##       area           population         language        religion    
##  Min.   :    0.0   Min.   :   0.00   Min.   : 1.00   Min.   :0.000  
##  1st Qu.:    9.0   1st Qu.:   0.00   1st Qu.: 2.00   1st Qu.:1.000  
##  Median :  111.0   Median :   4.00   Median : 6.00   Median :1.000  
##  Mean   :  700.0   Mean   :  23.27   Mean   : 5.34   Mean   :2.191  
##  3rd Qu.:  471.2   3rd Qu.:  14.00   3rd Qu.: 9.00   3rd Qu.:4.000  
##  Max.   :22402.0   Max.   :1008.00   Max.   :10.00   Max.   :7.000  
##       bars           stripes          colours           red        
##  Min.   :0.0000   Min.   : 0.000   Min.   :1.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.: 0.000   1st Qu.:3.000   1st Qu.:1.0000  
##  Median :0.0000   Median : 0.000   Median :3.000   Median :1.0000  
##  Mean   :0.4536   Mean   : 1.552   Mean   :3.464   Mean   :0.7887  
##  3rd Qu.:0.0000   3rd Qu.: 3.000   3rd Qu.:4.000   3rd Qu.:1.0000  
##  Max.   :5.0000   Max.   :14.000   Max.   :8.000   Max.   :1.0000  
##      green             blue             gold            white       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.0000  
##  Median :0.0000   Median :1.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.4691   Mean   :0.5103   Mean   :0.4691   Mean   :0.7526  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      black           orange        mainhue             circles      
##  Min.   :0.000   Min.   :0.000   Length:194         Min.   :0.0000  
##  1st Qu.:0.000   1st Qu.:0.000   Class :character   1st Qu.:0.0000  
##  Median :0.000   Median :0.000   Mode  :character   Median :0.0000  
##  Mean   :0.268   Mean   :0.134                      Mean   :0.1701  
##  3rd Qu.:1.000   3rd Qu.:0.000                      3rd Qu.:0.0000  
##  Max.   :1.000   Max.   :1.000                      Max.   :4.0000  
##     crosses          saltires          quarters         sunstars     
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   : 0.000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.: 0.000  
##  Median :0.0000   Median :0.00000   Median :0.0000   Median : 0.000  
##  Mean   :0.1495   Mean   :0.09278   Mean   :0.1495   Mean   : 1.387  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.: 1.000  
##  Max.   :2.0000   Max.   :1.00000   Max.   :4.0000   Max.   :50.000  
##     crescent         triangle           icon           animate     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.000  
##  Mean   :0.0567   Mean   :0.1392   Mean   :0.2526   Mean   :0.201  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.7500   3rd Qu.:0.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.000  
##       text           topleft            botright        
##  Min.   :0.00000   Length:194         Length:194        
##  1st Qu.:0.00000   Class :character   Class :character  
##  Median :0.00000   Mode  :character   Mode  :character  
##  Mean   :0.08247                                        
##  3rd Qu.:0.00000                                        
##  Max.   :1.00000
  1. Print out the structure of flag_df.
# fill in your code here
str(flag_df)
## 'data.frame':    194 obs. of  31 variables:
##  $ X         : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ name      : chr  "Afghanistan" "Albania" "Algeria" "American-Samoa" ...
##  $ landmass  : int  5 3 4 6 3 4 1 1 2 2 ...
##  $ zone      : int  1 1 1 3 1 2 4 4 3 3 ...
##  $ area      : int  648 29 2388 0 0 1247 0 0 2777 2777 ...
##  $ population: int  16 3 20 0 0 7 0 0 28 28 ...
##  $ language  : int  10 6 8 1 6 10 1 1 2 2 ...
##  $ religion  : int  2 6 2 1 0 5 1 1 0 0 ...
##  $ bars      : int  0 0 2 0 3 0 0 0 0 0 ...
##  $ stripes   : int  3 0 0 0 0 2 1 1 3 3 ...
##  $ colours   : int  5 3 3 5 3 3 3 5 2 3 ...
##  $ red       : int  1 1 1 1 1 1 0 1 0 0 ...
##  $ green     : int  1 0 1 0 0 0 0 0 0 0 ...
##  $ blue      : int  0 0 0 1 1 0 1 1 1 1 ...
##  $ gold      : int  1 1 0 1 1 1 0 1 0 1 ...
##  $ white     : int  1 0 1 1 0 0 1 1 1 1 ...
##  $ black     : int  1 1 0 0 0 1 0 1 0 0 ...
##  $ orange    : int  0 0 0 1 0 0 1 0 0 0 ...
##  $ mainhue   : chr  "green" "red" "green" "blue" ...
##  $ circles   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ crosses   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ saltires  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ quarters  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ sunstars  : int  1 1 1 0 0 1 0 1 0 1 ...
##  $ crescent  : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ triangle  : int  0 0 0 1 0 0 0 1 0 0 ...
##  $ icon      : int  1 0 0 1 0 1 0 0 0 0 ...
##  $ animate   : int  0 1 0 1 0 0 1 0 0 0 ...
##  $ text      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ topleft   : chr  "black" "red" "green" "blue" ...
##  $ botright  : chr  "green" "red" "white" "red" ...

Data Cleaning/Management

We are going to use the dplyr package.

  1. Load the tidyverse and convert the type of flag_df to tibble.
# fill in your code here
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6      ✔ purrr   0.3.5 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.1      ✔ stringr 1.4.1 
## ✔ readr   2.1.3      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
as_tibble(flag_df)
## # A tibble: 194 × 31
##        X name  landm…¹  zone  area popul…² langu…³ relig…⁴  bars stripes colours
##    <int> <chr>   <int> <int> <int>   <int>   <int>   <int> <int>   <int>   <int>
##  1     1 Afgh…       5     1   648      16      10       2     0       3       5
##  2     2 Alba…       3     1    29       3       6       6     0       0       3
##  3     3 Alge…       4     1  2388      20       8       2     2       0       3
##  4     4 Amer…       6     3     0       0       1       1     0       0       5
##  5     5 Ando…       3     1     0       0       6       0     3       0       3
##  6     6 Ango…       4     2  1247       7      10       5     0       2       3
##  7     7 Angu…       1     4     0       0       1       1     0       1       3
##  8     8 Anti…       1     4     0       0       1       1     0       1       5
##  9     9 Arge…       2     3  2777      28       2       0     0       3       2
## 10    10 Arge…       2     3  2777      28       2       0     0       3       3
## # … with 184 more rows, 20 more variables: red <int>, green <int>, blue <int>,
## #   gold <int>, white <int>, black <int>, orange <int>, mainhue <chr>,
## #   circles <int>, crosses <int>, saltires <int>, quarters <int>,
## #   sunstars <int>, crescent <int>, triangle <int>, icon <int>, animate <int>,
## #   text <int>, topleft <chr>, botright <chr>, and abbreviated variable names
## #   ¹​landmass, ²​population, ³​language, ⁴​religion
  1. Find the variable (column) names of flag_df.
# fill in your code here
colnames(flag_df)
##  [1] "X"          "name"       "landmass"   "zone"       "area"      
##  [6] "population" "language"   "religion"   "bars"       "stripes"   
## [11] "colours"    "red"        "green"      "blue"       "gold"      
## [16] "white"      "black"      "orange"     "mainhue"    "circles"   
## [21] "crosses"    "saltires"   "quarters"   "sunstars"   "crescent"  
## [26] "triangle"   "icon"       "animate"    "text"       "topleft"   
## [31] "botright"

Something should look strange about the first column name. Let’s investigate this.

  1. Print out the first column.
# fill in your code here
print(flag_df$x)
## NULL
  1. Delete the first column of flag_df.
# fill in your code here
select(flag_df, -1)
##                         name landmass zone  area population language religion
## 1                Afghanistan        5    1   648         16       10        2
## 2                    Albania        3    1    29          3        6        6
## 3                    Algeria        4    1  2388         20        8        2
## 4             American-Samoa        6    3     0          0        1        1
## 5                    Andorra        3    1     0          0        6        0
## 6                     Angola        4    2  1247          7       10        5
## 7                   Anguilla        1    4     0          0        1        1
## 8            Antigua-Barbuda        1    4     0          0        1        1
## 9                  Argentina        2    3  2777         28        2        0
## 10                 Argentine        2    3  2777         28        2        0
## 11                 Australia        6    2  7690         15        1        1
## 12                   Austria        3    1    84          8        4        0
## 13                   Bahamas        1    4    19          0        1        1
## 14                   Bahrain        5    1     1          0        8        2
## 15                Bangladesh        5    1   143         90        6        2
## 16                  Barbados        1    4     0          0        1        1
## 17                   Belgium        3    1    31         10        6        0
## 18                    Belize        1    4    23          0        1        1
## 19                     Benin        4    1   113          3        3        5
## 20                   Bermuda        1    4     0          0        1        1
## 21                    Bhutan        5    1    47          1       10        3
## 22                   Bolivia        2    3  1099          6        2        0
## 23                  Botswana        4    2   600          1       10        5
## 24                    Brazil        2    3  8512        119        6        0
## 25      British-Virgin-Isles        1    4     0          0        1        1
## 26                    Brunei        5    1     6          0       10        2
## 27                  Bulgaria        3    1   111          9        5        6
## 28                   Burkina        4    4   274          7        3        5
## 29                     Burma        5    1   678         35       10        3
## 30                   Burundi        4    2    28          4       10        5
## 31                  Cameroon        4    1   474          8        3        1
## 32                    Canada        1    4  9976         24        1        1
## 33        Cape-Verde-Islands        4    4     4          0        6        0
## 34            Cayman-Islands        1    4     0          0        1        1
## 35  Central-African-Republic        4    1   623          2       10        5
## 36                      Chad        4    1  1284          4        3        5
## 37                     Chile        2    3   757         11        2        0
## 38                     China        5    1  9561       1008        7        6
## 39                  Colombia        2    4  1139         28        2        0
## 40           Comorro-Islands        4    2     2          0        3        2
## 41                     Congo        4    2   342          2       10        5
## 42              Cook-Islands        6    3     0          0        1        1
## 43                Costa-Rica        1    4    51          2        2        0
## 44                      Cuba        1    4   115         10        2        6
## 45                    Cyprus        3    1     9          1        6        1
## 46            Czechoslovakia        3    1   128         15        5        6
## 47                   Denmark        3    1    43          5        6        1
## 48                  Djibouti        4    1    22          0        3        2
## 49                  Dominica        1    4     0          0        1        1
## 50        Dominican-Republic        1    4    49          6        2        0
## 51                   Ecuador        2    3   284          8        2        0
## 52                     Egypt        4    1  1001         47        8        2
## 53               El-Salvador        1    4    21          5        2        0
## 54         Equatorial-Guinea        4    1    28          0       10        5
## 55                  Ethiopia        4    1  1222         31       10        1
## 56                   Faeroes        3    4     1          0        6        1
## 57        Falklands-Malvinas        2    3    12          0        1        1
## 58                      Fiji        6    2    18          1        1        1
## 59                   Finland        3    1   337          5        9        1
## 60                    France        3    1   547         54        3        0
## 61             French-Guiana        2    4    91          0        3        0
## 62          French-Polynesia        6    3     4          0        3        0
## 63                     Gabon        4    2   268          1       10        5
## 64                    Gambia        4    4    10          1        1        5
## 65               Germany-DDR        3    1   108         17        4        6
## 66               Germany-FRG        3    1   249         61        4        1
## 67                     Ghana        4    4   239         14        1        5
## 68                 Gibraltar        3    4     0          0        1        1
## 69                    Greece        3    1   132         10        6        1
## 70                 Greenland        1    4  2176          0        6        1
## 71                   Grenada        1    4     0          0        1        1
## 72                      Guam        6    1     0          0        1        1
## 73                 Guatemala        1    4   109          8        2        0
## 74                    Guinea        4    4   246          6        3        2
## 75             Guinea-Bissau        4    4    36          1        6        5
## 76                    Guyana        2    4   215          1        1        4
## 77                     Haiti        1    4    28          6        3        0
## 78                  Honduras        1    4   112          4        2        0
## 79                 Hong-Kong        5    1     1          5        7        3
## 80                   Hungary        3    1    93         11        9        6
## 81                   Iceland        3    4   103          0        6        1
## 82                     India        5    1  3268        684        6        4
## 83                 Indonesia        6    2  1904        157       10        2
## 84                      Iran        5    1  1648         39        6        2
## 85                      Iraq        5    1   435         14        8        2
## 86                   Ireland        3    4    70          3        1        0
## 87                    Israel        5    1    21          4       10        7
## 88                     Italy        3    1   301         57        6        0
## 89               Ivory-Coast        4    4   323          7        3        5
## 90                   Jamaica        1    4    11          2        1        1
## 91                     Japan        5    1   372        118        9        7
## 92                    Jordan        5    1    98          2        8        2
## 93                 Kampuchea        5    1   181          6       10        3
## 94                     Kenya        4    1   583         17       10        5
## 95                  Kiribati        6    1     0          0        1        1
## 96                    Kuwait        5    1    18          2        8        2
## 97                      Laos        5    1   236          3       10        6
## 98                   Lebanon        5    1    10          3        8        2
## 99                   Lesotho        4    2    30          1       10        5
## 100                  Liberia        4    4   111          1       10        5
## 101                    Libya        4    1  1760          3        8        2
## 102            Liechtenstein        3    1     0          0        4        0
## 103               Luxembourg        3    1     3          0        4        0
## 104                 Malagasy        4    2   587          9       10        1
## 105                   Malawi        4    2   118          6       10        5
## 106                 Malaysia        5    1   333         13       10        2
## 107          Maldive-Islands        5    1     0          0       10        2
## 108                     Mali        4    4  1240          7        3        2
## 109                    Malta        3    1     0          0       10        0
## 110                 Marianas        6    1     0          0       10        1
## 111               Mauritania        4    4  1031          2        8        2
## 112                Mauritius        4    2     2          1        1        4
## 113                   Mexico        1    4  1973         77        2        0
## 114               Micronesia        6    1     1          0       10        1
## 115                   Monaco        3    1     0          0        3        0
## 116                 Mongolia        5    1  1566          2       10        6
## 117               Montserrat        1    4     0          0        1        1
## 118                  Morocco        4    4   447         20        8        2
## 119               Mozambique        4    2   783         12       10        5
## 120                    Nauru        6    2     0          0       10        1
## 121                    Nepal        5    1   140         16       10        4
## 122              Netherlands        3    1    41         14        6        1
## 123     Netherlands-Antilles        1    4     0          0        6        1
## 124              New-Zealand        6    2   268          2        1        1
## 125                Nicaragua        1    4   128          3        2        0
## 126                    Niger        4    1  1267          5        3        2
## 127                  Nigeria        4    1   925         56       10        2
## 128                     Niue        6    3     0          0        1        1
## 129              North-Korea        5    1   121         18       10        6
## 130              North-Yemen        5    1   195          9        8        2
## 131                   Norway        3    1   324          4        6        1
## 132                     Oman        5    1   212          1        8        2
## 133                 Pakistan        5    1   804         84        6        2
## 134                   Panama        2    4    76          2        2        0
## 135         Papua-New-Guinea        6    2   463          3        1        5
## 136                  Parguay        2    3   407          3        2        0
## 137                     Peru        2    3  1285         14        2        0
## 138              Philippines        6    1   300         48       10        0
## 139                   Poland        3    1   313         36        5        6
## 140                 Portugal        3    4    92         10        6        0
## 141              Puerto-Rico        1    4     9          3        2        0
## 142                    Qatar        5    1    11          0        8        2
## 143                  Romania        3    1   237         22        6        6
## 144                   Rwanda        4    2    26          5       10        5
## 145               San-Marino        3    1     0          0        6        0
## 146                 Sao-Tome        4    1     0          0        6        0
## 147             Saudi-Arabia        5    1  2150          9        8        2
## 148                  Senegal        4    4   196          6        3        2
## 149               Seychelles        4    2     0          0        1        1
## 150             Sierra-Leone        4    4    72          3        1        5
## 151                Singapore        5    1     1          3        7        3
## 152          Soloman-Islands        6    2    30          0        1        1
## 153                  Somalia        4    1   637          5       10        2
## 154             South-Africa        4    2  1221         29        6        1
## 155              South-Korea        5    1    99         39       10        7
## 156              South-Yemen        5    1   288          2        8        2
## 157                    Spain        3    4   505         38        2        0
## 158                Sri-Lanka        5    1    66         15       10        3
## 159                St-Helena        4    3     0          0        1        1
## 160           St-Kitts-Nevis        1    4     0          0        1        1
## 161                 St-Lucia        1    4     0          0        1        1
## 162               St-Vincent        1    4     0          0        1        1
## 163                    Sudan        4    1  2506         20        8        2
## 164                  Surinam        2    4    63          0        6        1
## 165                Swaziland        4    2    17          1       10        1
## 166                   Sweden        3    1   450          8        6        1
## 167              Switzerland        3    1    41          6        4        1
## 168                    Syria        5    1   185         10        8        2
## 169                   Taiwan        5    1    36         18        7        3
## 170                 Tanzania        4    2   945         18       10        5
## 171                 Thailand        5    1   514         49       10        3
## 172                     Togo        4    1    57          2        3        7
## 173                    Tonga        6    2     1          0       10        1
## 174          Trinidad-Tobago        2    4     5          1        1        1
## 175                  Tunisia        4    1   164          7        8        2
## 176                   Turkey        5    1   781         45        9        2
## 177      Turks-Cocos-Islands        1    4     0          0        1        1
## 178                   Tuvalu        6    2     0          0        1        1
## 179                      UAE        5    1    84          1        8        2
## 180                   Uganda        4    1   236         13       10        5
## 181                       UK        3    4   245         56        1        1
## 182                  Uruguay        2    3   178          3        2        0
## 183          US-Virgin-Isles        1    4     0          0        1        1
## 184                      USA        1    4  9363        231        1        1
## 185                     USSR        5    1 22402        274        5        6
## 186                  Vanuatu        6    2    15          0        6        1
## 187             Vatican-City        3    1     0          0        6        0
## 188                Venezuela        2    4   912         15        2        0
## 189                  Vietnam        5    1   333         60       10        6
## 190            Western-Samoa        6    3     3          0        1        1
## 191               Yugoslavia        3    1   256         22        6        6
## 192                    Zaire        4    2   905         28       10        5
## 193                   Zambia        4    2   753          6       10        5
## 194                 Zimbabwe        4    2   391          8       10        5
##     bars stripes colours red green blue gold white black orange mainhue circles
## 1      0       3       5   1     1    0    1     1     1      0   green       0
## 2      0       0       3   1     0    0    1     0     1      0     red       0
## 3      2       0       3   1     1    0    0     1     0      0   green       0
## 4      0       0       5   1     0    1    1     1     0      1    blue       0
## 5      3       0       3   1     0    1    1     0     0      0    gold       0
## 6      0       2       3   1     0    0    1     0     1      0     red       0
## 7      0       1       3   0     0    1    0     1     0      1   white       0
## 8      0       1       5   1     0    1    1     1     1      0     red       0
## 9      0       3       2   0     0    1    0     1     0      0    blue       0
## 10     0       3       3   0     0    1    1     1     0      0    blue       0
## 11     0       0       3   1     0    1    0     1     0      0    blue       0
## 12     0       3       2   1     0    0    0     1     0      0     red       0
## 13     0       3       3   0     0    1    1     0     1      0    blue       0
## 14     0       0       2   1     0    0    0     1     0      0     red       0
## 15     0       0       2   1     1    0    0     0     0      0   green       1
## 16     3       0       3   0     0    1    1     0     1      0    blue       0
## 17     3       0       3   1     0    0    1     0     1      0    gold       0
## 18     0       2       8   1     1    1    1     1     1      1    blue       1
## 19     0       0       2   1     1    0    0     0     0      0   green       0
## 20     0       0       6   1     1    1    1     1     1      0     red       1
## 21     0       0       4   1     0    0    0     1     1      1  orange       4
## 22     0       3       3   1     1    0    1     0     0      0     red       0
## 23     0       5       3   0     0    1    0     1     1      0    blue       0
## 24     0       0       4   0     1    1    1     1     0      0   green       1
## 25     0       0       6   1     1    1    1     1     0      1    blue       0
## 26     0       0       4   1     0    0    1     1     1      0    gold       0
## 27     0       3       5   1     1    1    1     1     0      0     red       0
## 28     0       2       3   1     1    0    1     0     0      0     red       0
## 29     0       0       3   1     0    1    0     1     0      0     red       0
## 30     0       0       3   1     1    0    0     1     0      0     red       1
## 31     3       0       3   1     1    0    1     0     0      0    gold       0
## 32     2       0       2   1     0    0    0     1     0      0     red       0
## 33     1       2       5   1     1    0    1     0     1      1    gold       0
## 34     0       0       6   1     1    1    1     1     0      1    blue       1
## 35     1       0       5   1     1    1    1     1     0      0    gold       0
## 36     3       0       3   1     0    1    1     0     0      0    gold       0
## 37     0       2       3   1     0    1    0     1     0      0     red       0
## 38     0       0       2   1     0    0    1     0     0      0     red       0
## 39     0       3       3   1     0    1    1     0     0      0    gold       0
## 40     0       0       2   0     1    0    0     1     0      0   green       0
## 41     0       0       3   1     1    0    1     0     0      0     red       0
## 42     0       0       4   1     0    1    0     1     0      0    blue       1
## 43     0       5       3   1     0    1    0     1     0      0    blue       0
## 44     0       5       3   1     0    1    0     1     0      0    blue       0
## 45     0       0       3   0     1    0    1     1     0      0   white       0
## 46     0       0       3   1     0    1    0     1     0      0   white       0
## 47     0       0       2   1     0    0    0     1     0      0     red       0
## 48     0       0       4   1     1    1    0     1     0      0    blue       0
## 49     0       0       6   1     1    1    1     1     1      0   green       1
## 50     0       0       3   1     0    1    0     1     0      0    blue       0
## 51     0       3       3   1     0    1    1     0     0      0    gold       0
## 52     0       3       4   1     0    0    1     1     1      0   black       0
## 53     0       3       2   0     0    1    0     1     0      0    blue       0
## 54     0       3       4   1     1    1    0     1     0      0   green       0
## 55     0       3       3   1     1    0    1     0     0      0   green       0
## 56     0       0       3   1     0    1    0     1     0      0   white       0
## 57     0       0       6   1     1    1    1     1     0      0    blue       1
## 58     0       0       7   1     1    1    1     1     0      1    blue       0
## 59     0       0       2   0     0    1    0     1     0      0   white       0
## 60     3       0       3   1     0    1    0     1     0      0   white       0
## 61     3       0       3   1     0    1    0     1     0      0   white       0
## 62     0       3       5   1     0    1    1     1     1      0     red       1
## 63     0       3       3   0     1    1    1     0     0      0   green       0
## 64     0       5       4   1     1    1    0     1     0      0     red       0
## 65     0       3       3   1     0    0    1     0     1      0    gold       0
## 66     0       3       3   1     0    0    1     0     1      0   black       0
## 67     0       3       4   1     1    0    1     0     1      0     red       0
## 68     0       1       3   1     0    0    1     1     0      0   white       0
## 69     0       9       2   0     0    1    0     1     0      0    blue       0
## 70     0       0       2   1     0    0    0     1     0      0   white       1
## 71     0       0       3   1     1    0    1     0     0      0    gold       1
## 72     0       0       7   1     1    1    1     1     0      1    blue       0
## 73     3       0       2   0     0    1    0     1     0      0    blue       0
## 74     3       0       3   1     1    0    1     0     0      0    gold       0
## 75     1       2       4   1     1    0    1     0     1      0    gold       0
## 76     0       0       5   1     1    0    1     1     1      0   green       0
## 77     2       0       2   1     0    0    0     0     1      0   black       0
## 78     0       3       2   0     0    1    0     1     0      0    blue       0
## 79     0       0       6   1     1    1    1     1     0      1    blue       1
## 80     0       3       3   1     1    0    0     1     0      0     red       0
## 81     0       0       3   1     0    1    0     1     0      0    blue       0
## 82     0       3       4   0     1    1    0     1     0      1  orange       1
## 83     0       2       2   1     0    0    0     1     0      0     red       0
## 84     0       3       3   1     1    0    0     1     0      0     red       0
## 85     0       3       4   1     1    0    0     1     1      0     red       0
## 86     3       0       3   0     1    0    0     1     0      1   white       0
## 87     0       2       2   0     0    1    0     1     0      0   white       0
## 88     3       0       3   1     1    0    0     1     0      0   white       0
## 89     3       0       3   1     1    0    0     1     0      0   white       0
## 90     0       0       3   0     1    0    1     0     1      0   green       0
## 91     0       0       2   1     0    0    0     1     0      0   white       1
## 92     0       3       4   1     1    0    0     1     1      0   black       0
## 93     0       0       2   1     0    0    1     0     0      0     red       0
## 94     0       5       4   1     1    0    0     1     1      0     red       1
## 95     0       0       4   1     0    1    1     1     0      0     red       0
## 96     0       3       4   1     1    0    0     1     1      0   green       0
## 97     0       3       3   1     0    1    0     1     0      0     red       1
## 98     0       2       4   1     1    0    0     1     0      1     red       0
## 99     2       0       4   1     1    1    0     1     0      0    blue       0
## 100    0      11       3   1     0    1    0     1     0      0     red       0
## 101    0       0       1   0     1    0    0     0     0      0   green       0
## 102    0       2       3   1     0    1    1     0     0      0     red       0
## 103    0       3       3   1     0    1    0     1     0      0     red       0
## 104    1       2       3   1     1    0    0     1     0      0     red       0
## 105    0       3       3   1     1    0    0     0     1      0     red       0
## 106    0      14       4   1     0    1    1     1     0      0     red       0
## 107    0       0       3   1     1    0    0     1     0      0     red       0
## 108    3       0       3   1     1    0    1     0     0      0    gold       0
## 109    2       0       3   1     0    0    0     1     1      0     red       0
## 110    0       0       3   0     0    1    0     1     0      0    blue       0
## 111    0       0       2   0     1    0    1     0     0      0   green       0
## 112    0       4       4   1     1    1    1     0     0      0     red       0
## 113    3       0       4   1     1    0    0     1     0      1   green       0
## 114    0       0       2   0     0    1    0     1     0      0    blue       0
## 115    0       2       2   1     0    0    0     1     0      0     red       0
## 116    3       0       3   1     0    1    1     0     0      0     red       2
## 117    0       0       7   1     1    1    1     1     1      0    blue       0
## 118    0       0       2   1     1    0    0     0     0      0     red       0
## 119    0       5       5   1     1    0    1     1     1      0    gold       0
## 120    0       3       3   0     0    1    1     1     0      0    blue       0
## 121    0       0       3   0     0    1    0     1     0      1   brown       0
## 122    0       3       3   1     0    1    0     1     0      0     red       0
## 123    0       1       3   1     0    1    0     1     0      0   white       0
## 124    0       0       3   1     0    1    0     1     0      0    blue       0
## 125    0       3       2   0     0    1    0     1     0      0    blue       0
## 126    0       3       3   0     1    0    0     1     0      1  orange       1
## 127    3       0       2   0     1    0    0     1     0      0   green       0
## 128    0       0       4   1     0    1    1     1     0      0    gold       1
## 129    0       5       3   1     0    1    0     1     0      0    blue       1
## 130    0       3       4   1     1    0    0     1     1      0     red       0
## 131    0       0       3   1     0    1    0     1     0      0     red       0
## 132    0       2       3   1     1    0    0     1     0      0     red       0
## 133    1       0       2   0     1    0    0     1     0      0   green       0
## 134    0       0       3   1     0    1    0     1     0      0     red       0
## 135    0       0       4   1     0    0    1     1     1      0   black       0
## 136    0       3       6   1     1    1    1     1     1      0     red       1
## 137    3       0       2   1     0    0    0     1     0      0     red       0
## 138    0       0       4   1     0    1    1     1     0      0    blue       0
## 139    0       2       2   1     0    0    0     1     0      0   white       0
## 140    0       0       5   1     1    1    1     1     0      0     red       1
## 141    0       5       3   1     0    1    0     1     0      0     red       0
## 142    0       0       2   0     0    0    0     1     0      1   brown       0
## 143    3       0       7   1     1    1    1     1     0      1     red       0
## 144    3       0       4   1     1    0    1     0     1      0     red       0
## 145    0       2       2   0     0    1    0     1     0      0   white       0
## 146    0       3       4   1     1    0    1     0     1      0   green       0
## 147    0       0       2   0     1    0    0     1     0      0   green       0
## 148    3       0       3   1     1    0    1     0     0      0   green       0
## 149    0       0       3   1     1    0    0     1     0      0     red       0
## 150    0       3       3   0     1    1    0     1     0      0   green       0
## 151    0       2       2   1     0    0    0     1     0      0   white       0
## 152    0       0       4   0     1    1    1     1     0      0   green       0
## 153    0       0       2   0     0    1    0     1     0      0    blue       0
## 154    0       3       5   1     1    1    0     1     0      1  orange       0
## 155    0       0       4   1     0    1    0     1     1      0   white       1
## 156    0       3       4   1     0    1    0     1     1      0     red       0
## 157    0       3       2   1     0    0    1     0     0      0     red       0
## 158    2       0       4   0     1    0    1     0     0      1    gold       0
## 159    0       0       7   1     1    1    1     1     0      1    blue       0
## 160    0       0       5   1     1    0    1     1     1      0   green       0
## 161    0       0       4   0     0    1    1     1     1      0    blue       0
## 162    5       0       4   0     1    1    1     1     0      0   green       0
## 163    0       3       4   1     1    0    0     1     1      0     red       0
## 164    0       5       4   1     1    0    1     1     0      0     red       0
## 165    0       5       7   1     0    1    1     1     1      1    blue       0
## 166    0       0       2   0     0    1    1     0     0      0    blue       0
## 167    0       0       2   1     0    0    0     1     0      0     red       0
## 168    0       3       4   1     1    0    0     1     1      0     red       0
## 169    0       0       3   1     0    1    0     1     0      0     red       1
## 170    0       0       4   0     1    1    1     0     1      0   green       0
## 171    0       5       3   1     0    1    0     1     0      0     red       0
## 172    0       5       4   1     1    0    1     1     0      0   green       0
## 173    0       0       2   1     0    0    0     1     0      0     red       0
## 174    0       0       3   1     0    0    0     1     1      0     red       0
## 175    0       0       2   1     0    0    0     1     0      0     red       1
## 176    0       0       2   1     0    0    0     1     0      0     red       0
## 177    0       0       6   1     1    1    1     1     0      1    blue       0
## 178    0       0       5   1     0    1    1     1     0      0    blue       0
## 179    1       3       4   1     1    0    0     1     1      0   green       0
## 180    0       6       5   1     0    0    1     1     1      0    gold       1
## 181    0       0       3   1     0    1    0     1     0      0     red       0
## 182    0       9       3   0     0    1    1     1     0      0   white       0
## 183    0       0       6   1     1    1    1     1     0      0   white       0
## 184    0      13       3   1     0    1    0     1     0      0   white       0
## 185    0       0       2   1     0    0    1     0     0      0     red       0
## 186    0       0       4   1     1    0    1     0     1      0     red       0
## 187    2       0       4   1     0    0    1     1     1      0    gold       0
## 188    0       3       7   1     1    1    1     1     1      1     red       0
## 189    0       0       2   1     0    0    1     0     0      0     red       0
## 190    0       0       3   1     0    1    0     1     0      0     red       0
## 191    0       3       4   1     0    1    1     1     0      0     red       0
## 192    0       0       4   1     1    0    1     0     0      1   green       1
## 193    3       0       4   1     1    0    0     0     1      1   green       0
## 194    0       7       5   1     1    0    1     1     1      0   green       0
##     crosses saltires quarters sunstars crescent triangle icon animate text
## 1         0        0        0        1        0        0    1       0    0
## 2         0        0        0        1        0        0    0       1    0
## 3         0        0        0        1        1        0    0       0    0
## 4         0        0        0        0        0        1    1       1    0
## 5         0        0        0        0        0        0    0       0    0
## 6         0        0        0        1        0        0    1       0    0
## 7         0        0        0        0        0        0    0       1    0
## 8         0        0        0        1        0        1    0       0    0
## 9         0        0        0        0        0        0    0       0    0
## 10        0        0        0        1        0        0    0       0    0
## 11        1        1        1        6        0        0    0       0    0
## 12        0        0        0        0        0        0    0       0    0
## 13        0        0        0        0        0        1    0       0    0
## 14        0        0        0        0        0        0    0       0    0
## 15        0        0        0        0        0        0    0       0    0
## 16        0        0        0        0        0        0    1       0    0
## 17        0        0        0        0        0        0    0       0    0
## 18        0        0        0        0        0        0    1       1    1
## 19        0        0        0        1        0        0    0       0    0
## 20        1        1        1        0        0        0    1       1    0
## 21        0        0        0        0        0        0    0       1    0
## 22        0        0        0        0        0        0    0       0    0
## 23        0        0        0        0        0        0    0       0    0
## 24        0        0        0       22        0        0    0       0    1
## 25        1        1        1        0        0        0    1       1    1
## 26        0        0        0        0        0        1    1       1    1
## 27        0        0        0        1        0        0    1       1    0
## 28        0        0        0        1        0        0    0       0    0
## 29        0        0        1       14        0        0    1       1    0
## 30        0        1        0        3        0        0    0       0    0
## 31        0        0        0        1        0        0    0       0    0
## 32        0        0        0        0        0        0    0       1    0
## 33        0        0        0        1        0        0    0       1    0
## 34        1        1        1        4        0        0    1       1    1
## 35        0        0        0        1        0        0    0       0    0
## 36        0        0        0        0        0        0    0       0    0
## 37        0        0        1        1        0        0    0       0    0
## 38        0        0        0        5        0        0    0       0    0
## 39        0        0        0        0        0        0    0       0    0
## 40        0        0        0        4        1        0    0       0    0
## 41        0        0        0        1        0        0    1       1    0
## 42        1        1        1       15        0        0    0       0    0
## 43        0        0        0        0        0        0    0       0    0
## 44        0        0        0        1        0        1    0       0    0
## 45        0        0        0        0        0        0    1       1    0
## 46        0        0        0        0        0        1    0       0    0
## 47        1        0        0        0        0        0    0       0    0
## 48        0        0        0        1        0        1    0       0    0
## 49        0        0        0       10        0        0    0       1    0
## 50        1        0        0        0        0        0    0       0    0
## 51        0        0        0        0        0        0    0       0    0
## 52        0        0        0        0        0        0    0       1    1
## 53        0        0        0        0        0        0    0       0    0
## 54        0        0        0        0        0        1    0       0    0
## 55        0        0        0        0        0        0    0       0    0
## 56        1        0        0        0        0        0    0       0    0
## 57        1        1        1        0        0        0    1       1    1
## 58        2        1        1        0        0        0    1       1    0
## 59        1        0        0        0        0        0    0       0    0
## 60        0        0        0        0        0        0    0       0    0
## 61        0        0        0        0        0        0    0       0    0
## 62        0        0        0        1        0        0    1       0    0
## 63        0        0        0        0        0        0    0       0    0
## 64        0        0        0        0        0        0    0       0    0
## 65        0        0        0        0        0        0    1       0    0
## 66        0        0        0        0        0        0    0       0    0
## 67        0        0        0        1        0        0    0       0    0
## 68        0        0        0        0        0        0    1       0    0
## 69        1        0        1        0        0        0    0       0    0
## 70        0        0        0        0        0        0    0       0    0
## 71        0        0        0        7        0        1    0       1    0
## 72        0        0        0        0        0        0    1       1    1
## 73        0        0        0        0        0        0    0       0    0
## 74        0        0        0        0        0        0    0       0    0
## 75        0        0        0        1        0        0    0       0    0
## 76        0        0        0        0        0        1    0       0    0
## 77        0        0        0        0        0        0    0       0    0
## 78        0        0        0        5        0        0    0       0    0
## 79        1        1        1        0        0        0    1       1    1
## 80        0        0        0        0        0        0    0       0    0
## 81        1        0        0        0        0        0    0       0    0
## 82        0        0        0        0        0        0    1       0    0
## 83        0        0        0        0        0        0    0       0    0
## 84        0        0        0        0        0        0    1       0    1
## 85        0        0        0        3        0        0    0       0    0
## 86        0        0        0        0        0        0    0       0    0
## 87        0        0        0        1        0        0    0       0    0
## 88        0        0        0        0        0        0    0       0    0
## 89        0        0        0        0        0        0    0       0    0
## 90        0        1        0        0        0        1    0       0    0
## 91        0        0        0        1        0        0    0       0    0
## 92        0        0        0        1        0        1    0       0    0
## 93        0        0        0        0        0        0    1       0    0
## 94        0        0        0        0        0        0    1       0    0
## 95        0        0        0        1        0        0    1       1    0
## 96        0        0        0        0        0        0    0       0    0
## 97        0        0        0        0        0        0    0       0    0
## 98        0        0        0        0        0        0    0       1    0
## 99        0        0        0        0        0        0    1       0    0
## 100       0        0        1        1        0        0    0       0    0
## 101       0        0        0        0        0        0    0       0    0
## 102       0        0        0        0        0        0    1       0    0
## 103       0        0        0        0        0        0    0       0    0
## 104       0        0        0        0        0        0    0       0    0
## 105       0        0        0        1        0        0    0       0    0
## 106       0        0        1        1        1        0    0       0    0
## 107       0        0        0        0        1        0    0       0    0
## 108       0        0        0        0        0        0    0       0    0
## 109       1        0        0        0        0        0    1       0    0
## 110       0        0        0        1        0        0    1       0    0
## 111       0        0        0        1        1        0    0       0    0
## 112       0        0        0        0        0        0    0       0    0
## 113       0        0        0        0        0        0    0       1    0
## 114       0        0        0        4        0        0    0       0    0
## 115       0        0        0        0        0        0    0       0    0
## 116       0        0        0        1        1        1    1       0    0
## 117       2        1        1        0        0        0    1       1    0
## 118       0        0        0        1        0        0    0       0    0
## 119       0        0        0        1        0        1    1       0    0
## 120       0        0        0        1        0        0    0       0    0
## 121       0        0        0        2        1        0    0       0    0
## 122       0        0        0        0        0        0    0       0    0
## 123       0        0        0        6        0        0    0       0    0
## 124       1        1        1        4        0        0    0       0    0
## 125       0        0        0        0        0        0    0       0    0
## 126       0        0        0        0        0        0    0       0    0
## 127       0        0        0        0        0        0    0       0    0
## 128       1        1        1        5        0        0    0       0    0
## 129       0        0        0        1        0        0    0       0    0
## 130       0        0        0        1        0        0    0       0    0
## 131       1        0        0        0        0        0    0       0    0
## 132       0        0        0        0        0        0    1       0    0
## 133       0        0        0        1        1        0    0       0    0
## 134       0        0        4        2        0        0    0       0    0
## 135       0        0        0        5        0        1    0       1    0
## 136       0        0        0        1        0        0    1       1    1
## 137       0        0        0        0        0        0    0       0    0
## 138       0        0        0        4        0        1    0       0    0
## 139       0        0        0        0        0        0    0       0    0
## 140       0        0        0        0        0        0    1       0    0
## 141       0        0        0        1        0        1    0       0    0
## 142       0        0        0        0        0        0    0       0    0
## 143       0        0        0        2        0        0    1       1    1
## 144       0        0        0        0        0        0    0       0    1
## 145       0        0        0        0        0        0    0       0    0
## 146       0        0        0        2        0        1    0       0    0
## 147       0        0        0        0        0        0    1       0    1
## 148       0        0        0        1        0        0    0       0    0
## 149       0        0        0        0        0        0    0       0    0
## 150       0        0        0        0        0        0    0       0    0
## 151       0        0        0        5        1        0    0       0    0
## 152       0        0        0        5        0        1    0       0    0
## 153       0        0        0        1        0        0    0       0    0
## 154       1        1        0        0        0        0    0       0    0
## 155       0        0        0        0        0        0    1       0    0
## 156       0        0        0        1        0        1    0       0    0
## 157       0        0        0        0        0        0    0       0    0
## 158       0        0        0        0        0        0    1       1    0
## 159       1        1        1        0        0        0    1       0    0
## 160       0        0        0        2        0        1    0       0    0
## 161       0        0        0        0        0        1    0       0    0
## 162       0        0        0        0        0        0    1       1    1
## 163       0        0        0        0        0        1    0       0    0
## 164       0        0        0        1        0        0    0       0    0
## 165       0        0        0        0        0        0    1       0    0
## 166       1        0        0        0        0        0    0       0    0
## 167       1        0        0        0        0        0    0       0    0
## 168       0        0        0        2        0        0    0       0    0
## 169       0        0        1        1        0        0    0       0    0
## 170       0        0        0        0        0        1    0       0    0
## 171       0        0        0        0        0        0    0       0    0
## 172       0        0        1        1        0        0    0       0    0
## 173       1        0        1        0        0        0    0       0    0
## 174       0        0        0        0        0        1    0       0    0
## 175       0        0        0        1        1        0    0       0    0
## 176       0        0        0        1        1        0    0       0    0
## 177       1        1        1        0        0        0    1       1    0
## 178       1        1        1        9        0        0    0       0    0
## 179       0        0        0        0        0        0    0       0    0
## 180       0        0        0        0        0        0    0       1    0
## 181       1        1        0        0        0        0    0       0    0
## 182       0        0        1        1        0        0    0       0    0
## 183       0        0        0        0        0        0    1       1    1
## 184       0        0        1       50        0        0    0       0    0
## 185       0        0        0        1        0        0    1       0    0
## 186       0        0        0        0        0        1    0       1    0
## 187       0        0        0        0        0        0    1       0    0
## 188       0        0        0        7        0        0    1       1    0
## 189       0        0        0        1        0        0    0       0    0
## 190       0        0        1        5        0        0    0       0    0
## 191       0        0        0        1        0        0    0       0    0
## 192       0        0        0        0        0        0    1       1    0
## 193       0        0        0        0        0        0    0       1    0
## 194       0        0        0        1        0        1    1       1    0
##     topleft botright
## 1     black    green
## 2       red      red
## 3     green    white
## 4      blue      red
## 5      blue      red
## 6       red    black
## 7     white     blue
## 8     black      red
## 9      blue     blue
## 10     blue     blue
## 11    white     blue
## 12      red      red
## 13     blue     blue
## 14    white      red
## 15    green    green
## 16     blue     blue
## 17    black      red
## 18      red      red
## 19    green    green
## 20    white      red
## 21   orange      red
## 22      red    green
## 23     blue     blue
## 24    green    green
## 25    white     blue
## 26    white     gold
## 27    white      red
## 28      red    green
## 29     blue      red
## 30    white    white
## 31    green     gold
## 32      red      red
## 33      red    green
## 34    white     blue
## 35     blue     gold
## 36     blue      red
## 37     blue      red
## 38      red      red
## 39     gold      red
## 40    green    green
## 41      red      red
## 42    white     blue
## 43     blue     blue
## 44     blue     blue
## 45    white    white
## 46    white      red
## 47      red      red
## 48    white    green
## 49    green    green
## 50     blue     blue
## 51     gold      red
## 52      red    black
## 53     blue     blue
## 54    green      red
## 55    green      red
## 56    white    white
## 57    white     blue
## 58    white     blue
## 59    white    white
## 60     blue      red
## 61     blue      red
## 62      red      red
## 63    green     blue
## 64      red    green
## 65    black     gold
## 66    black     gold
## 67      red    green
## 68    white      red
## 69     blue     blue
## 70    white      red
## 71      red      red
## 72      red      red
## 73     blue     blue
## 74      red    green
## 75      red    green
## 76    black    green
## 77    black      red
## 78     blue     blue
## 79    white     blue
## 80      red    green
## 81     blue     blue
## 82   orange    green
## 83      red    white
## 84    green      red
## 85      red    black
## 86    green   orange
## 87     blue     blue
## 88    green      red
## 89      red    green
## 90     gold     gold
## 91    white    white
## 92    black    green
## 93      red      red
## 94    black    green
## 95      red     blue
## 96    green      red
## 97      red      red
## 98      red      red
## 99    green     blue
## 100    blue      red
## 101   green    green
## 102    blue      red
## 103     red     blue
## 104   white    green
## 105   black    green
## 106    blue    white
## 107     red      red
## 108   green      red
## 109   white      red
## 110    blue     blue
## 111   green    green
## 112     red    green
## 113   green      red
## 114    blue     blue
## 115     red    white
## 116     red      red
## 117   white     blue
## 118     red      red
## 119   green     gold
## 120    blue     blue
## 121    blue     blue
## 122     red     blue
## 123   white    white
## 124   white     blue
## 125    blue     blue
## 126  orange    green
## 127   green    green
## 128   white     gold
## 129    blue     blue
## 130     red    black
## 131     red      red
## 132     red    green
## 133   white    green
## 134   white    white
## 135     red    black
## 136     red     blue
## 137     red      red
## 138    blue      red
## 139   white      red
## 140   green      red
## 141     red      red
## 142   white    brown
## 143    blue      red
## 144     red    green
## 145   white     blue
## 146   green    green
## 147   green    green
## 148   green      red
## 149     red    green
## 150   green     blue
## 151     red    white
## 152    blue    green
## 153    blue     blue
## 154  orange     blue
## 155   white    white
## 156     red    black
## 157     red      red
## 158    gold     gold
## 159   white     blue
## 160   green      red
## 161    blue     blue
## 162    blue    green
## 163     red    black
## 164   green    green
## 165    blue     blue
## 166    blue     blue
## 167     red      red
## 168     red    black
## 169    blue      red
## 170   green     blue
## 171     red      red
## 172     red    green
## 173   white      red
## 174   white    white
## 175     red      red
## 176     red      red
## 177   white     blue
## 178   white     blue
## 179     red    black
## 180   black      red
## 181   white      red
## 182   white    white
## 183   white    white
## 184    blue      red
## 185     red      red
## 186   black    green
## 187    gold    white
## 188    gold      red
## 189     red      red
## 190    blue      red
## 191    blue      red
## 192   green    green
## 193   green    brown
## 194   green    green
  1. Verify that there are no missing values in flag_df.
# fill in your code here
is.na(flag_df)
##            X  name landmass  zone  area population language religion  bars
##   [1,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##   [2,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##   [3,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##   [4,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##   [5,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##   [6,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##   [7,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##   [8,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##   [9,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [10,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [11,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [12,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [13,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [14,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [15,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [16,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [17,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [18,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [19,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [20,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [21,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [22,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [23,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [24,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [25,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [26,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [27,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [28,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [29,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [30,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [31,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [32,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [33,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [34,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [35,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [36,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [37,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [38,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [39,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [40,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [41,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [42,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [43,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [44,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [45,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [46,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [47,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [48,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [49,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [50,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [51,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [52,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [53,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [54,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [55,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [56,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [57,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [58,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [59,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [60,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [61,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [62,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [63,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [64,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [65,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [66,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [67,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [68,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [69,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [70,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [71,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [72,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [73,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [74,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [75,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [76,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [77,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [78,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [79,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [80,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [81,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [82,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [83,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [84,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [85,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [86,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [87,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [88,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [89,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [90,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [91,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [92,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [93,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [94,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [95,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [96,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [97,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [98,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##  [99,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [100,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [101,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [102,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [103,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [104,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [105,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [106,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [107,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [108,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [109,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [110,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [111,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [112,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [113,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [114,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [115,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [116,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [117,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [118,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [119,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [120,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [121,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [122,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [123,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [124,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [125,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [126,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [127,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [128,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [129,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [130,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [131,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [132,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [133,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [134,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [135,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [136,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [137,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [138,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [139,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [140,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [141,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [142,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [143,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [144,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [145,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [146,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [147,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [148,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [149,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [150,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [151,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [152,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [153,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [154,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [155,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [156,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [157,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [158,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [159,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [160,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [161,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [162,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [163,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [164,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [165,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [166,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [167,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [168,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [169,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [170,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [171,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [172,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [173,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [174,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [175,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [176,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [177,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [178,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [179,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [180,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [181,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [182,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [183,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [184,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [185,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [186,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [187,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [188,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [189,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [190,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [191,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [192,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [193,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
## [194,] FALSE FALSE    FALSE FALSE FALSE      FALSE    FALSE    FALSE FALSE
##        stripes colours   red green  blue  gold white black orange mainhue
##   [1,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##   [2,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##   [3,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##   [4,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##   [5,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##   [6,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##   [7,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##   [8,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##   [9,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [10,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [11,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [12,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [13,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [14,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [15,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [16,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [17,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [18,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [19,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [20,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [21,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [22,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [23,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [24,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [25,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [26,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [27,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [28,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [29,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [30,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [31,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [32,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [33,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [34,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [35,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [36,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [37,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [38,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [39,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [40,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [41,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [42,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [43,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [44,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [45,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [46,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [47,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [48,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [49,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [50,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [51,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [52,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [53,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [54,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [55,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [56,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [57,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [58,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [59,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [60,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [61,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [62,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [63,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [64,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [65,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [66,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [67,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [68,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [69,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [70,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [71,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [72,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [73,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [74,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [75,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [76,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [77,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [78,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [79,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [80,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [81,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [82,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [83,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [84,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [85,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [86,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [87,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [88,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [89,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [90,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [91,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [92,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [93,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [94,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [95,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [96,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [97,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [98,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##  [99,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [100,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [101,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [102,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [103,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [104,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [105,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [106,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [107,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [108,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [109,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [110,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [111,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [112,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [113,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [114,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [115,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [116,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [117,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [118,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [119,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [120,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [121,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [122,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [123,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [124,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [125,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [126,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [127,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [128,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [129,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [130,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [131,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [132,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [133,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [134,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [135,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [136,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [137,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [138,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [139,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [140,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [141,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [142,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [143,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [144,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [145,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [146,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [147,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [148,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [149,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [150,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [151,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [152,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [153,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [154,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [155,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [156,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [157,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [158,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [159,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [160,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [161,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [162,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [163,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [164,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [165,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [166,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [167,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [168,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [169,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [170,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [171,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [172,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [173,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [174,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [175,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [176,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [177,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [178,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [179,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [180,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [181,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [182,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [183,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [184,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [185,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [186,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [187,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [188,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [189,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [190,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [191,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [192,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [193,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
## [194,]   FALSE   FALSE FALSE FALSE FALSE FALSE FALSE FALSE  FALSE   FALSE
##        circles crosses saltires quarters sunstars crescent triangle  icon
##   [1,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##   [2,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##   [3,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##   [4,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##   [5,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##   [6,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##   [7,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##   [8,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##   [9,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [10,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [11,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [12,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [13,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [14,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [15,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [16,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [17,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [18,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [19,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [20,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [21,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [22,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [23,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [24,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [25,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [26,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [27,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [28,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [29,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [30,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [31,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [32,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [33,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [34,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [35,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [36,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [37,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [38,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [39,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [40,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [41,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [42,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [43,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [44,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [45,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [46,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [47,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [48,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [49,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [50,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [51,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [52,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [53,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [54,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [55,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [56,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [57,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [58,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [59,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [60,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [61,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [62,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [63,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [64,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [65,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [66,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [67,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [68,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [69,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [70,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [71,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [72,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [73,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [74,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [75,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [76,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [77,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [78,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [79,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [80,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [81,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [82,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [83,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [84,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [85,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [86,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [87,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [88,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [89,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [90,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [91,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [92,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [93,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [94,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [95,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [96,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [97,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [98,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##  [99,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [100,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [101,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [102,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [103,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [104,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [105,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [106,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [107,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [108,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [109,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [110,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [111,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [112,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [113,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [114,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [115,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [116,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [117,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [118,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [119,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [120,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [121,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [122,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [123,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [124,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [125,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [126,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [127,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [128,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [129,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [130,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [131,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [132,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [133,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [134,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [135,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [136,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [137,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [138,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [139,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [140,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [141,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [142,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [143,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [144,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [145,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [146,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [147,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [148,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [149,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [150,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [151,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [152,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [153,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [154,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [155,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [156,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [157,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [158,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [159,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [160,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [161,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [162,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [163,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [164,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [165,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [166,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [167,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [168,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [169,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [170,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [171,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [172,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [173,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [174,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [175,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [176,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [177,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [178,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [179,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [180,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [181,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [182,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [183,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [184,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [185,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [186,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [187,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [188,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [189,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [190,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [191,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [192,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [193,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
## [194,]   FALSE   FALSE    FALSE    FALSE    FALSE    FALSE    FALSE FALSE
##        animate  text topleft botright
##   [1,]   FALSE FALSE   FALSE    FALSE
##   [2,]   FALSE FALSE   FALSE    FALSE
##   [3,]   FALSE FALSE   FALSE    FALSE
##   [4,]   FALSE FALSE   FALSE    FALSE
##   [5,]   FALSE FALSE   FALSE    FALSE
##   [6,]   FALSE FALSE   FALSE    FALSE
##   [7,]   FALSE FALSE   FALSE    FALSE
##   [8,]   FALSE FALSE   FALSE    FALSE
##   [9,]   FALSE FALSE   FALSE    FALSE
##  [10,]   FALSE FALSE   FALSE    FALSE
##  [11,]   FALSE FALSE   FALSE    FALSE
##  [12,]   FALSE FALSE   FALSE    FALSE
##  [13,]   FALSE FALSE   FALSE    FALSE
##  [14,]   FALSE FALSE   FALSE    FALSE
##  [15,]   FALSE FALSE   FALSE    FALSE
##  [16,]   FALSE FALSE   FALSE    FALSE
##  [17,]   FALSE FALSE   FALSE    FALSE
##  [18,]   FALSE FALSE   FALSE    FALSE
##  [19,]   FALSE FALSE   FALSE    FALSE
##  [20,]   FALSE FALSE   FALSE    FALSE
##  [21,]   FALSE FALSE   FALSE    FALSE
##  [22,]   FALSE FALSE   FALSE    FALSE
##  [23,]   FALSE FALSE   FALSE    FALSE
##  [24,]   FALSE FALSE   FALSE    FALSE
##  [25,]   FALSE FALSE   FALSE    FALSE
##  [26,]   FALSE FALSE   FALSE    FALSE
##  [27,]   FALSE FALSE   FALSE    FALSE
##  [28,]   FALSE FALSE   FALSE    FALSE
##  [29,]   FALSE FALSE   FALSE    FALSE
##  [30,]   FALSE FALSE   FALSE    FALSE
##  [31,]   FALSE FALSE   FALSE    FALSE
##  [32,]   FALSE FALSE   FALSE    FALSE
##  [33,]   FALSE FALSE   FALSE    FALSE
##  [34,]   FALSE FALSE   FALSE    FALSE
##  [35,]   FALSE FALSE   FALSE    FALSE
##  [36,]   FALSE FALSE   FALSE    FALSE
##  [37,]   FALSE FALSE   FALSE    FALSE
##  [38,]   FALSE FALSE   FALSE    FALSE
##  [39,]   FALSE FALSE   FALSE    FALSE
##  [40,]   FALSE FALSE   FALSE    FALSE
##  [41,]   FALSE FALSE   FALSE    FALSE
##  [42,]   FALSE FALSE   FALSE    FALSE
##  [43,]   FALSE FALSE   FALSE    FALSE
##  [44,]   FALSE FALSE   FALSE    FALSE
##  [45,]   FALSE FALSE   FALSE    FALSE
##  [46,]   FALSE FALSE   FALSE    FALSE
##  [47,]   FALSE FALSE   FALSE    FALSE
##  [48,]   FALSE FALSE   FALSE    FALSE
##  [49,]   FALSE FALSE   FALSE    FALSE
##  [50,]   FALSE FALSE   FALSE    FALSE
##  [51,]   FALSE FALSE   FALSE    FALSE
##  [52,]   FALSE FALSE   FALSE    FALSE
##  [53,]   FALSE FALSE   FALSE    FALSE
##  [54,]   FALSE FALSE   FALSE    FALSE
##  [55,]   FALSE FALSE   FALSE    FALSE
##  [56,]   FALSE FALSE   FALSE    FALSE
##  [57,]   FALSE FALSE   FALSE    FALSE
##  [58,]   FALSE FALSE   FALSE    FALSE
##  [59,]   FALSE FALSE   FALSE    FALSE
##  [60,]   FALSE FALSE   FALSE    FALSE
##  [61,]   FALSE FALSE   FALSE    FALSE
##  [62,]   FALSE FALSE   FALSE    FALSE
##  [63,]   FALSE FALSE   FALSE    FALSE
##  [64,]   FALSE FALSE   FALSE    FALSE
##  [65,]   FALSE FALSE   FALSE    FALSE
##  [66,]   FALSE FALSE   FALSE    FALSE
##  [67,]   FALSE FALSE   FALSE    FALSE
##  [68,]   FALSE FALSE   FALSE    FALSE
##  [69,]   FALSE FALSE   FALSE    FALSE
##  [70,]   FALSE FALSE   FALSE    FALSE
##  [71,]   FALSE FALSE   FALSE    FALSE
##  [72,]   FALSE FALSE   FALSE    FALSE
##  [73,]   FALSE FALSE   FALSE    FALSE
##  [74,]   FALSE FALSE   FALSE    FALSE
##  [75,]   FALSE FALSE   FALSE    FALSE
##  [76,]   FALSE FALSE   FALSE    FALSE
##  [77,]   FALSE FALSE   FALSE    FALSE
##  [78,]   FALSE FALSE   FALSE    FALSE
##  [79,]   FALSE FALSE   FALSE    FALSE
##  [80,]   FALSE FALSE   FALSE    FALSE
##  [81,]   FALSE FALSE   FALSE    FALSE
##  [82,]   FALSE FALSE   FALSE    FALSE
##  [83,]   FALSE FALSE   FALSE    FALSE
##  [84,]   FALSE FALSE   FALSE    FALSE
##  [85,]   FALSE FALSE   FALSE    FALSE
##  [86,]   FALSE FALSE   FALSE    FALSE
##  [87,]   FALSE FALSE   FALSE    FALSE
##  [88,]   FALSE FALSE   FALSE    FALSE
##  [89,]   FALSE FALSE   FALSE    FALSE
##  [90,]   FALSE FALSE   FALSE    FALSE
##  [91,]   FALSE FALSE   FALSE    FALSE
##  [92,]   FALSE FALSE   FALSE    FALSE
##  [93,]   FALSE FALSE   FALSE    FALSE
##  [94,]   FALSE FALSE   FALSE    FALSE
##  [95,]   FALSE FALSE   FALSE    FALSE
##  [96,]   FALSE FALSE   FALSE    FALSE
##  [97,]   FALSE FALSE   FALSE    FALSE
##  [98,]   FALSE FALSE   FALSE    FALSE
##  [99,]   FALSE FALSE   FALSE    FALSE
## [100,]   FALSE FALSE   FALSE    FALSE
## [101,]   FALSE FALSE   FALSE    FALSE
## [102,]   FALSE FALSE   FALSE    FALSE
## [103,]   FALSE FALSE   FALSE    FALSE
## [104,]   FALSE FALSE   FALSE    FALSE
## [105,]   FALSE FALSE   FALSE    FALSE
## [106,]   FALSE FALSE   FALSE    FALSE
## [107,]   FALSE FALSE   FALSE    FALSE
## [108,]   FALSE FALSE   FALSE    FALSE
## [109,]   FALSE FALSE   FALSE    FALSE
## [110,]   FALSE FALSE   FALSE    FALSE
## [111,]   FALSE FALSE   FALSE    FALSE
## [112,]   FALSE FALSE   FALSE    FALSE
## [113,]   FALSE FALSE   FALSE    FALSE
## [114,]   FALSE FALSE   FALSE    FALSE
## [115,]   FALSE FALSE   FALSE    FALSE
## [116,]   FALSE FALSE   FALSE    FALSE
## [117,]   FALSE FALSE   FALSE    FALSE
## [118,]   FALSE FALSE   FALSE    FALSE
## [119,]   FALSE FALSE   FALSE    FALSE
## [120,]   FALSE FALSE   FALSE    FALSE
## [121,]   FALSE FALSE   FALSE    FALSE
## [122,]   FALSE FALSE   FALSE    FALSE
## [123,]   FALSE FALSE   FALSE    FALSE
## [124,]   FALSE FALSE   FALSE    FALSE
## [125,]   FALSE FALSE   FALSE    FALSE
## [126,]   FALSE FALSE   FALSE    FALSE
## [127,]   FALSE FALSE   FALSE    FALSE
## [128,]   FALSE FALSE   FALSE    FALSE
## [129,]   FALSE FALSE   FALSE    FALSE
## [130,]   FALSE FALSE   FALSE    FALSE
## [131,]   FALSE FALSE   FALSE    FALSE
## [132,]   FALSE FALSE   FALSE    FALSE
## [133,]   FALSE FALSE   FALSE    FALSE
## [134,]   FALSE FALSE   FALSE    FALSE
## [135,]   FALSE FALSE   FALSE    FALSE
## [136,]   FALSE FALSE   FALSE    FALSE
## [137,]   FALSE FALSE   FALSE    FALSE
## [138,]   FALSE FALSE   FALSE    FALSE
## [139,]   FALSE FALSE   FALSE    FALSE
## [140,]   FALSE FALSE   FALSE    FALSE
## [141,]   FALSE FALSE   FALSE    FALSE
## [142,]   FALSE FALSE   FALSE    FALSE
## [143,]   FALSE FALSE   FALSE    FALSE
## [144,]   FALSE FALSE   FALSE    FALSE
## [145,]   FALSE FALSE   FALSE    FALSE
## [146,]   FALSE FALSE   FALSE    FALSE
## [147,]   FALSE FALSE   FALSE    FALSE
## [148,]   FALSE FALSE   FALSE    FALSE
## [149,]   FALSE FALSE   FALSE    FALSE
## [150,]   FALSE FALSE   FALSE    FALSE
## [151,]   FALSE FALSE   FALSE    FALSE
## [152,]   FALSE FALSE   FALSE    FALSE
## [153,]   FALSE FALSE   FALSE    FALSE
## [154,]   FALSE FALSE   FALSE    FALSE
## [155,]   FALSE FALSE   FALSE    FALSE
## [156,]   FALSE FALSE   FALSE    FALSE
## [157,]   FALSE FALSE   FALSE    FALSE
## [158,]   FALSE FALSE   FALSE    FALSE
## [159,]   FALSE FALSE   FALSE    FALSE
## [160,]   FALSE FALSE   FALSE    FALSE
## [161,]   FALSE FALSE   FALSE    FALSE
## [162,]   FALSE FALSE   FALSE    FALSE
## [163,]   FALSE FALSE   FALSE    FALSE
## [164,]   FALSE FALSE   FALSE    FALSE
## [165,]   FALSE FALSE   FALSE    FALSE
## [166,]   FALSE FALSE   FALSE    FALSE
## [167,]   FALSE FALSE   FALSE    FALSE
## [168,]   FALSE FALSE   FALSE    FALSE
## [169,]   FALSE FALSE   FALSE    FALSE
## [170,]   FALSE FALSE   FALSE    FALSE
## [171,]   FALSE FALSE   FALSE    FALSE
## [172,]   FALSE FALSE   FALSE    FALSE
## [173,]   FALSE FALSE   FALSE    FALSE
## [174,]   FALSE FALSE   FALSE    FALSE
## [175,]   FALSE FALSE   FALSE    FALSE
## [176,]   FALSE FALSE   FALSE    FALSE
## [177,]   FALSE FALSE   FALSE    FALSE
## [178,]   FALSE FALSE   FALSE    FALSE
## [179,]   FALSE FALSE   FALSE    FALSE
## [180,]   FALSE FALSE   FALSE    FALSE
## [181,]   FALSE FALSE   FALSE    FALSE
## [182,]   FALSE FALSE   FALSE    FALSE
## [183,]   FALSE FALSE   FALSE    FALSE
## [184,]   FALSE FALSE   FALSE    FALSE
## [185,]   FALSE FALSE   FALSE    FALSE
## [186,]   FALSE FALSE   FALSE    FALSE
## [187,]   FALSE FALSE   FALSE    FALSE
## [188,]   FALSE FALSE   FALSE    FALSE
## [189,]   FALSE FALSE   FALSE    FALSE
## [190,]   FALSE FALSE   FALSE    FALSE
## [191,]   FALSE FALSE   FALSE    FALSE
## [192,]   FALSE FALSE   FALSE    FALSE
## [193,]   FALSE FALSE   FALSE    FALSE
## [194,]   FALSE FALSE   FALSE    FALSE

At this point, we know there are no missing values in the dataset so we will use dplyr to make the dataset a bit more readable to us. Look at the flag.names file again. Under “Attribute Information” look at the variables landmass, zone, language, religion.

Instead of encoding these categories using numbers, we would like to just use the categories in the variables. For example, in the zone column, we want our data to be “NE”, “SE”, “SW”, “NW”, instead of 1, 2, 3, 4.

  1. Change each of the columns landmass, zone, language, and religion to hold their actual categorical data (not their encoded numbers). The type of each of these columns should be Factor.
# fill in your code here
as.character(flag_df$zone)
##   [1] "1" "1" "1" "3" "1" "2" "4" "4" "3" "3" "2" "1" "4" "1" "1" "4" "1" "4"
##  [19] "1" "4" "1" "3" "2" "3" "4" "1" "1" "4" "1" "2" "1" "4" "4" "4" "1" "1"
##  [37] "3" "1" "4" "2" "2" "3" "4" "4" "1" "1" "1" "1" "4" "4" "3" "1" "4" "1"
##  [55] "1" "4" "3" "2" "1" "1" "4" "3" "2" "4" "1" "1" "4" "4" "1" "4" "4" "1"
##  [73] "4" "4" "4" "4" "4" "4" "1" "1" "4" "1" "2" "1" "1" "4" "1" "1" "4" "4"
##  [91] "1" "1" "1" "1" "1" "1" "1" "1" "2" "4" "1" "1" "1" "2" "2" "1" "1" "4"
## [109] "1" "1" "4" "2" "4" "1" "1" "1" "4" "4" "2" "2" "1" "1" "4" "2" "4" "1"
## [127] "1" "3" "1" "1" "1" "1" "1" "4" "2" "3" "3" "1" "1" "4" "4" "1" "1" "2"
## [145] "1" "1" "1" "4" "2" "4" "1" "2" "1" "2" "1" "1" "4" "1" "3" "4" "4" "4"
## [163] "1" "4" "2" "1" "1" "1" "1" "2" "1" "1" "2" "4" "1" "1" "4" "2" "1" "1"
## [181] "4" "3" "4" "4" "1" "2" "1" "4" "1" "3" "1" "2" "2" "2"
class(flag_df$zone)
## [1] "integer"
flag_df <- mutate(flag_df,
zone = recode (zone, '1' = 'NE', '2' = 'SE', '3' = 'SW', '4' = 'NW'))
as.factor(flag_df$zone)
##   [1] NE NE NE SW NE SE NW NW SW SW SE NE NW NE NE NW NE NW NE NW NE SW SE SW NW
##  [26] NE NE NW NE SE NE NW NW NW NE NE SW NE NW SE SE SW NW NW NE NE NE NE NW NW
##  [51] SW NE NW NE NE NW SW SE NE NE NW SW SE NW NE NE NW NW NE NW NW NE NW NW NW
##  [76] NW NW NW NE NE NW NE SE NE NE NW NE NE NW NW NE NE NE NE NE NE NE NE SE NW
## [101] NE NE NE SE SE NE NE NW NE NE NW SE NW NE NE NE NW NW SE SE NE NE NW SE NW
## [126] NE NE SW NE NE NE NE NE NW SE SW SW NE NE NW NW NE NE SE NE NE NE NW SE NW
## [151] NE SE NE SE NE NE NW NE SW NW NW NW NE NW SE NE NE NE NE SE NE NE SE NW NE
## [176] NE NW SE NE NE NW SW NW NW NE SE NE NW NE SW NE SE SE SE
## Levels: NE NW SE SW
str(flag_df$zone)
##  chr [1:194] "NE" "NE" "NE" "SW" "NE" "SE" "NW" "NW" "SW" "SW" "SE" "NE" ...
flag_df <- mutate_at(flag_df, vars(landmass, zone, language, religion), as.factor)
class(flag_df$ landmass)
## [1] "factor"
class(flag_df$zone)
## [1] "factor"
class(flag_df$religion)
## [1] "factor"
class(flag_df$language)
## [1] "factor"
# code for Question 6 Continued (that chunk was big enough)
as.character(flag_df$landmass)
##   [1] "5" "3" "4" "6" "3" "4" "1" "1" "2" "2" "6" "3" "1" "5" "5" "1" "3" "1"
##  [19] "4" "1" "5" "2" "4" "2" "1" "5" "3" "4" "5" "4" "4" "1" "4" "1" "4" "4"
##  [37] "2" "5" "2" "4" "4" "6" "1" "1" "3" "3" "3" "4" "1" "1" "2" "4" "1" "4"
##  [55] "4" "3" "2" "6" "3" "3" "2" "6" "4" "4" "3" "3" "4" "3" "3" "1" "1" "6"
##  [73] "1" "4" "4" "2" "1" "1" "5" "3" "3" "5" "6" "5" "5" "3" "5" "3" "4" "1"
##  [91] "5" "5" "5" "4" "6" "5" "5" "5" "4" "4" "4" "3" "3" "4" "4" "5" "5" "4"
## [109] "3" "6" "4" "4" "1" "6" "3" "5" "1" "4" "4" "6" "5" "3" "1" "6" "1" "4"
## [127] "4" "6" "5" "5" "3" "5" "5" "2" "6" "2" "2" "6" "3" "3" "1" "5" "3" "4"
## [145] "3" "4" "5" "4" "4" "4" "5" "6" "4" "4" "5" "5" "3" "5" "4" "1" "1" "1"
## [163] "4" "2" "4" "3" "3" "5" "5" "4" "5" "4" "6" "2" "4" "5" "1" "6" "5" "4"
## [181] "3" "2" "1" "1" "5" "6" "3" "2" "5" "6" "3" "4" "4" "4"
flag_df <-  mutate(flag_df,
                   landmass = recode(
                     landmass, '1'= 'N America', '2' = 'S America', '3' = 'Europe', '4' = 
                       'Africa', '5' = 'Asia', '6' = 'Oceania'
                   ))
#Code for Question 6 continued
flag_df <- mutate(flag_df,
                  language = recode(
                    language, '1' = 'English', '2' = 'Spanish', '3' = 'French', '4' = 'German',
                    '5' = 'Slavic', '6' = 'Other I-E', '7' = 'Chinese', '8' = 'Arabic', '9' = 'J-T-F-M',
                    '10' = 'Other'))
# Code for Question 6 continued
flag_df <- mutate(flag_df,
                  religion = recode(
                    religion, '0' = 'Catholic', '1' = 'Other Christian', '2' = 'Muslim', '3' = 'Buddhist', 
                    '4' = 'Hindu', '5' =  'Ethnic', '6' = 'Marxist', '7' = 'Other'
                  ))

Notice from our earlier structure command that the data types for columns red, green, blue, gold, white, black, orange, crescent, triangle, icon, animate, text are all integer. Looking at flag.names these integer variables are really just an encoding for true (1) or false (0). We don’t want to compute with these 1s and 0s (for example find a mean). So we should change these to logicals.

  1. Change the column type to logical for the following columns: red, green, blue, gold, white, black, orange, crescent, triangle, icon, animate, and text.
# fill in your code here
#install.packages("hablar")
library(hablar)
## 
## Attaching package: 'hablar'
## The following object is masked from 'package:forcats':
## 
##     fct
## The following object is masked from 'package:dplyr':
## 
##     na_if
## The following object is masked from 'package:tibble':
## 
##     num
flag_df %>% 
  convert(lgl(red))
## # A tibble: 194 × 31
##        X name  landm…¹ zone   area popul…² langu…³ relig…⁴  bars stripes colours
##    <int> <chr> <fct>   <fct> <int>   <int> <fct>   <fct>   <int>   <int>   <int>
##  1     1 Afgh… Asia    NE      648      16 Other   Muslim      0       3       5
##  2     2 Alba… Europe  NE       29       3 Other … Marxist     0       0       3
##  3     3 Alge… Africa  NE     2388      20 Arabic  Muslim      2       0       3
##  4     4 Amer… Oceania SW        0       0 English Other …     0       0       5
##  5     5 Ando… Europe  NE        0       0 Other … Cathol…     3       0       3
##  6     6 Ango… Africa  SE     1247       7 Other   Ethnic      0       2       3
##  7     7 Angu… N Amer… NW        0       0 English Other …     0       1       3
##  8     8 Anti… N Amer… NW        0       0 English Other …     0       1       5
##  9     9 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       2
## 10    10 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       3
## # … with 184 more rows, 20 more variables: red <lgl>, green <int>, blue <int>,
## #   gold <int>, white <int>, black <int>, orange <int>, mainhue <chr>,
## #   circles <int>, crosses <int>, saltires <int>, quarters <int>,
## #   sunstars <int>, crescent <int>, triangle <int>, icon <int>, animate <int>,
## #   text <int>, topleft <chr>, botright <chr>, and abbreviated variable names
## #   ¹​landmass, ²​population, ³​language, ⁴​religion
flag_df %>%
 convert(lgl(green))
## # A tibble: 194 × 31
##        X name  landm…¹ zone   area popul…² langu…³ relig…⁴  bars stripes colours
##    <int> <chr> <fct>   <fct> <int>   <int> <fct>   <fct>   <int>   <int>   <int>
##  1     1 Afgh… Asia    NE      648      16 Other   Muslim      0       3       5
##  2     2 Alba… Europe  NE       29       3 Other … Marxist     0       0       3
##  3     3 Alge… Africa  NE     2388      20 Arabic  Muslim      2       0       3
##  4     4 Amer… Oceania SW        0       0 English Other …     0       0       5
##  5     5 Ando… Europe  NE        0       0 Other … Cathol…     3       0       3
##  6     6 Ango… Africa  SE     1247       7 Other   Ethnic      0       2       3
##  7     7 Angu… N Amer… NW        0       0 English Other …     0       1       3
##  8     8 Anti… N Amer… NW        0       0 English Other …     0       1       5
##  9     9 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       2
## 10    10 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       3
## # … with 184 more rows, 20 more variables: red <int>, green <lgl>, blue <int>,
## #   gold <int>, white <int>, black <int>, orange <int>, mainhue <chr>,
## #   circles <int>, crosses <int>, saltires <int>, quarters <int>,
## #   sunstars <int>, crescent <int>, triangle <int>, icon <int>, animate <int>,
## #   text <int>, topleft <chr>, botright <chr>, and abbreviated variable names
## #   ¹​landmass, ²​population, ³​language, ⁴​religion
flag_df %>%
 convert(lgl(blue))
## # A tibble: 194 × 31
##        X name  landm…¹ zone   area popul…² langu…³ relig…⁴  bars stripes colours
##    <int> <chr> <fct>   <fct> <int>   <int> <fct>   <fct>   <int>   <int>   <int>
##  1     1 Afgh… Asia    NE      648      16 Other   Muslim      0       3       5
##  2     2 Alba… Europe  NE       29       3 Other … Marxist     0       0       3
##  3     3 Alge… Africa  NE     2388      20 Arabic  Muslim      2       0       3
##  4     4 Amer… Oceania SW        0       0 English Other …     0       0       5
##  5     5 Ando… Europe  NE        0       0 Other … Cathol…     3       0       3
##  6     6 Ango… Africa  SE     1247       7 Other   Ethnic      0       2       3
##  7     7 Angu… N Amer… NW        0       0 English Other …     0       1       3
##  8     8 Anti… N Amer… NW        0       0 English Other …     0       1       5
##  9     9 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       2
## 10    10 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       3
## # … with 184 more rows, 20 more variables: red <int>, green <int>, blue <lgl>,
## #   gold <int>, white <int>, black <int>, orange <int>, mainhue <chr>,
## #   circles <int>, crosses <int>, saltires <int>, quarters <int>,
## #   sunstars <int>, crescent <int>, triangle <int>, icon <int>, animate <int>,
## #   text <int>, topleft <chr>, botright <chr>, and abbreviated variable names
## #   ¹​landmass, ²​population, ³​language, ⁴​religion
flag_df %>%
 convert(lgl(gold))
## # A tibble: 194 × 31
##        X name  landm…¹ zone   area popul…² langu…³ relig…⁴  bars stripes colours
##    <int> <chr> <fct>   <fct> <int>   <int> <fct>   <fct>   <int>   <int>   <int>
##  1     1 Afgh… Asia    NE      648      16 Other   Muslim      0       3       5
##  2     2 Alba… Europe  NE       29       3 Other … Marxist     0       0       3
##  3     3 Alge… Africa  NE     2388      20 Arabic  Muslim      2       0       3
##  4     4 Amer… Oceania SW        0       0 English Other …     0       0       5
##  5     5 Ando… Europe  NE        0       0 Other … Cathol…     3       0       3
##  6     6 Ango… Africa  SE     1247       7 Other   Ethnic      0       2       3
##  7     7 Angu… N Amer… NW        0       0 English Other …     0       1       3
##  8     8 Anti… N Amer… NW        0       0 English Other …     0       1       5
##  9     9 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       2
## 10    10 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       3
## # … with 184 more rows, 20 more variables: red <int>, green <int>, blue <int>,
## #   gold <lgl>, white <int>, black <int>, orange <int>, mainhue <chr>,
## #   circles <int>, crosses <int>, saltires <int>, quarters <int>,
## #   sunstars <int>, crescent <int>, triangle <int>, icon <int>, animate <int>,
## #   text <int>, topleft <chr>, botright <chr>, and abbreviated variable names
## #   ¹​landmass, ²​population, ³​language, ⁴​religion
flag_df %>%
 convert(lgl(white))
## # A tibble: 194 × 31
##        X name  landm…¹ zone   area popul…² langu…³ relig…⁴  bars stripes colours
##    <int> <chr> <fct>   <fct> <int>   <int> <fct>   <fct>   <int>   <int>   <int>
##  1     1 Afgh… Asia    NE      648      16 Other   Muslim      0       3       5
##  2     2 Alba… Europe  NE       29       3 Other … Marxist     0       0       3
##  3     3 Alge… Africa  NE     2388      20 Arabic  Muslim      2       0       3
##  4     4 Amer… Oceania SW        0       0 English Other …     0       0       5
##  5     5 Ando… Europe  NE        0       0 Other … Cathol…     3       0       3
##  6     6 Ango… Africa  SE     1247       7 Other   Ethnic      0       2       3
##  7     7 Angu… N Amer… NW        0       0 English Other …     0       1       3
##  8     8 Anti… N Amer… NW        0       0 English Other …     0       1       5
##  9     9 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       2
## 10    10 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       3
## # … with 184 more rows, 20 more variables: red <int>, green <int>, blue <int>,
## #   gold <int>, white <lgl>, black <int>, orange <int>, mainhue <chr>,
## #   circles <int>, crosses <int>, saltires <int>, quarters <int>,
## #   sunstars <int>, crescent <int>, triangle <int>, icon <int>, animate <int>,
## #   text <int>, topleft <chr>, botright <chr>, and abbreviated variable names
## #   ¹​landmass, ²​population, ³​language, ⁴​religion
flag_df %>%
 convert(lgl(black))
## # A tibble: 194 × 31
##        X name  landm…¹ zone   area popul…² langu…³ relig…⁴  bars stripes colours
##    <int> <chr> <fct>   <fct> <int>   <int> <fct>   <fct>   <int>   <int>   <int>
##  1     1 Afgh… Asia    NE      648      16 Other   Muslim      0       3       5
##  2     2 Alba… Europe  NE       29       3 Other … Marxist     0       0       3
##  3     3 Alge… Africa  NE     2388      20 Arabic  Muslim      2       0       3
##  4     4 Amer… Oceania SW        0       0 English Other …     0       0       5
##  5     5 Ando… Europe  NE        0       0 Other … Cathol…     3       0       3
##  6     6 Ango… Africa  SE     1247       7 Other   Ethnic      0       2       3
##  7     7 Angu… N Amer… NW        0       0 English Other …     0       1       3
##  8     8 Anti… N Amer… NW        0       0 English Other …     0       1       5
##  9     9 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       2
## 10    10 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       3
## # … with 184 more rows, 20 more variables: red <int>, green <int>, blue <int>,
## #   gold <int>, white <int>, black <lgl>, orange <int>, mainhue <chr>,
## #   circles <int>, crosses <int>, saltires <int>, quarters <int>,
## #   sunstars <int>, crescent <int>, triangle <int>, icon <int>, animate <int>,
## #   text <int>, topleft <chr>, botright <chr>, and abbreviated variable names
## #   ¹​landmass, ²​population, ³​language, ⁴​religion
flag_df %>%
 convert(lgl(orange))
## # A tibble: 194 × 31
##        X name  landm…¹ zone   area popul…² langu…³ relig…⁴  bars stripes colours
##    <int> <chr> <fct>   <fct> <int>   <int> <fct>   <fct>   <int>   <int>   <int>
##  1     1 Afgh… Asia    NE      648      16 Other   Muslim      0       3       5
##  2     2 Alba… Europe  NE       29       3 Other … Marxist     0       0       3
##  3     3 Alge… Africa  NE     2388      20 Arabic  Muslim      2       0       3
##  4     4 Amer… Oceania SW        0       0 English Other …     0       0       5
##  5     5 Ando… Europe  NE        0       0 Other … Cathol…     3       0       3
##  6     6 Ango… Africa  SE     1247       7 Other   Ethnic      0       2       3
##  7     7 Angu… N Amer… NW        0       0 English Other …     0       1       3
##  8     8 Anti… N Amer… NW        0       0 English Other …     0       1       5
##  9     9 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       2
## 10    10 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       3
## # … with 184 more rows, 20 more variables: red <int>, green <int>, blue <int>,
## #   gold <int>, white <int>, black <int>, orange <lgl>, mainhue <chr>,
## #   circles <int>, crosses <int>, saltires <int>, quarters <int>,
## #   sunstars <int>, crescent <int>, triangle <int>, icon <int>, animate <int>,
## #   text <int>, topleft <chr>, botright <chr>, and abbreviated variable names
## #   ¹​landmass, ²​population, ³​language, ⁴​religion
flag_df %>%
 convert(lgl(crescent))
## # A tibble: 194 × 31
##        X name  landm…¹ zone   area popul…² langu…³ relig…⁴  bars stripes colours
##    <int> <chr> <fct>   <fct> <int>   <int> <fct>   <fct>   <int>   <int>   <int>
##  1     1 Afgh… Asia    NE      648      16 Other   Muslim      0       3       5
##  2     2 Alba… Europe  NE       29       3 Other … Marxist     0       0       3
##  3     3 Alge… Africa  NE     2388      20 Arabic  Muslim      2       0       3
##  4     4 Amer… Oceania SW        0       0 English Other …     0       0       5
##  5     5 Ando… Europe  NE        0       0 Other … Cathol…     3       0       3
##  6     6 Ango… Africa  SE     1247       7 Other   Ethnic      0       2       3
##  7     7 Angu… N Amer… NW        0       0 English Other …     0       1       3
##  8     8 Anti… N Amer… NW        0       0 English Other …     0       1       5
##  9     9 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       2
## 10    10 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       3
## # … with 184 more rows, 20 more variables: red <int>, green <int>, blue <int>,
## #   gold <int>, white <int>, black <int>, orange <int>, mainhue <chr>,
## #   circles <int>, crosses <int>, saltires <int>, quarters <int>,
## #   sunstars <int>, crescent <lgl>, triangle <int>, icon <int>, animate <int>,
## #   text <int>, topleft <chr>, botright <chr>, and abbreviated variable names
## #   ¹​landmass, ²​population, ³​language, ⁴​religion
flag_df %>%
 convert(lgl(triangle))
## # A tibble: 194 × 31
##        X name  landm…¹ zone   area popul…² langu…³ relig…⁴  bars stripes colours
##    <int> <chr> <fct>   <fct> <int>   <int> <fct>   <fct>   <int>   <int>   <int>
##  1     1 Afgh… Asia    NE      648      16 Other   Muslim      0       3       5
##  2     2 Alba… Europe  NE       29       3 Other … Marxist     0       0       3
##  3     3 Alge… Africa  NE     2388      20 Arabic  Muslim      2       0       3
##  4     4 Amer… Oceania SW        0       0 English Other …     0       0       5
##  5     5 Ando… Europe  NE        0       0 Other … Cathol…     3       0       3
##  6     6 Ango… Africa  SE     1247       7 Other   Ethnic      0       2       3
##  7     7 Angu… N Amer… NW        0       0 English Other …     0       1       3
##  8     8 Anti… N Amer… NW        0       0 English Other …     0       1       5
##  9     9 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       2
## 10    10 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       3
## # … with 184 more rows, 20 more variables: red <int>, green <int>, blue <int>,
## #   gold <int>, white <int>, black <int>, orange <int>, mainhue <chr>,
## #   circles <int>, crosses <int>, saltires <int>, quarters <int>,
## #   sunstars <int>, crescent <int>, triangle <lgl>, icon <int>, animate <int>,
## #   text <int>, topleft <chr>, botright <chr>, and abbreviated variable names
## #   ¹​landmass, ²​population, ³​language, ⁴​religion
flag_df %>%
 convert(lgl(icon))
## # A tibble: 194 × 31
##        X name  landm…¹ zone   area popul…² langu…³ relig…⁴  bars stripes colours
##    <int> <chr> <fct>   <fct> <int>   <int> <fct>   <fct>   <int>   <int>   <int>
##  1     1 Afgh… Asia    NE      648      16 Other   Muslim      0       3       5
##  2     2 Alba… Europe  NE       29       3 Other … Marxist     0       0       3
##  3     3 Alge… Africa  NE     2388      20 Arabic  Muslim      2       0       3
##  4     4 Amer… Oceania SW        0       0 English Other …     0       0       5
##  5     5 Ando… Europe  NE        0       0 Other … Cathol…     3       0       3
##  6     6 Ango… Africa  SE     1247       7 Other   Ethnic      0       2       3
##  7     7 Angu… N Amer… NW        0       0 English Other …     0       1       3
##  8     8 Anti… N Amer… NW        0       0 English Other …     0       1       5
##  9     9 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       2
## 10    10 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       3
## # … with 184 more rows, 20 more variables: red <int>, green <int>, blue <int>,
## #   gold <int>, white <int>, black <int>, orange <int>, mainhue <chr>,
## #   circles <int>, crosses <int>, saltires <int>, quarters <int>,
## #   sunstars <int>, crescent <int>, triangle <int>, icon <lgl>, animate <int>,
## #   text <int>, topleft <chr>, botright <chr>, and abbreviated variable names
## #   ¹​landmass, ²​population, ³​language, ⁴​religion
flag_df %>%
 convert(lgl(animate))
## # A tibble: 194 × 31
##        X name  landm…¹ zone   area popul…² langu…³ relig…⁴  bars stripes colours
##    <int> <chr> <fct>   <fct> <int>   <int> <fct>   <fct>   <int>   <int>   <int>
##  1     1 Afgh… Asia    NE      648      16 Other   Muslim      0       3       5
##  2     2 Alba… Europe  NE       29       3 Other … Marxist     0       0       3
##  3     3 Alge… Africa  NE     2388      20 Arabic  Muslim      2       0       3
##  4     4 Amer… Oceania SW        0       0 English Other …     0       0       5
##  5     5 Ando… Europe  NE        0       0 Other … Cathol…     3       0       3
##  6     6 Ango… Africa  SE     1247       7 Other   Ethnic      0       2       3
##  7     7 Angu… N Amer… NW        0       0 English Other …     0       1       3
##  8     8 Anti… N Amer… NW        0       0 English Other …     0       1       5
##  9     9 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       2
## 10    10 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       3
## # … with 184 more rows, 20 more variables: red <int>, green <int>, blue <int>,
## #   gold <int>, white <int>, black <int>, orange <int>, mainhue <chr>,
## #   circles <int>, crosses <int>, saltires <int>, quarters <int>,
## #   sunstars <int>, crescent <int>, triangle <int>, icon <int>, animate <lgl>,
## #   text <int>, topleft <chr>, botright <chr>, and abbreviated variable names
## #   ¹​landmass, ²​population, ³​language, ⁴​religion
flag_df %>%
 convert(lgl(text))
## # A tibble: 194 × 31
##        X name  landm…¹ zone   area popul…² langu…³ relig…⁴  bars stripes colours
##    <int> <chr> <fct>   <fct> <int>   <int> <fct>   <fct>   <int>   <int>   <int>
##  1     1 Afgh… Asia    NE      648      16 Other   Muslim      0       3       5
##  2     2 Alba… Europe  NE       29       3 Other … Marxist     0       0       3
##  3     3 Alge… Africa  NE     2388      20 Arabic  Muslim      2       0       3
##  4     4 Amer… Oceania SW        0       0 English Other …     0       0       5
##  5     5 Ando… Europe  NE        0       0 Other … Cathol…     3       0       3
##  6     6 Ango… Africa  SE     1247       7 Other   Ethnic      0       2       3
##  7     7 Angu… N Amer… NW        0       0 English Other …     0       1       3
##  8     8 Anti… N Amer… NW        0       0 English Other …     0       1       5
##  9     9 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       2
## 10    10 Arge… S Amer… SW     2777      28 Spanish Cathol…     0       3       3
## # … with 184 more rows, 20 more variables: red <int>, green <int>, blue <int>,
## #   gold <int>, white <int>, black <int>, orange <int>, mainhue <chr>,
## #   circles <int>, crosses <int>, saltires <int>, quarters <int>,
## #   sunstars <int>, crescent <int>, triangle <int>, icon <int>, animate <int>,
## #   text <lgl>, topleft <chr>, botright <chr>, and abbreviated variable names
## #   ¹​landmass, ²​population, ³​language, ⁴​religion

Now that our data is clean, let’s answer some questions about it!

Data Investigation

  1. Print out how many countries have each “mainhue” category.
# fill in your code here
# black   blue  brown   gold  green orange    red  white 
#     5     40      2     19     31      4     71     22 
table(flag_df$mainhue)
## 
##  black   blue  brown   gold  green orange    red  white 
##      5     40      2     19     31      4     71     22
  1. How many countries have the three colors red, white, and blue in their flags? How many countries have ONLY the three colors red, white, and blue in their flags?
# fill in your code here
# 63 Countries have red, white, and blue in their flags
filter(flag_df, red == T & white == T & blue == T)
##      X                     name  landmass zone area population  language
## 1    4           American-Samoa   Oceania   SW    0          0   English
## 2    8          Antigua-Barbuda N America   NW    0          0   English
## 3   11                Australia   Oceania   SE 7690         15   English
## 4   18                   Belize N America   NW   23          0   English
## 5   20                  Bermuda N America   NW    0          0   English
## 6   25     British-Virgin-Isles N America   NW    0          0   English
## 7   27                 Bulgaria    Europe   NE  111          9    Slavic
## 8   29                    Burma      Asia   NE  678         35     Other
## 9   34           Cayman-Islands N America   NW    0          0   English
## 10  35 Central-African-Republic    Africa   NE  623          2     Other
## 11  37                    Chile S America   SW  757         11   Spanish
## 12  42             Cook-Islands   Oceania   SW    0          0   English
## 13  43               Costa-Rica N America   NW   51          2   Spanish
## 14  44                     Cuba N America   NW  115         10   Spanish
## 15  46           Czechoslovakia    Europe   NE  128         15    Slavic
## 16  48                 Djibouti    Africa   NE   22          0    French
## 17  49                 Dominica N America   NW    0          0   English
## 18  50       Dominican-Republic N America   NW   49          6   Spanish
## 19  54        Equatorial-Guinea    Africa   NE   28          0     Other
## 20  56                  Faeroes    Europe   NW    1          0 Other I-E
## 21  57       Falklands-Malvinas S America   SW   12          0   English
## 22  58                     Fiji   Oceania   SE   18          1   English
## 23  60                   France    Europe   NE  547         54    French
## 24  61            French-Guiana S America   NW   91          0    French
## 25  62         French-Polynesia   Oceania   SW    4          0    French
## 26  64                   Gambia    Africa   NW   10          1   English
## 27  72                     Guam   Oceania   NE    0          0   English
## 28  79                Hong-Kong      Asia   NE    1          5   Chinese
## 29  81                  Iceland    Europe   NW  103          0 Other I-E
## 30  95                 Kiribati   Oceania   NE    0          0   English
## 31  97                     Laos      Asia   NE  236          3     Other
## 32  99                  Lesotho    Africa   SE   30          1     Other
## 33 100                  Liberia    Africa   NW  111          1     Other
## 34 103               Luxembourg    Europe   NE    3          0    German
## 35 106                 Malaysia      Asia   NE  333         13     Other
## 36 117               Montserrat N America   NW    0          0   English
## 37 122              Netherlands    Europe   NE   41         14 Other I-E
## 38 123     Netherlands-Antilles N America   NW    0          0 Other I-E
## 39 124              New-Zealand   Oceania   SE  268          2   English
## 40 128                     Niue   Oceania   SW    0          0   English
## 41 129              North-Korea      Asia   NE  121         18     Other
## 42 131                   Norway    Europe   NE  324          4 Other I-E
## 43 134                   Panama S America   NW   76          2   Spanish
## 44 136                  Parguay S America   SW  407          3   Spanish
## 45 138              Philippines   Oceania   NE  300         48     Other
## 46 140                 Portugal    Europe   NW   92         10 Other I-E
## 47 141              Puerto-Rico N America   NW    9          3   Spanish
## 48 143                  Romania    Europe   NE  237         22 Other I-E
## 49 154             South-Africa    Africa   SE 1221         29 Other I-E
## 50 155              South-Korea      Asia   NE   99         39     Other
## 51 156              South-Yemen      Asia   NE  288          2    Arabic
## 52 159                St-Helena    Africa   SW    0          0   English
## 53 165                Swaziland    Africa   SE   17          1     Other
## 54 169                   Taiwan      Asia   NE   36         18   Chinese
## 55 171                 Thailand      Asia   NE  514         49     Other
## 56 177      Turks-Cocos-Islands N America   NW    0          0   English
## 57 178                   Tuvalu   Oceania   SE    0          0   English
## 58 181                       UK    Europe   NW  245         56   English
## 59 183          US-Virgin-Isles N America   NW    0          0   English
## 60 184                      USA N America   NW 9363        231   English
## 61 188                Venezuela S America   NW  912         15   Spanish
## 62 190            Western-Samoa   Oceania   SW    3          0   English
## 63 191               Yugoslavia    Europe   NE  256         22 Other I-E
##           religion bars stripes colours red green blue gold white black orange
## 1  Other Christian    0       0       5   1     0    1    1     1     0      1
## 2  Other Christian    0       1       5   1     0    1    1     1     1      0
## 3  Other Christian    0       0       3   1     0    1    0     1     0      0
## 4  Other Christian    0       2       8   1     1    1    1     1     1      1
## 5  Other Christian    0       0       6   1     1    1    1     1     1      0
## 6  Other Christian    0       0       6   1     1    1    1     1     0      1
## 7          Marxist    0       3       5   1     1    1    1     1     0      0
## 8         Buddhist    0       0       3   1     0    1    0     1     0      0
## 9  Other Christian    0       0       6   1     1    1    1     1     0      1
## 10          Ethnic    1       0       5   1     1    1    1     1     0      0
## 11        Catholic    0       2       3   1     0    1    0     1     0      0
## 12 Other Christian    0       0       4   1     0    1    0     1     0      0
## 13        Catholic    0       5       3   1     0    1    0     1     0      0
## 14         Marxist    0       5       3   1     0    1    0     1     0      0
## 15         Marxist    0       0       3   1     0    1    0     1     0      0
## 16          Muslim    0       0       4   1     1    1    0     1     0      0
## 17 Other Christian    0       0       6   1     1    1    1     1     1      0
## 18        Catholic    0       0       3   1     0    1    0     1     0      0
## 19          Ethnic    0       3       4   1     1    1    0     1     0      0
## 20 Other Christian    0       0       3   1     0    1    0     1     0      0
## 21 Other Christian    0       0       6   1     1    1    1     1     0      0
## 22 Other Christian    0       0       7   1     1    1    1     1     0      1
## 23        Catholic    3       0       3   1     0    1    0     1     0      0
## 24        Catholic    3       0       3   1     0    1    0     1     0      0
## 25        Catholic    0       3       5   1     0    1    1     1     1      0
## 26          Ethnic    0       5       4   1     1    1    0     1     0      0
## 27 Other Christian    0       0       7   1     1    1    1     1     0      1
## 28        Buddhist    0       0       6   1     1    1    1     1     0      1
## 29 Other Christian    0       0       3   1     0    1    0     1     0      0
## 30 Other Christian    0       0       4   1     0    1    1     1     0      0
## 31         Marxist    0       3       3   1     0    1    0     1     0      0
## 32          Ethnic    2       0       4   1     1    1    0     1     0      0
## 33          Ethnic    0      11       3   1     0    1    0     1     0      0
## 34        Catholic    0       3       3   1     0    1    0     1     0      0
## 35          Muslim    0      14       4   1     0    1    1     1     0      0
## 36 Other Christian    0       0       7   1     1    1    1     1     1      0
## 37 Other Christian    0       3       3   1     0    1    0     1     0      0
## 38 Other Christian    0       1       3   1     0    1    0     1     0      0
## 39 Other Christian    0       0       3   1     0    1    0     1     0      0
## 40 Other Christian    0       0       4   1     0    1    1     1     0      0
## 41         Marxist    0       5       3   1     0    1    0     1     0      0
## 42 Other Christian    0       0       3   1     0    1    0     1     0      0
## 43        Catholic    0       0       3   1     0    1    0     1     0      0
## 44        Catholic    0       3       6   1     1    1    1     1     1      0
## 45        Catholic    0       0       4   1     0    1    1     1     0      0
## 46        Catholic    0       0       5   1     1    1    1     1     0      0
## 47        Catholic    0       5       3   1     0    1    0     1     0      0
## 48         Marxist    3       0       7   1     1    1    1     1     0      1
## 49 Other Christian    0       3       5   1     1    1    0     1     0      1
## 50           Other    0       0       4   1     0    1    0     1     1      0
## 51          Muslim    0       3       4   1     0    1    0     1     1      0
## 52 Other Christian    0       0       7   1     1    1    1     1     0      1
## 53 Other Christian    0       5       7   1     0    1    1     1     1      1
## 54        Buddhist    0       0       3   1     0    1    0     1     0      0
## 55        Buddhist    0       5       3   1     0    1    0     1     0      0
## 56 Other Christian    0       0       6   1     1    1    1     1     0      1
## 57 Other Christian    0       0       5   1     0    1    1     1     0      0
## 58 Other Christian    0       0       3   1     0    1    0     1     0      0
## 59 Other Christian    0       0       6   1     1    1    1     1     0      0
## 60 Other Christian    0      13       3   1     0    1    0     1     0      0
## 61        Catholic    0       3       7   1     1    1    1     1     1      1
## 62 Other Christian    0       0       3   1     0    1    0     1     0      0
## 63         Marxist    0       3       4   1     0    1    1     1     0      0
##    mainhue circles crosses saltires quarters sunstars crescent triangle icon
## 1     blue       0       0        0        0        0        0        1    1
## 2      red       0       0        0        0        1        0        1    0
## 3     blue       0       1        1        1        6        0        0    0
## 4     blue       1       0        0        0        0        0        0    1
## 5      red       1       1        1        1        0        0        0    1
## 6     blue       0       1        1        1        0        0        0    1
## 7      red       0       0        0        0        1        0        0    1
## 8      red       0       0        0        1       14        0        0    1
## 9     blue       1       1        1        1        4        0        0    1
## 10    gold       0       0        0        0        1        0        0    0
## 11     red       0       0        0        1        1        0        0    0
## 12    blue       1       1        1        1       15        0        0    0
## 13    blue       0       0        0        0        0        0        0    0
## 14    blue       0       0        0        0        1        0        1    0
## 15   white       0       0        0        0        0        0        1    0
## 16    blue       0       0        0        0        1        0        1    0
## 17   green       1       0        0        0       10        0        0    0
## 18    blue       0       1        0        0        0        0        0    0
## 19   green       0       0        0        0        0        0        1    0
## 20   white       0       1        0        0        0        0        0    0
## 21    blue       1       1        1        1        0        0        0    1
## 22    blue       0       2        1        1        0        0        0    1
## 23   white       0       0        0        0        0        0        0    0
## 24   white       0       0        0        0        0        0        0    0
## 25     red       1       0        0        0        1        0        0    1
## 26     red       0       0        0        0        0        0        0    0
## 27    blue       0       0        0        0        0        0        0    1
## 28    blue       1       1        1        1        0        0        0    1
## 29    blue       0       1        0        0        0        0        0    0
## 30     red       0       0        0        0        1        0        0    1
## 31     red       1       0        0        0        0        0        0    0
## 32    blue       0       0        0        0        0        0        0    1
## 33     red       0       0        0        1        1        0        0    0
## 34     red       0       0        0        0        0        0        0    0
## 35     red       0       0        0        1        1        1        0    0
## 36    blue       0       2        1        1        0        0        0    1
## 37     red       0       0        0        0        0        0        0    0
## 38   white       0       0        0        0        6        0        0    0
## 39    blue       0       1        1        1        4        0        0    0
## 40    gold       1       1        1        1        5        0        0    0
## 41    blue       1       0        0        0        1        0        0    0
## 42     red       0       1        0        0        0        0        0    0
## 43     red       0       0        0        4        2        0        0    0
## 44     red       1       0        0        0        1        0        0    1
## 45    blue       0       0        0        0        4        0        1    0
## 46     red       1       0        0        0        0        0        0    1
## 47     red       0       0        0        0        1        0        1    0
## 48     red       0       0        0        0        2        0        0    1
## 49  orange       0       1        1        0        0        0        0    0
## 50   white       1       0        0        0        0        0        0    1
## 51     red       0       0        0        0        1        0        1    0
## 52    blue       0       1        1        1        0        0        0    1
## 53    blue       0       0        0        0        0        0        0    1
## 54     red       1       0        0        1        1        0        0    0
## 55     red       0       0        0        0        0        0        0    0
## 56    blue       0       1        1        1        0        0        0    1
## 57    blue       0       1        1        1        9        0        0    0
## 58     red       0       1        1        0        0        0        0    0
## 59   white       0       0        0        0        0        0        0    1
## 60   white       0       0        0        1       50        0        0    0
## 61     red       0       0        0        0        7        0        0    1
## 62     red       0       0        0        1        5        0        0    0
## 63     red       0       0        0        0        1        0        0    0
##    animate text topleft botright
## 1        1    0    blue      red
## 2        0    0   black      red
## 3        0    0   white     blue
## 4        1    1     red      red
## 5        1    0   white      red
## 6        1    1   white     blue
## 7        1    0   white      red
## 8        1    0    blue      red
## 9        1    1   white     blue
## 10       0    0    blue     gold
## 11       0    0    blue      red
## 12       0    0   white     blue
## 13       0    0    blue     blue
## 14       0    0    blue     blue
## 15       0    0   white      red
## 16       0    0   white    green
## 17       1    0   green    green
## 18       0    0    blue     blue
## 19       0    0   green      red
## 20       0    0   white    white
## 21       1    1   white     blue
## 22       1    0   white     blue
## 23       0    0    blue      red
## 24       0    0    blue      red
## 25       0    0     red      red
## 26       0    0     red    green
## 27       1    1     red      red
## 28       1    1   white     blue
## 29       0    0    blue     blue
## 30       1    0     red     blue
## 31       0    0     red      red
## 32       0    0   green     blue
## 33       0    0    blue      red
## 34       0    0     red     blue
## 35       0    0    blue    white
## 36       1    0   white     blue
## 37       0    0     red     blue
## 38       0    0   white    white
## 39       0    0   white     blue
## 40       0    0   white     gold
## 41       0    0    blue     blue
## 42       0    0     red      red
## 43       0    0   white    white
## 44       1    1     red     blue
## 45       0    0    blue      red
## 46       0    0   green      red
## 47       0    0     red      red
## 48       1    1    blue      red
## 49       0    0  orange     blue
## 50       0    0   white    white
## 51       0    0     red    black
## 52       0    0   white     blue
## 53       0    0    blue     blue
## 54       0    0    blue      red
## 55       0    0     red      red
## 56       1    0   white     blue
## 57       0    0   white     blue
## 58       0    0   white      red
## 59       1    1   white    white
## 60       0    0    blue      red
## 61       1    0    gold      red
## 62       0    0    blue      red
## 63       0    0    blue      red
# 27 Countries only have red, white, and blue in their flags
filter(flag_df, red == T & white == T & blue == T & orange == F & black == F & green == F & gold == F)
##      X                 name  landmass zone area population  language
## 1   11            Australia   Oceania   SE 7690         15   English
## 2   29                Burma      Asia   NE  678         35     Other
## 3   37                Chile S America   SW  757         11   Spanish
## 4   42         Cook-Islands   Oceania   SW    0          0   English
## 5   43           Costa-Rica N America   NW   51          2   Spanish
## 6   44                 Cuba N America   NW  115         10   Spanish
## 7   46       Czechoslovakia    Europe   NE  128         15    Slavic
## 8   50   Dominican-Republic N America   NW   49          6   Spanish
## 9   56              Faeroes    Europe   NW    1          0 Other I-E
## 10  60               France    Europe   NE  547         54    French
## 11  61        French-Guiana S America   NW   91          0    French
## 12  81              Iceland    Europe   NW  103          0 Other I-E
## 13  97                 Laos      Asia   NE  236          3     Other
## 14 100              Liberia    Africa   NW  111          1     Other
## 15 103           Luxembourg    Europe   NE    3          0    German
## 16 122          Netherlands    Europe   NE   41         14 Other I-E
## 17 123 Netherlands-Antilles N America   NW    0          0 Other I-E
## 18 124          New-Zealand   Oceania   SE  268          2   English
## 19 129          North-Korea      Asia   NE  121         18     Other
## 20 131               Norway    Europe   NE  324          4 Other I-E
## 21 134               Panama S America   NW   76          2   Spanish
## 22 141          Puerto-Rico N America   NW    9          3   Spanish
## 23 169               Taiwan      Asia   NE   36         18   Chinese
## 24 171             Thailand      Asia   NE  514         49     Other
## 25 181                   UK    Europe   NW  245         56   English
## 26 184                  USA N America   NW 9363        231   English
## 27 190        Western-Samoa   Oceania   SW    3          0   English
##           religion bars stripes colours red green blue gold white black orange
## 1  Other Christian    0       0       3   1     0    1    0     1     0      0
## 2         Buddhist    0       0       3   1     0    1    0     1     0      0
## 3         Catholic    0       2       3   1     0    1    0     1     0      0
## 4  Other Christian    0       0       4   1     0    1    0     1     0      0
## 5         Catholic    0       5       3   1     0    1    0     1     0      0
## 6          Marxist    0       5       3   1     0    1    0     1     0      0
## 7          Marxist    0       0       3   1     0    1    0     1     0      0
## 8         Catholic    0       0       3   1     0    1    0     1     0      0
## 9  Other Christian    0       0       3   1     0    1    0     1     0      0
## 10        Catholic    3       0       3   1     0    1    0     1     0      0
## 11        Catholic    3       0       3   1     0    1    0     1     0      0
## 12 Other Christian    0       0       3   1     0    1    0     1     0      0
## 13         Marxist    0       3       3   1     0    1    0     1     0      0
## 14          Ethnic    0      11       3   1     0    1    0     1     0      0
## 15        Catholic    0       3       3   1     0    1    0     1     0      0
## 16 Other Christian    0       3       3   1     0    1    0     1     0      0
## 17 Other Christian    0       1       3   1     0    1    0     1     0      0
## 18 Other Christian    0       0       3   1     0    1    0     1     0      0
## 19         Marxist    0       5       3   1     0    1    0     1     0      0
## 20 Other Christian    0       0       3   1     0    1    0     1     0      0
## 21        Catholic    0       0       3   1     0    1    0     1     0      0
## 22        Catholic    0       5       3   1     0    1    0     1     0      0
## 23        Buddhist    0       0       3   1     0    1    0     1     0      0
## 24        Buddhist    0       5       3   1     0    1    0     1     0      0
## 25 Other Christian    0       0       3   1     0    1    0     1     0      0
## 26 Other Christian    0      13       3   1     0    1    0     1     0      0
## 27 Other Christian    0       0       3   1     0    1    0     1     0      0
##    mainhue circles crosses saltires quarters sunstars crescent triangle icon
## 1     blue       0       1        1        1        6        0        0    0
## 2      red       0       0        0        1       14        0        0    1
## 3      red       0       0        0        1        1        0        0    0
## 4     blue       1       1        1        1       15        0        0    0
## 5     blue       0       0        0        0        0        0        0    0
## 6     blue       0       0        0        0        1        0        1    0
## 7    white       0       0        0        0        0        0        1    0
## 8     blue       0       1        0        0        0        0        0    0
## 9    white       0       1        0        0        0        0        0    0
## 10   white       0       0        0        0        0        0        0    0
## 11   white       0       0        0        0        0        0        0    0
## 12    blue       0       1        0        0        0        0        0    0
## 13     red       1       0        0        0        0        0        0    0
## 14     red       0       0        0        1        1        0        0    0
## 15     red       0       0        0        0        0        0        0    0
## 16     red       0       0        0        0        0        0        0    0
## 17   white       0       0        0        0        6        0        0    0
## 18    blue       0       1        1        1        4        0        0    0
## 19    blue       1       0        0        0        1        0        0    0
## 20     red       0       1        0        0        0        0        0    0
## 21     red       0       0        0        4        2        0        0    0
## 22     red       0       0        0        0        1        0        1    0
## 23     red       1       0        0        1        1        0        0    0
## 24     red       0       0        0        0        0        0        0    0
## 25     red       0       1        1        0        0        0        0    0
## 26   white       0       0        0        1       50        0        0    0
## 27     red       0       0        0        1        5        0        0    0
##    animate text topleft botright
## 1        0    0   white     blue
## 2        1    0    blue      red
## 3        0    0    blue      red
## 4        0    0   white     blue
## 5        0    0    blue     blue
## 6        0    0    blue     blue
## 7        0    0   white      red
## 8        0    0    blue     blue
## 9        0    0   white    white
## 10       0    0    blue      red
## 11       0    0    blue      red
## 12       0    0    blue     blue
## 13       0    0     red      red
## 14       0    0    blue      red
## 15       0    0     red     blue
## 16       0    0     red     blue
## 17       0    0   white    white
## 18       0    0   white     blue
## 19       0    0    blue     blue
## 20       0    0     red      red
## 21       0    0   white    white
## 22       0    0     red      red
## 23       0    0    blue      red
## 24       0    0     red      red
## 25       0    0   white      red
## 26       0    0    blue      red
## 27       0    0    blue      red
  1. Print out the data observations for the 10 countries with the largest populations. The 10 data observations should be printed out in descending order according to population.
# fill in your code here
flag_df1 <- arrange(flag_df,desc(population))
flag_df1[1:10]
##       X                     name  landmass zone  area population  language
## 1    38                    China      Asia   NE  9561       1008   Chinese
## 2    82                    India      Asia   NE  3268        684 Other I-E
## 3   185                     USSR      Asia   NE 22402        274    Slavic
## 4   184                      USA N America   NW  9363        231   English
## 5    83                Indonesia   Oceania   SE  1904        157     Other
## 6    24                   Brazil S America   SW  8512        119 Other I-E
## 7    91                    Japan      Asia   NE   372        118   J-T-F-M
## 8    15               Bangladesh      Asia   NE   143         90 Other I-E
## 9   133                 Pakistan      Asia   NE   804         84 Other I-E
## 10  113                   Mexico N America   NW  1973         77   Spanish
## 11   66              Germany-FRG    Europe   NE   249         61    German
## 12  189                  Vietnam      Asia   NE   333         60     Other
## 13   88                    Italy    Europe   NE   301         57 Other I-E
## 14  127                  Nigeria    Africa   NE   925         56     Other
## 15  181                       UK    Europe   NW   245         56   English
## 16   60                   France    Europe   NE   547         54    French
## 17  171                 Thailand      Asia   NE   514         49     Other
## 18  138              Philippines   Oceania   NE   300         48     Other
## 19   52                    Egypt    Africa   NE  1001         47    Arabic
## 20  176                   Turkey      Asia   NE   781         45   J-T-F-M
## 21   84                     Iran      Asia   NE  1648         39 Other I-E
## 22  155              South-Korea      Asia   NE    99         39     Other
## 23  157                    Spain    Europe   NW   505         38   Spanish
## 24  139                   Poland    Europe   NE   313         36    Slavic
## 25   29                    Burma      Asia   NE   678         35     Other
## 26   55                 Ethiopia    Africa   NE  1222         31     Other
## 27  154             South-Africa    Africa   SE  1221         29 Other I-E
## 28    9                Argentina S America   SW  2777         28   Spanish
## 29   10                Argentine S America   SW  2777         28   Spanish
## 30   39                 Colombia S America   NW  1139         28   Spanish
## 31  192                    Zaire    Africa   SE   905         28     Other
## 32   32                   Canada N America   NW  9976         24   English
## 33  143                  Romania    Europe   NE   237         22 Other I-E
## 34  191               Yugoslavia    Europe   NE   256         22 Other I-E
## 35    3                  Algeria    Africa   NE  2388         20    Arabic
## 36  118                  Morocco    Africa   NW   447         20    Arabic
## 37  163                    Sudan    Africa   NE  2506         20    Arabic
## 38  129              North-Korea      Asia   NE   121         18     Other
## 39  169                   Taiwan      Asia   NE    36         18   Chinese
## 40  170                 Tanzania    Africa   SE   945         18     Other
## 41   65              Germany-DDR    Europe   NE   108         17    German
## 42   94                    Kenya    Africa   NE   583         17     Other
## 43    1              Afghanistan      Asia   NE   648         16     Other
## 44  121                    Nepal      Asia   NE   140         16     Other
## 45   11                Australia   Oceania   SE  7690         15   English
## 46   46           Czechoslovakia    Europe   NE   128         15    Slavic
## 47  158                Sri-Lanka      Asia   NE    66         15     Other
## 48  188                Venezuela S America   NW   912         15   Spanish
## 49   67                    Ghana    Africa   NW   239         14   English
## 50   85                     Iraq      Asia   NE   435         14    Arabic
## 51  122              Netherlands    Europe   NE    41         14 Other I-E
## 52  137                     Peru S America   SW  1285         14   Spanish
## 53  106                 Malaysia      Asia   NE   333         13     Other
## 54  180                   Uganda    Africa   NE   236         13     Other
## 55  119               Mozambique    Africa   SE   783         12     Other
## 56   37                    Chile S America   SW   757         11   Spanish
## 57   80                  Hungary    Europe   NE    93         11   J-T-F-M
## 58   17                  Belgium    Europe   NE    31         10 Other I-E
## 59   44                     Cuba N America   NW   115         10   Spanish
## 60   69                   Greece    Europe   NE   132         10 Other I-E
## 61  140                 Portugal    Europe   NW    92         10 Other I-E
## 62  168                    Syria      Asia   NE   185         10    Arabic
## 63   27                 Bulgaria    Europe   NE   111          9    Slavic
## 64  104                 Malagasy    Africa   SE   587          9     Other
## 65  130              North-Yemen      Asia   NE   195          9    Arabic
## 66  147             Saudi-Arabia      Asia   NE  2150          9    Arabic
## 67   12                  Austria    Europe   NE    84          8    German
## 68   31                 Cameroon    Africa   NE   474          8    French
## 69   51                  Ecuador S America   SW   284          8   Spanish
## 70   73                Guatemala N America   NW   109          8   Spanish
## 71  166                   Sweden    Europe   NE   450          8 Other I-E
## 72  194                 Zimbabwe    Africa   SE   391          8     Other
## 73    6                   Angola    Africa   SE  1247          7     Other
## 74   28                  Burkina    Africa   NW   274          7    French
## 75   89              Ivory-Coast    Africa   NW   323          7    French
## 76  108                     Mali    Africa   NW  1240          7    French
## 77  175                  Tunisia    Africa   NE   164          7    Arabic
## 78   22                  Bolivia S America   SW  1099          6   Spanish
## 79   50       Dominican-Republic N America   NW    49          6   Spanish
## 80   74                   Guinea    Africa   NW   246          6    French
## 81   77                    Haiti N America   NW    28          6    French
## 82   93                Kampuchea      Asia   NE   181          6     Other
## 83  105                   Malawi    Africa   SE   118          6     Other
## 84  148                  Senegal    Africa   NW   196          6    French
## 85  167              Switzerland    Europe   NE    41          6    German
## 86  193                   Zambia    Africa   SE   753          6     Other
## 87   47                  Denmark    Europe   NE    43          5 Other I-E
## 88   53              El-Salvador N America   NW    21          5   Spanish
## 89   59                  Finland    Europe   NE   337          5   J-T-F-M
## 90   79                Hong-Kong      Asia   NE     1          5   Chinese
## 91  126                    Niger    Africa   NE  1267          5    French
## 92  144                   Rwanda    Africa   SE    26          5     Other
## 93  153                  Somalia    Africa   NE   637          5     Other
## 94   30                  Burundi    Africa   SE    28          4     Other
## 95   36                     Chad    Africa   NE  1284          4    French
## 96   78                 Honduras N America   NW   112          4   Spanish
## 97   87                   Israel      Asia   NE    21          4     Other
## 98  131                   Norway    Europe   NE   324          4 Other I-E
## 99    2                  Albania    Europe   NE    29          3 Other I-E
## 100  19                    Benin    Africa   NE   113          3    French
## 101  86                  Ireland    Europe   NW    70          3   English
## 102  97                     Laos      Asia   NE   236          3     Other
## 103  98                  Lebanon      Asia   NE    10          3    Arabic
## 104 101                    Libya    Africa   NE  1760          3    Arabic
## 105 125                Nicaragua N America   NW   128          3   Spanish
## 106 135         Papua-New-Guinea   Oceania   SE   463          3   English
## 107 136                  Parguay S America   SW   407          3   Spanish
## 108 141              Puerto-Rico N America   NW     9          3   Spanish
## 109 150             Sierra-Leone    Africa   NW    72          3   English
## 110 151                Singapore      Asia   NE     1          3   Chinese
## 111 182                  Uruguay S America   SW   178          3   Spanish
## 112  35 Central-African-Republic    Africa   NE   623          2     Other
## 113  41                    Congo    Africa   SE   342          2     Other
## 114  43               Costa-Rica N America   NW    51          2   Spanish
## 115  90                  Jamaica N America   NW    11          2   English
## 116  92                   Jordan      Asia   NE    98          2    Arabic
## 117  96                   Kuwait      Asia   NE    18          2    Arabic
## 118 111               Mauritania    Africa   NW  1031          2    Arabic
## 119 116                 Mongolia      Asia   NE  1566          2     Other
## 120 124              New-Zealand   Oceania   SE   268          2   English
## 121 134                   Panama S America   NW    76          2   Spanish
## 122 156              South-Yemen      Asia   NE   288          2    Arabic
## 123 172                     Togo    Africa   NE    57          2    French
## 124  21                   Bhutan      Asia   NE    47          1     Other
## 125  23                 Botswana    Africa   SE   600          1     Other
## 126  45                   Cyprus    Europe   NE     9          1 Other I-E
## 127  58                     Fiji   Oceania   SE    18          1   English
## 128  63                    Gabon    Africa   SE   268          1     Other
## 129  64                   Gambia    Africa   NW    10          1   English
## 130  75            Guinea-Bissau    Africa   NW    36          1 Other I-E
## 131  76                   Guyana S America   NW   215          1   English
## 132  99                  Lesotho    Africa   SE    30          1     Other
## 133 100                  Liberia    Africa   NW   111          1     Other
## 134 112                Mauritius    Africa   SE     2          1   English
## 135 132                     Oman      Asia   NE   212          1    Arabic
## 136 165                Swaziland    Africa   SE    17          1     Other
## 137 174          Trinidad-Tobago S America   NW     5          1   English
## 138 179                      UAE      Asia   NE    84          1    Arabic
## 139   4           American-Samoa   Oceania   SW     0          0   English
## 140   5                  Andorra    Europe   NE     0          0 Other I-E
## 141   7                 Anguilla N America   NW     0          0   English
## 142   8          Antigua-Barbuda N America   NW     0          0   English
## 143  13                  Bahamas N America   NW    19          0   English
## 144  14                  Bahrain      Asia   NE     1          0    Arabic
## 145  16                 Barbados N America   NW     0          0   English
## 146  18                   Belize N America   NW    23          0   English
## 147  20                  Bermuda N America   NW     0          0   English
## 148  25     British-Virgin-Isles N America   NW     0          0   English
## 149  26                   Brunei      Asia   NE     6          0     Other
## 150  33       Cape-Verde-Islands    Africa   NW     4          0 Other I-E
## 151  34           Cayman-Islands N America   NW     0          0   English
## 152  40          Comorro-Islands    Africa   SE     2          0    French
## 153  42             Cook-Islands   Oceania   SW     0          0   English
## 154  48                 Djibouti    Africa   NE    22          0    French
## 155  49                 Dominica N America   NW     0          0   English
## 156  54        Equatorial-Guinea    Africa   NE    28          0     Other
## 157  56                  Faeroes    Europe   NW     1          0 Other I-E
## 158  57       Falklands-Malvinas S America   SW    12          0   English
## 159  61            French-Guiana S America   NW    91          0    French
## 160  62         French-Polynesia   Oceania   SW     4          0    French
## 161  68                Gibraltar    Europe   NW     0          0   English
## 162  70                Greenland N America   NW  2176          0 Other I-E
## 163  71                  Grenada N America   NW     0          0   English
## 164  72                     Guam   Oceania   NE     0          0   English
## 165  81                  Iceland    Europe   NW   103          0 Other I-E
## 166  95                 Kiribati   Oceania   NE     0          0   English
## 167 102            Liechtenstein    Europe   NE     0          0    German
## 168 103               Luxembourg    Europe   NE     3          0    German
## 169 107          Maldive-Islands      Asia   NE     0          0     Other
## 170 109                    Malta    Europe   NE     0          0     Other
## 171 110                 Marianas   Oceania   NE     0          0     Other
## 172 114               Micronesia   Oceania   NE     1          0     Other
## 173 115                   Monaco    Europe   NE     0          0    French
## 174 117               Montserrat N America   NW     0          0   English
## 175 120                    Nauru   Oceania   SE     0          0     Other
## 176 123     Netherlands-Antilles N America   NW     0          0 Other I-E
## 177 128                     Niue   Oceania   SW     0          0   English
## 178 142                    Qatar      Asia   NE    11          0    Arabic
## 179 145               San-Marino    Europe   NE     0          0 Other I-E
## 180 146                 Sao-Tome    Africa   NE     0          0 Other I-E
## 181 149               Seychelles    Africa   SE     0          0   English
## 182 152          Soloman-Islands   Oceania   SE    30          0   English
## 183 159                St-Helena    Africa   SW     0          0   English
## 184 160           St-Kitts-Nevis N America   NW     0          0   English
## 185 161                 St-Lucia N America   NW     0          0   English
## 186 162               St-Vincent N America   NW     0          0   English
## 187 164                  Surinam S America   NW    63          0 Other I-E
## 188 173                    Tonga   Oceania   SE     1          0     Other
## 189 177      Turks-Cocos-Islands N America   NW     0          0   English
## 190 178                   Tuvalu   Oceania   SE     0          0   English
## 191 183          US-Virgin-Isles N America   NW     0          0   English
## 192 186                  Vanuatu   Oceania   SE    15          0 Other I-E
## 193 187             Vatican-City    Europe   NE     0          0 Other I-E
## 194 190            Western-Samoa   Oceania   SW     3          0   English
##            religion bars stripes
## 1           Marxist    0       0
## 2             Hindu    0       3
## 3           Marxist    0       0
## 4   Other Christian    0      13
## 5            Muslim    0       2
## 6          Catholic    0       0
## 7             Other    0       0
## 8            Muslim    0       0
## 9            Muslim    1       0
## 10         Catholic    3       0
## 11  Other Christian    0       3
## 12          Marxist    0       0
## 13         Catholic    3       0
## 14           Muslim    3       0
## 15  Other Christian    0       0
## 16         Catholic    3       0
## 17         Buddhist    0       5
## 18         Catholic    0       0
## 19           Muslim    0       3
## 20           Muslim    0       0
## 21           Muslim    0       3
## 22            Other    0       0
## 23         Catholic    0       3
## 24          Marxist    0       2
## 25         Buddhist    0       0
## 26  Other Christian    0       3
## 27  Other Christian    0       3
## 28         Catholic    0       3
## 29         Catholic    0       3
## 30         Catholic    0       3
## 31           Ethnic    0       0
## 32  Other Christian    2       0
## 33          Marxist    3       0
## 34          Marxist    0       3
## 35           Muslim    2       0
## 36           Muslim    0       0
## 37           Muslim    0       3
## 38          Marxist    0       5
## 39         Buddhist    0       0
## 40           Ethnic    0       0
## 41          Marxist    0       3
## 42           Ethnic    0       5
## 43           Muslim    0       3
## 44            Hindu    0       0
## 45  Other Christian    0       0
## 46          Marxist    0       0
## 47         Buddhist    2       0
## 48         Catholic    0       3
## 49           Ethnic    0       3
## 50           Muslim    0       3
## 51  Other Christian    0       3
## 52         Catholic    3       0
## 53           Muslim    0      14
## 54           Ethnic    0       6
## 55           Ethnic    0       5
## 56         Catholic    0       2
## 57          Marxist    0       3
## 58         Catholic    3       0
## 59          Marxist    0       5
## 60  Other Christian    0       9
## 61         Catholic    0       0
## 62           Muslim    0       3
## 63          Marxist    0       3
## 64  Other Christian    1       2
## 65           Muslim    0       3
## 66           Muslim    0       0
## 67         Catholic    0       3
## 68  Other Christian    3       0
## 69         Catholic    0       3
## 70         Catholic    3       0
## 71  Other Christian    0       0
## 72           Ethnic    0       7
## 73           Ethnic    0       2
## 74           Ethnic    0       2
## 75           Ethnic    3       0
## 76           Muslim    3       0
## 77           Muslim    0       0
## 78         Catholic    0       3
## 79         Catholic    0       0
## 80           Muslim    3       0
## 81         Catholic    2       0
## 82         Buddhist    0       0
## 83           Ethnic    0       3
## 84           Muslim    3       0
## 85  Other Christian    0       0
## 86           Ethnic    3       0
## 87  Other Christian    0       0
## 88         Catholic    0       3
## 89  Other Christian    0       0
## 90         Buddhist    0       0
## 91           Muslim    0       3
## 92           Ethnic    3       0
## 93           Muslim    0       0
## 94           Ethnic    0       0
## 95           Ethnic    3       0
## 96         Catholic    0       3
## 97            Other    0       2
## 98  Other Christian    0       0
## 99          Marxist    0       0
## 100          Ethnic    0       0
## 101        Catholic    3       0
## 102         Marxist    0       3
## 103          Muslim    0       2
## 104          Muslim    0       0
## 105        Catholic    0       3
## 106          Ethnic    0       0
## 107        Catholic    0       3
## 108        Catholic    0       5
## 109          Ethnic    0       3
## 110        Buddhist    0       2
## 111        Catholic    0       9
## 112          Ethnic    1       0
## 113          Ethnic    0       0
## 114        Catholic    0       5
## 115 Other Christian    0       0
## 116          Muslim    0       3
## 117          Muslim    0       3
## 118          Muslim    0       0
## 119         Marxist    3       0
## 120 Other Christian    0       0
## 121        Catholic    0       0
## 122          Muslim    0       3
## 123           Other    0       5
## 124        Buddhist    0       0
## 125          Ethnic    0       5
## 126 Other Christian    0       0
## 127 Other Christian    0       0
## 128          Ethnic    0       3
## 129          Ethnic    0       5
## 130          Ethnic    1       2
## 131           Hindu    0       0
## 132          Ethnic    2       0
## 133          Ethnic    0      11
## 134           Hindu    0       4
## 135          Muslim    0       2
## 136 Other Christian    0       5
## 137 Other Christian    0       0
## 138          Muslim    1       3
## 139 Other Christian    0       0
## 140        Catholic    3       0
## 141 Other Christian    0       1
## 142 Other Christian    0       1
## 143 Other Christian    0       3
## 144          Muslim    0       0
## 145 Other Christian    3       0
## 146 Other Christian    0       2
## 147 Other Christian    0       0
## 148 Other Christian    0       0
## 149          Muslim    0       0
## 150        Catholic    1       2
## 151 Other Christian    0       0
## 152          Muslim    0       0
## 153 Other Christian    0       0
## 154          Muslim    0       0
## 155 Other Christian    0       0
## 156          Ethnic    0       3
## 157 Other Christian    0       0
## 158 Other Christian    0       0
## 159        Catholic    3       0
## 160        Catholic    0       3
## 161 Other Christian    0       1
## 162 Other Christian    0       0
## 163 Other Christian    0       0
## 164 Other Christian    0       0
## 165 Other Christian    0       0
## 166 Other Christian    0       0
## 167        Catholic    0       2
## 168        Catholic    0       3
## 169          Muslim    0       0
## 170        Catholic    2       0
## 171 Other Christian    0       0
## 172 Other Christian    0       0
## 173        Catholic    0       2
## 174 Other Christian    0       0
## 175 Other Christian    0       3
## 176 Other Christian    0       1
## 177 Other Christian    0       0
## 178          Muslim    0       0
## 179        Catholic    0       2
## 180        Catholic    0       3
## 181 Other Christian    0       0
## 182 Other Christian    0       0
## 183 Other Christian    0       0
## 184 Other Christian    0       0
## 185 Other Christian    0       0
## 186 Other Christian    5       0
## 187 Other Christian    0       5
## 188 Other Christian    0       0
## 189 Other Christian    0       0
## 190 Other Christian    0       0
## 191 Other Christian    0       0
## 192 Other Christian    0       0
## 193        Catholic    2       0
## 194 Other Christian    0       0

Let’s see if we can find any patterns in the data.

  1. Group the flags by landmass and find the following for each group:

Your output should be a data frame with each row corresponding to a group. There will be five columns.

Repeat this process except group by zone, language, and religion.

#This code suggested by Professor Iapalucci to ensure the landmass column is factor.  It worked. 

flag_df <- mutate_at(flag_df, vars(landmass), as.factor)
str(flag_df)
## 'data.frame':    194 obs. of  31 variables:
##  $ X         : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ name      : chr  "Afghanistan" "Albania" "Algeria" "American-Samoa" ...
##  $ landmass  : Factor w/ 6 levels "N America","S America",..: 5 3 4 6 3 4 1 1 2 2 ...
##  $ zone      : Factor w/ 4 levels "NE","NW","SE",..: 1 1 1 4 1 3 2 2 4 4 ...
##  $ area      : int  648 29 2388 0 0 1247 0 0 2777 2777 ...
##  $ population: int  16 3 20 0 0 7 0 0 28 28 ...
##  $ language  : Factor w/ 10 levels "English","Spanish",..: 10 6 8 1 6 10 1 1 2 2 ...
##  $ religion  : Factor w/ 8 levels "Catholic","Other Christian",..: 3 7 3 2 1 6 2 2 1 1 ...
##  $ bars      : int  0 0 2 0 3 0 0 0 0 0 ...
##  $ stripes   : int  3 0 0 0 0 2 1 1 3 3 ...
##  $ colours   : int  5 3 3 5 3 3 3 5 2 3 ...
##  $ red       : int  1 1 1 1 1 1 0 1 0 0 ...
##  $ green     : int  1 0 1 0 0 0 0 0 0 0 ...
##  $ blue      : int  0 0 0 1 1 0 1 1 1 1 ...
##  $ gold      : int  1 1 0 1 1 1 0 1 0 1 ...
##  $ white     : int  1 0 1 1 0 0 1 1 1 1 ...
##  $ black     : int  1 1 0 0 0 1 0 1 0 0 ...
##  $ orange    : int  0 0 0 1 0 0 1 0 0 0 ...
##  $ mainhue   : chr  "green" "red" "green" "blue" ...
##  $ circles   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ crosses   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ saltires  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ quarters  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ sunstars  : int  1 1 1 0 0 1 0 1 0 1 ...
##  $ crescent  : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ triangle  : int  0 0 0 1 0 0 0 1 0 0 ...
##  $ icon      : int  1 0 0 1 0 1 0 0 0 0 ...
##  $ animate   : int  0 1 0 1 0 0 1 0 0 0 ...
##  $ text      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ topleft   : chr  "black" "red" "green" "blue" ...
##  $ botright  : chr  "green" "red" "white" "red" ...
# fill in your code here
#This chunk calculates the median # of flags w/ sunstars for each of the 6 land masses in the landmass column.Asia has a median of 1; Oceania has a median of 2.5. The other continents have medians of zero. 
flag_df_landmass <- group_by(flag_df, landmass)
flag_df_landmass %>%
        summarise(median = median(sunstars)) 
## # A tibble: 6 × 2
##   landmass  median
##   <fct>      <dbl>
## 1 N America    0  
## 2 S America    0  
## 3 Europe       0  
## 4 Africa       0  
## 5 Asia         1  
## 6 Oceania      2.5
#Use this chunk to create a separate data file for landmass North America.  Use this to calculate the mode & the # of 
# flags w/ Animate for the North American landmass. I can't figure out the code to make it work w/ the group_by file. 
### In the North America group, there are 13 sunstars (41.9% of the total in North America); blue is the mode.
lm_NA <- filter(flag_df, landmass == 'N America')
which.max(table(lm_NA$mainhue)) %>% names()
## [1] "blue"
table(lm_NA$animate)
## 
##  0  1 
## 18 13
13/31
## [1] 0.4193548
#This code was run to check the calculation of the mode. The count of Blue in this table matched the calculated 
#mode in a prior step. 
table(lm_NA$mainhue)
## 
## black  blue  gold green   red white 
##     1    15     1     5     4     5
#Use this chunk to create a separate data file for landmass South America.  Use this to calculate the mode & the # of 
# flags w/ Animate for the South American landmass.
#The mode color for flags in the South American landmass is red. 3 of the 17 (17.6%) flags in S. America have Animate.
lm_SA <- filter(flag_df, landmass == 'S America')
which.max(table(lm_SA$mainhue)) %>% names()
## [1] "red"
table(lm_SA$animate)
## 
##  0  1 
## 14  3
3/17
## [1] 0.1764706
#Use this chunk to create a separate data file for landmass Europe.  Use this to calculate the mode & the # of 
# flags w/ Animate for the European landmass.
#The mode color for flags in the European landmass is red. 4 of the 35 (11.4%) flags in Europe have Animate.
lm_E <- filter(flag_df, landmass == 'Europe')
which.max(table(lm_E$mainhue)) %>% names()
## [1] "red"
table(lm_E$animate)
## 
##  0  1 
## 31  4
4/35
## [1] 0.1142857
#Use this chunk to create a separate data file for landmass Africa.  Use this to calculate the mode & the # of 
# flags w/ Animate for the African landmass.
#The mode color for flags in the African landmass is green. 7 of the 52 (13.5%) flags in Africa have Animate.
lm_AF <- filter(flag_df, landmass == 'Africa')
which.max(table(lm_AF$mainhue)) %>% names()
## [1] "green"
table(lm_AF$animate)
## 
##  0  1 
## 45  7
7/52
## [1] 0.1346154
#Use this chunk to create a separate data file for landmass Asia.  Use this to calculate the mode & the # of 
# flags w/ Animate for the Asian landmass.
#The mode color for flags in the Asian landmass is red. 6 of the 39 (15.3%) flags in Asia have Animate.
lm_AS <- filter(flag_df, landmass == 'Asia')
which.max(table(lm_AS$mainhue)) %>% names()
## [1] "red"
table(lm_AS$animate)
## 
##  0  1 
## 33  6
6/39
## [1] 0.1538462
#Use this chunk to create a separate data file for landmass Oceania.  Use this to calculate the mode & the # of 
# flags w/ Animate for the Oceanian landmass.
#The mode color for flags in the Ocenian landmass is blue. 6 of the 20 (30%) flags in Oceania have Animate.
lm_OC <- filter(flag_df, landmass == 'Oceania')
which.max(table(lm_OC$mainhue)) %>% names()
## [1] "blue"
table(lm_OC$animate)
## 
##  0  1 
## 14  6
6/20
## [1] 0.3
# fill in your code here
#This chunk calculates the median # of flags w/ sunstars for each of the 4 zones in the zone column.SW has a median of 1. The other zones have medians of zero. 
flag_df_zone <- group_by(flag_df, zone)
flag_df_zone %>%
        summarise(median = median(sunstars)) 
## # A tibble: 4 × 2
##   zone  median
##   <fct>  <dbl>
## 1 NE         0
## 2 NW         0
## 3 SE         0
## 4 SW         1
#Use this chunk to create a separate data file for Zone NE.  Use this to calculate the mode & the # of 
# flags w/ Animate for the NE zone.   In the NE zone, there are 14 flags with Animate (15.4%) of the total in the NE Zone; red is the mode.

zone_NE <- filter(flag_df, zone == 'NE')
which.max(table(zone_NE$mainhue)) %>% names()
## [1] "red"
table(zone_NE$animate)
## 
##  0  1 
## 77 14
14/91
## [1] 0.1538462
#Use this chunk to create a separate data file for Zone SE.  Use this to calculate the mode & the # of 
# flags w/ Animate for the SE zone.   In the SE zone, there are 7 flags with Animate (24.1%) of the total in the SE Zone; red is the mode.

zone_SE <- filter(flag_df, zone == 'SE')
which.max(table(zone_SE$mainhue)) %>% names()
## [1] "red"
table(zone_SE$animate)
## 
##  0  1 
## 22  7
7/29
## [1] 0.2413793
#Use this chunk to create a separate data file for Zone SW.  Use this to calculate the mode & the # of 
# flags w/ Animate for the SW zone.   In the SW zone, there are 3 flags with Animate (18.75%) of the total in the SW Zone; blue is the mode.

zone_SW <- filter(flag_df, zone == 'SW')
which.max(table(zone_SW$mainhue)) %>% names()
## [1] "blue"
table(zone_SW$animate)
## 
##  0  1 
## 13  3
3/16
## [1] 0.1875
#Use this chunk to create a separate data file for Zone NW.  Use this to calculate the mode & the # of 
# flags w/ Animate for the NW zone.   In the NW zone, there are 3 flags with Animate (25.9%) of the total in the NW Zone; blue is the mode.

zone_NW <- filter(flag_df, zone == 'NW')
which.max(table(zone_NW$mainhue)) %>% names()
## [1] "blue"
table(zone_NW$animate)
## 
##  0  1 
## 43 15
15/58
## [1] 0.2586207
# fill in your code here
#This chunk calculates the median # of flags w/ sunstars for each of the 10 language groups in the language column. Chinese has a median of 3. Slavic and the Japanese/Turkish/Finnish/Magyar group have medians of 0.5. The other languages have medians of zero. 
flag_df_lang <- group_by(flag_df, language)
flag_df_lang %>%
        summarise(median = median(sunstars)) 
## # A tibble: 10 × 2
##    language  median
##    <fct>      <dbl>
##  1 English      0  
##  2 Spanish      0  
##  3 French       0  
##  4 German       0  
##  5 Slavic       0.5
##  6 Other I-E    0  
##  7 Chinese      3  
##  8 Arabic       0  
##  9 J-T-F-M      0.5
## 10 Other        0
#Use this chunk to create a separate data file for the English language.  Use this to calculate the mode & the # of 
# flags w/ Animate for the English language countries.   In the English language countries, there are 18 flags with Animate (41.9%) of the total in the English language countries; blue is the mode.

lang_Eng <- filter(flag_df, language == 'English')
which.max(table(lang_Eng$mainhue)) %>% names()
## [1] "blue"
table(lang_Eng$animate)
## 
##  0  1 
## 25 18
18/43
## [1] 0.4186047
#Use this chunk to create a separate data file for the Spansh language.  Use this to calculate the mode & the # of 
# flags w/ Animate for the Spanish language countries.   In the Spanish language countries, there are 3 flags with Animate (14.2%) of the total in the Spanish language countries; blue is the mode.

lang_Spa <- filter(flag_df, language == 'Spanish')
which.max(table(lang_Spa$mainhue)) %>% names()
## [1] "blue"
table(lang_Spa$animate)
## 
##  0  1 
## 18  3
3/21
## [1] 0.1428571
#Use this chunk to create a separate data file for the French language.  Use this to calculate the mode & the # of 
# flags w/ Animate for the Francophone countries.   In the Francophone countries, there are no flags with Animate; gold is the mode.

lang_FRA <- filter(flag_df, language == 'French')
which.max(table(lang_FRA$mainhue)) %>% names()
## [1] "gold"
table(lang_FRA$animate)
## 
##  0 
## 17
#Use this chunk to create a separate data file for the German language.  Use this to calculate the mode & the # of 
# flags w/ Animate for the German language countries.   In the German language countries, there are no flags with Animate; red is the mode.

lang_GER <- filter(flag_df, language == 'German')
which.max(table(lang_GER$mainhue)) %>% names()
## [1] "red"
table(lang_GER$animate)
## 
## 0 
## 6
#Use this chunk to create a separate data file for the Slavic language countries.  Use this to calculate the mode & the # of flags w/ Animate for the Slavic language countries.   In the Slavic language countries, there is 1 flag with Animate (25%) of the total in the Slavic language countries; red is the mode.

lang_SLA <- filter(flag_df, language == 'Slavic')
which.max(table(lang_SLA$mainhue)) %>% names()
## [1] "red"
table(lang_SLA$animate)
## 
## 0 1 
## 3 1
1/4
## [1] 0.25
#Use this chunk to create a separate data file for the Other Indo-European language countries.  Use this to calculate the mode & the # of flags w/ Animate for the other Indo-European language countries.   In the Other Indo-European language countries, there are 5 flags with Animate (16.67%) of the total in the Other Indo-European language countries; red is the mode.

lang_OIE <- filter(flag_df, language == 'Other I-E')
which.max(table(lang_OIE$mainhue)) %>% names()
## [1] "red"
table(lang_OIE$animate)
## 
##  0  1 
## 25  5
5/30
## [1] 0.1666667
#Use this chunk to create a separate data file for the Chinese language countries.  Use this to calculate the mode & the # of flags w/ Animate for the Chinese language countries.   In the Chinese language countries, there is 1 flag with Animate (25%) of the total in the Chinese language countries; red is the mode.

lang_CHI <- filter(flag_df, language == 'Chinese')
which.max(table(lang_CHI$mainhue)) %>% names()
## [1] "red"
table(lang_CHI$animate)
## 
## 0 1 
## 3 1
1/4
## [1] 0.25
#Use this chunk to create a separate data file for the Arabic language countries.  Use this to calculate the mode & the # of flags w/ Animate for the Arabic language countries.   In the  Arabic language countries, there are 2 flags with Animate (10.5%) of the total in the Arabic  language countries; red is the mode.

lang_ARA <- filter(flag_df, language == 'Arabic')
which.max(table(lang_ARA$mainhue)) %>% names()
## [1] "red"
table(lang_ARA$animate)
## 
##  0  1 
## 17  2
2/19
## [1] 0.1052632
#Use this chunk to create a separate data file for the Japanese/Turkish/Finnish/Magyar (J/T/F/M) language countries.  Use this to calculate the mode & the # of flags w/ Animate for the J/T/F/M language countries.   In the  J/T/F/M language countries, there are zero flags with Animate; red is the mode.

lang_JTFM <- filter(flag_df, language == 'J-T-F-M')
which.max(table(lang_JTFM$mainhue)) %>% names()
## [1] "red"
table(lang_JTFM$animate)
## 
## 0 
## 4
#Use this chunk to create a separate data file for the Other language countries.  Use this to calculate the mode & the # of flags w/ Animate for the Other language countries.   In the Other language countries, there are 9 out of 46 (19.6%) flags with Animate; red is the mode.

lang_OTH <- filter(flag_df, language == 'Other')
which.max(table(lang_OTH$mainhue)) %>% names()
## [1] "red"
table(lang_OTH$animate)
## 
##  0  1 
## 37  9
9/46
## [1] 0.1956522
# fill in your code here
#This chunk calculates the median # of flags w/ sunstars for each of the 7 religions in the religion column.Marxism and Other have medians of 1; the other continents have medians of zero. 
flag_df_religion <- group_by(flag_df, religion)
flag_df_religion %>%
        summarise(median = median(sunstars)) 
## # A tibble: 8 × 2
##   religion        median
##   <fct>            <dbl>
## 1 Catholic             0
## 2 Other Christian      0
## 3 Muslim               0
## 4 Buddhist             0
## 5 Hindu                0
## 6 Ethnic               0
## 7 Marxist              1
## 8 Other                1
#Use this chunk to create a separate data file for religion - Catholic.  Use this to calculate the mode & the # of 
# flags w/ Animate for the Catholic countries. I can't figure out the code to make it work w/ the group_by file. In the Catholic group, there are 4 of 40 countries (10%) with Animate; red is the mode.

rel_RC <- filter(flag_df, religion  == 'Catholic')
which.max(table(rel_RC$mainhue)) %>% names()
## [1] "red"
table(rel_RC$animate)
## 
##  0  1 
## 36  4
4/40
## [1] 0.1
#Use this chunk to create a separate data file for religion - Other Christian.  Use this to calculate the mode & the # of # flags w/ Animate for the Other Christian countries.  In the Other Christian group of countries, there are 19 of 60 countries (31.67%) with Animate; blue is the mode.

rel_OC <- filter(flag_df, religion  == 'Other Christian')
which.max(table(rel_OC$mainhue)) %>% names()
## [1] "blue"
table(rel_OC$animate)
## 
##  0  1 
## 41 19
19/60
## [1] 0.3166667
#Use this chunk to create a separate data file for religion - Muslim.  Use this to calculate the mode & the # of # flags w/ Animate for the Muslim countries.  In the Muslim group of countries, there are 3 of36 countries (8.33%) with Animate; red is the mode.

rel_MU <- filter(flag_df, religion  == 'Muslim')
which.max(table(rel_MU$mainhue)) %>% names()
## [1] "red"
table(rel_MU$animate)
## 
##  0  1 
## 33  3
3/36
## [1] 0.08333333
#Use this chunk to create a separate data file for religion - Buddhist.  Use this to calculate the mode & the # of # flags w/ Animate for the Buddhist countries.  In the Buddhist group of countries, there are 4 of8 countries (50%) with Animate; red is the mode.

rel_BU <- filter(flag_df, religion  == 'Buddhist')
which.max(table(rel_BU$mainhue)) %>% names()
## [1] "red"
table(rel_BU$animate)
## 
## 0 1 
## 4 4
4/8
## [1] 0.5
#Use this chunk to create a separate data file for religion - Hindu.  Use this to calculate the mode & the # of # flags w/ Animate for the Hindu countries.  In the Hindu group of countries, there no countries  with Animate; brown is the mode.

rel_HI <- filter(flag_df, religion  == 'Hindu')
which.max(table(rel_HI$mainhue)) %>% names()
## [1] "brown"
table(rel_HI$animate)
## 
## 0 
## 4
#Use this chunk to create a separate data file for religion - Ethnic.  Use this to calculate the mode & the # of # flags w/ Animate for the Ethnic religion countries.  In the  Ethnic religion group of countries, there are 6  countries (22.2%)  with Animate; red is the mode.

rel_ET <- filter(flag_df, religion  == 'Ethnic')
which.max(table(rel_ET$mainhue)) %>% names()
## [1] "red"
table(rel_ET$animate)
## 
##  0  1 
## 21  6
6/27
## [1] 0.2222222
#Use this chunk to create a separate data file for religion - Marxist.  Use this to calculate the mode & the # of # flags w/ Animate for the Marxist countries.  In the  Marxist countries, there are 3  countries (20%)  with Animate; red is the mode.

rel_MA <- filter(flag_df, religion  == 'Marxist')
which.max(table(rel_MA$mainhue)) %>% names()
## [1] "red"
table(rel_MA$animate)
## 
##  0  1 
## 12  3
3/15
## [1] 0.2
#Use this chunk to create a separate data file for religion - Other.  Use this to calculate the mode & the # of # flags w/ Animate for the Other religion countries.  In the Other religion countries, there are zero  countries with Animate; white is the mode.

rel_OTH <- filter(flag_df, religion  == 'Other')
which.max(table(rel_OTH$mainhue)) %>% names()
## [1] "white"
table(rel_OTH$animate)
## 
## 0 
## 4

Do you see any patterns in flag mainhue, sun or star symbols, and animate images? If so, describe these patterns. (Hint: you should see patterns! Look at the trends when grouping by landmass, zone, language, and religion.) Write a paragraph to answer this question.

FILL IN YOUR ANSWER HERE

### The patterns revealed by the data are interesting, and in some cases what one would expect, but in other cases, they are not.  Of the 28 data categories (6 landmasses, 4 zones, 10 languages & 8 religions), only 8 had median values > zero for the suns & stars categories. The highest mode was 3 (Chinese language), with the Oceania landmass 2nd at 2.5. No other median was > 1, and one was 0.5.  

### Red was the mode of color. Of the 28 categories, red predominated in 17, with blue a distant 2nd at 7. Gold, brown, green, and white each had one. The colors largely were consistent among the various groups; for example, North America's predominate color was blue; blue predominated among English language speakers. The Muslim religious group's predominate color was red as was the Arabic language group's.  Christians were divided as to the color of their flags; Catholic countries preferred red flags, but the Other Christian countries had mostly blue flags. The most interesting anomolie in this regard was the Spanish language group. Its predominate color was blue, but the Catholic's predominate color was red. This strikes me as being an aberration. 

### Finally, flags w/ animate objects were concentrated in North America (41.9%) and in English speaking countries (again, 41.9%). The only group w/ a higher percentage of animate objects was the Buddhists, at 50% (4 of 8).

### All in all, an interesting exercise.