HW 12 - Linear Regression
Life Expectancy Dataset
who_df <- read_csv("http://my-cunymsds.com/data605/data/who.csv")EDA of Dataset
General stats of data set
summary(who_df)## Country LifeExp InfantSurvival Under5Survival
## Length:190 Min. :40.00 Min. :0.8350 Min. :0.7310
## Class :character 1st Qu.:61.25 1st Qu.:0.9433 1st Qu.:0.9253
## Mode :character Median :70.00 Median :0.9785 Median :0.9745
## Mean :67.38 Mean :0.9624 Mean :0.9459
## 3rd Qu.:75.00 3rd Qu.:0.9910 3rd Qu.:0.9900
## Max. :83.00 Max. :0.9980 Max. :0.9970
## TBFree PropMD PropRN PersExp
## Min. :0.9870 Min. :0.0000196 Min. :0.0000883 Min. : 3.00
## 1st Qu.:0.9969 1st Qu.:0.0002444 1st Qu.:0.0008455 1st Qu.: 36.25
## Median :0.9992 Median :0.0010474 Median :0.0027584 Median : 199.50
## Mean :0.9980 Mean :0.0017954 Mean :0.0041336 Mean : 742.00
## 3rd Qu.:0.9998 3rd Qu.:0.0024584 3rd Qu.:0.0057164 3rd Qu.: 515.25
## Max. :1.0000 Max. :0.0351290 Max. :0.0708387 Max. :6350.00
## GovtExp TotExp
## Min. : 10.0 Min. : 13
## 1st Qu.: 559.5 1st Qu.: 584
## Median : 5385.0 Median : 5541
## Mean : 40953.5 Mean : 41696
## 3rd Qu.: 25680.2 3rd Qu.: 26331
## Max. :476420.0 Max. :482750
1- Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.
Scatter Plot
ggplot(who_df, aes(x=TotExp, y=LifeExp)) +
geom_point(alpha=0.3) +
geom_smooth()## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
Simple Linear Regression
model_01 <- lm(LifeExp ~ TotExp, data=who_df)
summary(model_01)##
## Call:
## lm(formula = LifeExp ~ TotExp, data = who_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
Summary of findings.
With an R2 less than 0.26 the model is very far from a good representation of the relationship between the variables. While the predictor is statistically significant and F-stastitic is also statistically significant which measure the significance of the overall model.
2. Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”
Scatter Plot
ggplot(who_df, aes(x=TotExp^0.06, y=LifeExp^4.6)) +
geom_point(alpha=0.3) +
geom_smooth(method = lm)## `geom_smooth()` using formula 'y ~ x'
Linear Regression
model_02 <- lm(I(LifeExp^4.6) ~ I(TotExp^0.06), data=who_df)
summary(model_02)##
## Call:
## lm(formula = I(LifeExp^4.6) ~ I(TotExp^0.06), data = who_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## I(TotExp^0.06) 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
Model Plots
plot(model_02)Reverse de transformation for better viewing
model_02_preds <- as_tibble(model_02$fitted.values^(1/4.6))
model_02_preds <- rename(model_02_preds, predicted= value)
model_02_preds$actual <- who_df$LifeExpggplot(model_02_preds, aes(x=actual, y=predicted)) +
geom_point(alpha=0.3) +
geom_smooth()Summary of findings
With an R2 of 0.72 this is a huge improvement over the previous model without the transformations. That was clear when we plotted the scatterplot, that the regression algorithm was going to have an easier time finding a linear relatonship between the variables.
3. Using the results from 3, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.
b0 <- model_02$coefficients[1]
b1 <- model_02$coefficients[2]
Pred1 <- b0 + b1*1.5
Pred2 <- b0 + b1*2.5
# To makes sense of the prediction LifeExp^4.6, we will invert by raising the model prediction pred^(1/4.6)
print(paste0("First prediction when TotExp^.06=1.5 -> ", as.character(round(Pred1^(1/4.6),2))))## [1] "First prediction when TotExp^.06=1.5 -> 63.31"
print(paste0("Second prediction when TotExp^.06=2.5 -> ", as.character(round(Pred2^(1/4.6),2))))## [1] "Second prediction when TotExp^.06=2.5 -> 86.51"
4. Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model? LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp
model_03 <- lm(LifeExp ~ PropMD + TotExp + PropMD*TotExp, data=who_df)
summary(model_03)##
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD * TotExp, data = who_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
plot(model_03)## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
model_03_preds <- as_tibble(model_03$fitted.values)
model_03_preds <- rename(model_03_preds, predicted= value)
model_03_preds$actual <- who_df$LifeExpggplot(model_03_preds,aes(x=actual, y=predicted)) +
geom_point(alpha=0.3) +
geom_smooth()## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
Summary of findings
Although a little better (Measured by the R2) than the simple one, it still has a very low R2 of 0.36. Definitely the model requires transformation to reach better levels. While all statistics are significant, still is not as good as the second model where we transformed the variables.
5. Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?
b0 <- model_03$coefficients[1]
b1 <- model_03$coefficients[2]
b2 <- model_03$coefficients[3]
b12 <- model_03$coefficients[4]
Pred1 <- b0 + b1*0.03 + b2*14 + b12*(0.03*14)
print(paste0("Prediction when PropMd=0.03 TotExp=14 -> ", as.character(round(Pred1,2))))## [1] "Prediction when PropMd=0.03 TotExp=14 -> 107.7"
Summary of findings
The predicted life expectancy was close to 108 years. This is not realistic since is much higher than the highest life expectancy observed in reality. This is due becuase we are using a high number for PropMD. Linear regression is very sensible to outliers, thus the best fitting line for most values, may be very off for the extreme ones.