Data on 178 wine samples to be explored belonging to three different types.
Loads the dataset, making sure that the samples observed are on rows
and variables on columns, otherwise transpose the entire matrix before
making the PCA.
Source: “Multivariate data analysis as discriminating method of the origin of wines” (Forina 1986)
df = data.frame(read.csv('wine.csv'))
df = relocate(df, type, .before = attrib.Alcohol )
df = column_to_rownames(df , var = 'X')
colnames(df) = str_remove(colnames(df),'attrib.')
kable(df) %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
scroll_box( height = "500px")
| type | Alcohol | Sugar.free.extract | Fixed.acidity | Tartaric.acid | Malic.acid | Uronic.acids | pH | Ash | Alcalinity.of.ash | Potassium | Calcium | Magnesium | Phosphate | Chloride | Total.phenols | Flavanoids | Nonflavanoid.phenols | Proanthocyanins | Color.intensity | Hue | OD280.OD315.of.diluted.wines | OD280.OD315.of.flavonoids | Glycerol | 2.3.butanediol | Total.nitrogen | Proline | Methanol |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Barolo | 14.23 | 24.82 | 73.1 | 1.21 | 1.71 | 0.72 | 3.38 | 2.43 | 15.6 | 950 | 62 | 127 | 320 | 82 | 2.80 | 3.06 | 0.28 | 2.29 | 5.64 | 1.04 | 3.92 | 4.77 | 9.29 | 757 | 153 | 1065 | 113 |
| Barolo | 13.20 | 26.30 | 72.8 | 1.84 | 1.78 | 0.71 | 3.30 | 2.14 | 11.2 | 765 | 75 | 100 | 395 | 90 | 2.65 | 2.76 | 0.26 | 1.28 | 4.38 | 1.05 | 3.40 | 3.80 | 8.93 | 881 | 194 | 1050 | 94 |
| Barolo | 13.16 | 26.30 | 68.5 | 1.94 | 2.36 | 0.84 | 3.48 | 2.67 | 18.6 | 936 | 70 | 101 | 497 | 67 | 2.80 | 3.24 | 0.30 | 2.81 | 5.68 | 1.03 | 3.17 | 3.46 | 11.74 | 900 | 206 | 1185 | 125 |
| Barolo | 14.37 | 25.85 | 74.9 | 1.59 | 1.95 | 0.72 | 3.43 | 2.50 | 16.8 | 985 | 47 | 113 | 580 | 49 | 3.85 | 3.49 | 0.24 | 2.18 | 7.80 | 0.86 | 3.45 | 3.54 | 10.13 | 1119 | 292 | 1480 | 80 |
| Barolo | 13.24 | 26.05 | 83.5 | 1.30 | 2.59 | 1.10 | 3.42 | 2.87 | 21.0 | 1088 | 70 | 118 | 408 | 65 | 2.80 | 2.69 | 0.39 | 1.82 | 4.32 | 1.04 | 2.93 | 3.22 | 10.27 | 799 | 215 | 735 | 73 |
| Barolo | 14.20 | 28.40 | 79.9 | 2.14 | 1.76 | 0.96 | 3.39 | 2.45 | 15.2 | 868 | 71 | 112 | 418 | 58 | 3.27 | 3.39 | 0.34 | 1.97 | 6.75 | 1.05 | 2.85 | 3.16 | 10.85 | 865 | 364 | 1450 | 68 |
| Barolo | 14.39 | 27.02 | 64.3 | 1.64 | 1.87 | 0.95 | 3.42 | 2.45 | 14.6 | 889 | 67 | 96 | 306 | 52 | 2.50 | 2.52 | 0.30 | 1.98 | 5.25 | 1.02 | 3.58 | 3.94 | 9.05 | 931 | 378 | 1290 | 80 |
| Barolo | 14.06 | 26.40 | 73.5 | 1.33 | 2.15 | 1.14 | 3.54 | 2.61 | 17.6 | 894 | 50 | 121 | 502 | 64 | 2.60 | 2.51 | 0.31 | 1.25 | 5.05 | 1.06 | 3.58 | 3.94 | 10.13 | 865 | 358 | 1295 | 100 |
| Barolo | 14.83 | 26.80 | 69.5 | 1.82 | 1.64 | 0.67 | 3.30 | 2.17 | 14.0 | 765 | 49 | 97 | 440 | 58 | 2.80 | 2.98 | 0.29 | 1.98 | 5.20 | 1.08 | 2.85 | 3.03 | 9.89 | 825 | 438 | 1045 | 141 |
| Barolo | 13.86 | 27.00 | 68.5 | 1.92 | 1.35 | 0.67 | 3.27 | 2.27 | 16.0 | 794 | 51 | 98 | 391 | 64 | 2.98 | 3.15 | 0.22 | 1.85 | 7.22 | 1.01 | 3.55 | 3.75 | 12.65 | 788 | 350 | 1045 | 121 |
| Barolo | 14.10 | 26.08 | 72.5 | 1.64 | 2.16 | 0.62 | 3.31 | 2.30 | 18.0 | 838 | 61 | 105 | 399 | 61 | 2.95 | 3.32 | 0.22 | 2.38 | 5.75 | 1.25 | 3.17 | 3.27 | 8.59 | 964 | 378 | 1510 | 123 |
| Barolo | 14.12 | 28.35 | 72.9 | 1.51 | 1.48 | 0.96 | 3.20 | 2.32 | 16.8 | 827 | 60 | 95 | 424 | 79 | 2.20 | 2.43 | 0.26 | 1.57 | 5.00 | 1.17 | 2.82 | 3.04 | 11.52 | 894 | 294 | 1280 | 134 |
| Barolo | 13.75 | 30.25 | 75.1 | 1.92 | 1.73 | 0.64 | 3.18 | 2.41 | 16.0 | 752 | 65 | 89 | 453 | 257 | 2.60 | 2.76 | 0.29 | 1.81 | 5.60 | 1.15 | 2.90 | 2.92 | 12.24 | 784 | 289 | 1320 | 164 |
| Barolo | 14.75 | 30.40 | 98.9 | 2.08 | 1.73 | 0.72 | 3.01 | 2.39 | 11.4 | 910 | 46 | 91 | 510 | 50 | 3.10 | 3.69 | 0.43 | 2.81 | 5.40 | 1.25 | 2.73 | 2.82 | 12.29 | 766 | 224 | 1150 | 105 |
| Barolo | 14.38 | 27.10 | 72.3 | 1.95 | 1.87 | 0.67 | 3.20 | 2.38 | 12.0 | 927 | 29 | 102 | 523 | 55 | 3.30 | 3.64 | 0.29 | 2.96 | 7.50 | 1.20 | 3.00 | 3.32 | 9.53 | 1041 | 324 | 1547 | 114 |
| Barolo | 13.63 | 27.15 | 69.6 | 1.48 | 1.81 | 0.67 | 3.47 | 2.70 | 17.2 | 905 | 28 | 112 | 385 | 50 | 2.85 | 2.91 | 0.30 | 1.46 | 7.30 | 1.28 | 2.88 | 3.12 | 7.92 | 812 | 229 | 1310 | 97 |
| Barolo | 14.30 | 27.90 | 74.9 | 1.41 | 1.92 | 0.82 | 3.40 | 2.72 | 20.0 | 860 | 108 | 120 | 513 | 62 | 2.80 | 3.14 | 0.33 | 1.97 | 6.20 | 1.07 | 2.65 | 3.10 | 9.24 | 836 | 308 | 1280 | 113 |
| Barolo | 13.83 | 26.30 | 64.9 | 1.93 | 1.57 | 0.68 | 3.43 | 2.62 | 20.0 | 905 | 68 | 115 | 419 | 58 | 2.95 | 3.40 | 0.40 | 1.72 | 6.60 | 1.13 | 2.57 | 2.66 | 9.41 | 722 | 274 | 1130 | 99 |
| Barolo | 14.19 | 26.40 | 72.0 | 1.85 | 1.59 | 0.82 | 3.38 | 2.48 | 16.5 | 964 | 86 | 108 | 488 | 28 | 3.30 | 3.93 | 0.32 | 1.86 | 8.70 | 1.23 | 2.82 | 3.17 | 9.85 | 808 | 230 | 1680 | 135 |
| Barolo | 13.64 | 27.72 | 91.5 | 1.35 | 3.10 | 0.82 | 3.30 | 2.56 | 15.2 | 1038 | 111 | 116 | 402 | 67 | 2.70 | 3.03 | 0.17 | 1.66 | 5.10 | 0.96 | 3.36 | 4.00 | 10.39 | 726 | 227 | 845 | 119 |
| Barolo | 14.06 | 25.32 | 71.1 | 1.34 | 1.63 | 1.00 | 3.47 | 2.28 | 16.0 | 905 | 79 | 126 | 323 | 73 | 3.00 | 3.17 | 0.24 | 2.10 | 5.65 | 1.09 | 3.71 | 3.75 | 10.30 | 828 | 225 | 780 | 145 |
| Barolo | 12.93 | 28.80 | 102.1 | 1.05 | 3.80 | 0.89 | 3.26 | 2.65 | 18.6 | 915 | 79 | 102 | 294 | 62 | 2.41 | 2.41 | 0.25 | 1.98 | 4.50 | 1.03 | 3.52 | 3.66 | 11.88 | 589 | 237 | 770 | 123 |
| Barolo | 13.71 | 27.63 | 80.0 | 2.23 | 1.86 | 1.21 | 3.33 | 2.36 | 16.6 | 815 | 89 | 101 | 476 | 134 | 2.61 | 2.88 | 0.27 | 1.69 | 3.80 | 1.11 | 4.00 | 4.31 | 8.81 | 715 | 270 | 1035 | 109 |
| Barolo | 12.85 | 25.80 | 69.6 | 1.54 | 1.60 | 0.79 | 3.45 | 2.52 | 17.8 | 958 | 101 | 95 | 415 | 73 | 2.48 | 2.37 | 0.26 | 1.46 | 3.93 | 1.09 | 3.63 | 3.82 | 9.14 | 568 | 248 | 1015 | 102 |
| Barolo | 13.50 | 25.00 | 81.6 | 1.55 | 1.81 | 0.95 | 3.42 | 2.61 | 20.0 | 992 | 62 | 96 | 476 | 47 | 2.53 | 2.61 | 0.28 | 1.66 | 3.52 | 1.12 | 3.82 | 4.00 | 9.45 | 667 | 210 | 845 | 86 |
| Barolo | 13.05 | 25.72 | 78.3 | 1.15 | 2.05 | 1.08 | 3.57 | 3.22 | 25.0 | 1095 | 63 | 124 | 536 | 82 | 2.63 | 2.68 | 0.47 | 1.92 | 3.58 | 1.13 | 3.20 | 3.63 | 10.34 | 753 | 238 | 830 | 124 |
| Barolo | 13.39 | 27.10 | 72.3 | 1.52 | 1.77 | 1.05 | 3.46 | 2.62 | 16.1 | 936 | 68 | 93 | 395 | 52 | 2.85 | 2.94 | 0.34 | 1.45 | 4.80 | 0.92 | 3.22 | 4.44 | 9.96 | 854 | 285 | 1195 | 85 |
| Barolo | 13.30 | 22.70 | 68.3 | 1.74 | 1.72 | 1.06 | 3.44 | 2.14 | 17.0 | 882 | 52 | 94 | 434 | 46 | 2.40 | 2.19 | 0.27 | 1.35 | 3.95 | 1.02 | 2.77 | 3.10 | 9.70 | 757 | 350 | 1285 | 84 |
| Barolo | 13.87 | 29.30 | 68.3 | 1.38 | 1.90 | 0.75 | 3.42 | 2.80 | 19.4 | 1085 | 68 | 107 | 396 | 76 | 2.95 | 2.97 | 0.37 | 1.76 | 4.50 | 1.25 | 3.40 | 3.72 | 9.53 | 702 | 280 | 915 | 99 |
| Barolo | 14.02 | 25.20 | 69.6 | 1.71 | 1.68 | 0.79 | 3.26 | 2.21 | 16.0 | 780 | 62 | 96 | 510 | 53 | 2.65 | 2.33 | 0.26 | 1.98 | 4.70 | 1.04 | 3.59 | 3.77 | 9.94 | 689 | 293 | 1035 | 100 |
| Barolo | 13.73 | 26.75 | 75.2 | 1.53 | 1.50 | 0.66 | 3.30 | 2.70 | 22.5 | 1067 | 76 | 101 | 436 | 53 | 3.00 | 3.25 | 0.29 | 2.38 | 5.70 | 1.19 | 2.71 | 3.00 | 10.44 | 792 | 332 | 1285 | 120 |
| Barolo | 13.58 | 28.35 | 62.0 | 1.14 | 1.66 | 0.72 | 3.28 | 2.36 | 19.1 | 805 | 58 | 106 | 485 | 498 | 2.86 | 3.19 | 0.22 | 1.95 | 6.90 | 1.09 | 2.88 | 3.06 | 10.73 | 700 | 296 | 1515 | 108 |
| Barolo | 13.68 | 26.98 | 64.8 | 1.60 | 1.83 | 0.62 | 3.40 | 2.36 | 17.2 | 1068 | 32 | 104 | 398 | 76 | 2.42 | 2.69 | 0.42 | 1.97 | 3.84 | 1.23 | 2.87 | 3.04 | 13.00 | 733 | 252 | 990 | 141 |
| Barolo | 13.76 | 26.80 | 77.1 | 1.81 | 1.53 | 0.84 | 3.40 | 2.70 | 19.5 | 974 | 39 | 132 | 394 | 128 | 2.95 | 2.74 | 0.50 | 1.35 | 5.40 | 1.25 | 3.00 | 3.31 | 8.33 | 740 | 296 | 1235 | 109 |
| Barolo | 13.51 | 26.22 | 65.3 | 1.28 | 1.80 | 0.70 | 3.36 | 2.65 | 19.0 | 856 | 53 | 110 | 464 | 53 | 2.35 | 2.53 | 0.29 | 1.54 | 4.20 | 1.10 | 2.87 | 2.91 | 10.10 | 700 | 258 | 1095 | 86 |
| Barolo | 13.48 | 26.10 | 70.9 | 1.44 | 1.81 | 0.69 | 3.45 | 2.41 | 20.5 | 789 | 49 | 100 | 416 | 35 | 2.70 | 2.98 | 0.26 | 1.86 | 5.10 | 1.04 | 3.47 | 4.04 | 8.21 | 534 | 258 | 920 | 75 |
| Barolo | 13.28 | 29.70 | 78.9 | 1.50 | 1.64 | 0.80 | 3.30 | 2.84 | 15.5 | 964 | 98 | 110 | 431 | 38 | 2.60 | 2.68 | 0.34 | 1.36 | 4.60 | 1.09 | 2.78 | 3.17 | 13.70 | 570 | 224 | 880 | 105 |
| Barolo | 13.05 | 25.00 | 70.9 | 1.18 | 1.65 | 0.89 | 3.34 | 2.55 | 18.0 | 1025 | 85 | 98 | 382 | 23 | 2.45 | 2.43 | 0.29 | 1.44 | 4.25 | 1.12 | 2.51 | 2.87 | 8.88 | 627 | 220 | 1105 | 134 |
| Barolo | 13.07 | 24.30 | 73.9 | 1.16 | 1.50 | 1.00 | 3.41 | 2.10 | 15.5 | 930 | 75 | 98 | 386 | 18 | 2.40 | 2.64 | 0.28 | 1.37 | 3.70 | 1.18 | 2.69 | 3.04 | 9.50 | 658 | 212 | 1020 | 145 |
| Barolo | 14.22 | 30.20 | 114.8 | 1.85 | 3.99 | 0.64 | 3.11 | 2.51 | 13.2 | 895 | 88 | 128 | 280 | 76 | 3.00 | 3.04 | 0.20 | 2.08 | 5.10 | 0.89 | 3.53 | 3.66 | 12.34 | 1048 | 215 | 760 | 101 |
| Barolo | 13.56 | 26.60 | 80.3 | 1.57 | 1.71 | 0.91 | 3.32 | 2.31 | 16.2 | 890 | 75 | 117 | 316 | 70 | 3.15 | 3.29 | 0.34 | 2.34 | 6.13 | 0.95 | 3.38 | 3.53 | 9.77 | 733 | 246 | 795 | 118 |
| Barolo | 13.41 | 27.50 | 102.7 | 1.79 | 3.84 | 0.92 | 3.19 | 2.12 | 18.8 | 815 | 78 | 90 | 385 | 70 | 2.45 | 2.68 | 0.27 | 1.48 | 4.28 | 0.91 | 3.00 | 3.36 | 9.21 | 565 | 231 | 1035 | 106 |
| Barolo | 13.88 | 27.80 | 78.9 | 2.39 | 1.89 | 0.65 | 3.33 | 2.59 | 15.0 | 980 | 71 | 101 | 502 | 67 | 3.25 | 3.56 | 0.17 | 1.70 | 5.43 | 0.88 | 3.56 | 4.00 | 8.61 | 665 | 289 | 1095 | 121 |
| Barolo | 13.24 | 25.60 | 101.3 | 1.83 | 3.98 | 0.62 | 3.18 | 2.29 | 17.5 | 920 | 63 | 103 | 389 | 53 | 2.64 | 2.63 | 0.32 | 1.66 | 4.36 | 0.82 | 3.00 | 3.15 | 8.61 | 576 | 248 | 680 | 105 |
| Barolo | 13.05 | 23.70 | 80.0 | 1.22 | 1.77 | 0.82 | 3.33 | 2.10 | 17.0 | 901 | 49 | 107 | 408 | 50 | 3.00 | 3.00 | 0.28 | 2.03 | 5.04 | 0.88 | 3.35 | 3.78 | 9.96 | 1044 | 218 | 885 | 155 |
| Barolo | 14.21 | 29.65 | 104.9 | 1.74 | 4.04 | 0.86 | 3.35 | 2.44 | 18.9 | 930 | 63 | 111 | 324 | 46 | 2.85 | 2.65 | 0.30 | 1.25 | 5.24 | 0.87 | 3.33 | 3.78 | 10.08 | 700 | 264 | 1080 | 90 |
| Barolo | 14.38 | 30.70 | 90.3 | 1.24 | 3.59 | 0.99 | 3.16 | 2.28 | 16.0 | 788 | 71 | 102 | 408 | 70 | 3.25 | 3.17 | 0.27 | 2.19 | 4.90 | 1.04 | 3.44 | 3.56 | 9.48 | 766 | 218 | 1065 | 91 |
| Barolo | 13.90 | 25.30 | 75.2 | 1.93 | 1.68 | 0.63 | 3.16 | 2.12 | 16.0 | 762 | 81 | 101 | 484 | 56 | 3.10 | 3.39 | 0.21 | 2.14 | 6.10 | 0.91 | 3.33 | 3.51 | 8.78 | 570 | 281 | 985 | 77 |
| Barolo | 14.10 | 25.98 | 70.0 | 1.87 | 2.02 | 0.83 | 3.20 | 2.40 | 18.8 | 880 | 75 | 103 | 480 | 64 | 2.75 | 2.92 | 0.32 | 2.38 | 6.20 | 1.07 | 2.75 | 2.89 | 10.42 | 669 | 249 | 1060 | 78 |
| Barolo | 13.94 | 26.80 | 72.7 | 2.35 | 1.73 | 0.60 | 3.23 | 2.27 | 17.4 | 868 | 40 | 108 | 420 | 96 | 2.88 | 3.54 | 0.32 | 2.08 | 8.90 | 1.12 | 3.10 | 3.30 | 13.44 | 749 | 383 | 1260 | 155 |
| Barolo | 13.05 | 24.30 | 76.0 | 2.08 | 1.73 | 0.63 | 3.06 | 2.04 | 12.4 | 792 | 35 | 92 | 638 | 50 | 2.72 | 3.27 | 0.17 | 2.91 | 7.20 | 1.12 | 2.91 | 3.20 | 9.17 | 590 | 224 | 1150 | 124 |
| Barolo | 13.83 | 27.60 | 63.3 | 1.82 | 1.65 | 0.77 | 3.32 | 2.60 | 17.2 | 968 | 28 | 94 | 411 | 53 | 2.45 | 2.99 | 0.22 | 2.29 | 5.60 | 1.24 | 3.37 | 3.69 | 9.77 | 777 | 330 | 1265 | 110 |
| Barolo | 13.82 | 26.25 | 74.5 | 1.83 | 1.75 | 0.77 | 3.33 | 2.42 | 14.0 | 785 | 29 | 111 | 472 | 47 | 3.88 | 3.74 | 0.32 | 1.87 | 7.05 | 1.01 | 3.26 | 3.53 | 7.63 | 704 | 360 | 1190 | 88 |
| Barolo | 13.77 | 25.20 | 64.8 | 1.29 | 1.90 | 0.84 | 3.56 | 2.68 | 17.1 | 927 | 33 | 115 | 405 | 59 | 3.00 | 2.79 | 0.39 | 1.68 | 6.30 | 1.13 | 2.93 | 3.21 | 7.73 | 795 | 313 | 1375 | 109 |
| Barolo | 13.74 | 24.80 | 65.2 | 1.88 | 1.67 | 0.66 | 3.43 | 2.25 | 16.4 | 784 | 76 | 118 | 502 | 37 | 2.60 | 2.90 | 0.21 | 1.62 | 5.85 | 0.92 | 3.20 | 3.36 | 7.97 | 733 | 292 | 1060 | 87 |
| Barolo | 13.56 | 25.00 | 78.0 | 1.49 | 1.73 | 0.69 | 3.31 | 2.46 | 20.5 | 808 | 91 | 116 | 411 | 38 | 2.96 | 2.78 | 0.20 | 2.45 | 6.25 | 0.98 | 3.03 | 3.16 | 7.92 | 550 | 266 | 1120 | 86 |
| Barolo | 14.22 | 26.60 | 87.1 | 1.98 | 1.70 | 0.74 | 3.20 | 2.30 | 16.3 | 768 | 73 | 118 | 465 | 136 | 3.20 | 3.00 | 0.26 | 2.03 | 6.38 | 0.94 | 3.31 | 3.81 | 13.00 | 770 | 248 | 970 | 124 |
| Barolo | 13.29 | 26.80 | 80.0 | 1.63 | 1.97 | 0.96 | 3.24 | 2.68 | 16.8 | 905 | 76 | 102 | 360 | 24 | 3.00 | 3.23 | 0.31 | 1.66 | 6.00 | 1.07 | 2.84 | 3.21 | 9.30 | 676 | 258 | 1270 | 116 |
| Barolo | 13.72 | 27.10 | 73.3 | 1.34 | 1.43 | 0.93 | 3.38 | 2.50 | 16.7 | 906 | 71 | 108 | 403 | 33 | 3.40 | 3.67 | 0.19 | 2.04 | 6.80 | 0.89 | 2.87 | 3.10 | 9.94 | 755 | 232 | 1285 | 131 |
| Grignolino | 12.37 | 18.30 | 90.1 | 2.80 | 0.94 | 0.73 | 3.11 | 1.36 | 10.6 | 580 | 77 | 88 | 296 | 52 | 1.98 | 0.57 | 0.28 | 0.42 | 1.95 | 1.05 | 1.82 | 2.12 | 5.40 | 736 | 287 | 520 | 98 |
| Grignolino | 12.33 | 22.90 | 72.2 | 2.25 | 1.10 | 0.69 | 3.26 | 2.28 | 16.0 | 715 | 85 | 101 | 365 | 108 | 2.05 | 1.09 | 0.63 | 0.41 | 3.27 | 1.25 | 1.67 | 1.42 | 6.90 | 658 | 345 | 680 | 127 |
| Grignolino | 12.64 | 23.90 | 95.7 | 1.93 | 1.36 | 1.06 | 3.19 | 2.02 | 16.8 | 688 | 83 | 100 | 395 | 53 | 2.02 | 1.41 | 0.53 | 0.62 | 5.75 | 0.98 | 1.59 | 1.86 | 8.20 | 691 | 321 | 450 | 60 |
| Grignolino | 13.67 | 22.20 | 64.8 | 2.20 | 1.25 | 0.74 | 3.40 | 1.92 | 18.0 | 725 | 51 | 94 | 301 | 47 | 2.10 | 1.79 | 0.32 | 0.73 | 3.80 | 1.23 | 2.46 | 1.73 | 8.60 | 797 | 262 | 630 | 87 |
| Grignolino | 12.37 | 23.50 | 70.0 | 2.06 | 1.13 | 0.72 | 3.30 | 2.16 | 19.0 | 785 | 73 | 87 | 422 | 306 | 3.50 | 3.10 | 0.19 | 1.87 | 4.45 | 1.22 | 2.87 | 3.07 | 7.20 | 748 | 141 | 420 | 157 |
| Grignolino | 12.17 | 23.03 | 65.7 | 1.84 | 1.45 | 0.72 | 3.35 | 2.53 | 19.0 | 790 | 62 | 104 | 411 | 116 | 1.89 | 1.75 | 0.45 | 1.03 | 2.95 | 1.45 | 2.23 | 2.73 | 7.50 | 627 | 219 | 355 | 58 |
| Grignolino | 12.37 | 26.80 | 62.7 | 1.70 | 1.21 | 0.88 | 3.40 | 2.56 | 18.1 | 978 | 55 | 98 | 310 | 69 | 2.42 | 2.65 | 0.37 | 2.08 | 4.60 | 1.19 | 2.30 | 2.60 | 7.96 | 680 | 259 | 678 | 118 |
| Grignolino | 13.11 | 23.70 | 80.0 | 1.40 | 1.01 | 0.77 | 3.10 | 1.70 | 15.0 | 730 | 80 | 78 | 297 | 148 | 2.98 | 3.18 | 0.26 | 2.28 | 5.30 | 1.12 | 3.18 | 3.33 | 8.20 | 604 | 100 | 502 | 114 |
| Grignolino | 12.37 | 20.90 | 63.7 | 1.94 | 1.17 | 0.67 | 3.40 | 1.92 | 19.6 | 785 | 40 | 78 | 212 | 54 | 2.11 | 2.00 | 0.27 | 1.04 | 4.68 | 1.12 | 3.48 | 4.07 | 7.10 | 554 | 425 | 510 | 98 |
| Grignolino | 13.34 | 23.72 | 70.0 | 2.02 | 0.94 | 1.09 | 3.26 | 2.36 | 17.0 | 760 | 64 | 110 | 451 | 111 | 2.53 | 1.30 | 0.55 | 0.42 | 3.17 | 1.02 | 1.93 | 1.92 | 8.10 | 704 | 363 | 750 | 137 |
| Grignolino | 12.21 | 22.70 | 90.7 | 3.62 | 1.19 | 0.94 | 3.14 | 1.75 | 16.8 | 795 | 134 | 151 | 448 | 88 | 1.85 | 1.28 | 0.14 | 2.50 | 2.85 | 1.28 | 3.07 | 3.23 | 6.81 | 714 | 195 | 718 | 116 |
| Grignolino | 12.29 | 21.40 | 55.6 | 1.43 | 1.61 | 0.87 | 3.54 | 2.21 | 20.4 | 682 | 102 | 103 | 324 | 50 | 1.10 | 1.02 | 0.37 | 1.46 | 3.05 | 0.91 | 1.82 | 2.00 | 6.38 | 661 | 301 | 870 | 78 |
| Grignolino | 13.86 | 25.25 | 59.5 | 1.27 | 1.51 | 1.09 | 3.63 | 2.67 | 25.0 | 785 | 63 | 86 | 383 | 59 | 2.95 | 2.86 | 0.21 | 1.87 | 3.38 | 1.36 | 3.16 | 3.52 | 7.62 | 748 | 170 | 410 | 99 |
| Grignolino | 13.49 | 22.30 | 60.9 | 1.74 | 1.66 | 0.67 | 3.44 | 2.24 | 24.0 | 680 | 60 | 87 | 300 | 43 | 1.88 | 1.84 | 0.27 | 1.03 | 3.74 | 0.98 | 2.78 | 3.50 | 8.04 | 614 | 160 | 472 | 64 |
| Grignolino | 12.99 | 26.10 | 50.5 | 1.42 | 1.67 | 1.24 | 3.52 | 2.60 | 30.0 | 974 | 55 | 139 | 473 | 35 | 3.30 | 2.89 | 0.21 | 1.96 | 3.35 | 1.31 | 3.50 | 3.60 | 8.00 | 731 | 293 | 985 | 113 |
| Grignolino | 11.96 | 24.50 | 65.7 | 2.18 | 1.09 | 0.73 | 3.40 | 2.30 | 21.0 | 681 | 98 | 101 | 366 | 48 | 3.38 | 2.14 | 0.13 | 1.65 | 3.21 | 0.99 | 3.13 | 3.15 | 7.70 | 563 | 183 | 886 | 57 |
| Grignolino | 11.66 | 20.30 | 61.7 | 1.70 | 1.88 | 0.60 | 3.30 | 1.92 | 16.0 | 785 | 52 | 97 | 312 | 59 | 1.61 | 1.57 | 0.34 | 1.15 | 3.80 | 1.23 | 2.14 | 2.35 | 6.14 | 596 | 109 | 428 | 129 |
| Grignolino | 13.03 | 23.50 | 78.6 | 1.90 | 0.90 | 0.76 | 3.30 | 1.71 | 16.0 | 790 | 57 | 86 | 396 | 122 | 1.95 | 2.03 | 0.24 | 1.46 | 4.60 | 1.19 | 2.48 | 2.85 | 8.40 | 756 | 167 | 392 | 145 |
| Grignolino | 11.84 | 26.40 | 108.7 | 1.70 | 2.89 | 0.91 | 3.11 | 2.23 | 18.0 | 790 | 71 | 112 | 350 | 58 | 1.72 | 1.32 | 0.43 | 0.95 | 2.65 | 0.96 | 2.52 | 3.25 | 5.22 | 514 | 246 | 500 | 122 |
| Grignolino | 12.33 | 20.60 | 58.7 | 2.41 | 0.99 | 0.84 | 3.32 | 1.95 | 14.8 | 680 | 124 | 136 | 438 | 99 | 1.90 | 1.85 | 0.35 | 2.76 | 3.40 | 1.06 | 2.31 | 2.70 | 7.96 | 654 | 259 | 750 | 59 |
| Grignolino | 12.70 | 27.15 | 93.3 | 1.46 | 3.87 | 1.11 | 3.19 | 2.40 | 23.0 | 890 | 110 | 101 | 321 | 52 | 2.83 | 2.55 | 0.43 | 1.95 | 2.57 | 1.19 | 3.13 | 3.82 | 8.66 | 700 | 227 | 463 | 101 |
| Grignolino | 12.00 | 23.20 | 58.4 | 1.88 | 0.92 | 0.82 | 3.30 | 2.00 | 19.0 | 680 | 63 | 86 | 408 | 27 | 2.42 | 2.26 | 0.30 | 1.43 | 2.50 | 1.38 | 3.12 | 3.52 | 5.80 | 645 | 199 | 278 | 95 |
| Grignolino | 12.72 | 22.90 | 58.4 | 1.40 | 1.81 | 0.81 | 3.50 | 2.20 | 18.8 | 890 | 83 | 86 | 418 | 64 | 2.20 | 2.53 | 0.26 | 1.77 | 3.90 | 1.16 | 3.14 | 3.33 | 7.38 | 664 | 199 | 714 | 111 |
| Grignolino | 12.08 | 23.50 | 56.9 | 1.33 | 1.13 | 0.71 | 3.65 | 2.51 | 24.0 | 980 | 85 | 78 | 215 | 53 | 2.00 | 1.58 | 0.40 | 1.40 | 2.20 | 1.31 | 2.72 | 3.50 | 8.11 | 548 | 203 | 630 | 115 |
| Grignolino | 13.05 | 25.50 | 104.8 | 1.64 | 3.86 | 0.73 | 3.19 | 2.32 | 22.5 | 938 | 98 | 85 | 195 | 48 | 1.65 | 1.59 | 0.61 | 1.62 | 4.80 | 0.84 | 2.01 | 2.07 | 8.64 | 649 | 207 | 515 | 114 |
| Grignolino | 11.84 | 23.40 | 70.8 | 1.80 | 0.89 | 1.00 | 3.40 | 2.58 | 18.0 | 922 | 80 | 94 | 378 | 95 | 2.20 | 2.21 | 0.22 | 2.35 | 3.05 | 0.79 | 3.08 | 3.81 | 6.36 | 586 | 138 | 520 | 141 |
| Grignolino | 12.67 | 24.30 | 74.1 | 1.70 | 0.98 | 0.88 | 3.35 | 2.24 | 18.0 | 840 | 81 | 99 | 336 | 70 | 2.20 | 1.94 | 0.30 | 1.46 | 2.62 | 1.23 | 3.16 | 3.60 | 7.90 | 600 | 217 | 450 | 121 |
| Grignolino | 12.16 | 25.80 | 78.9 | 1.84 | 1.61 | 0.78 | 3.37 | 2.31 | 22.8 | 845 | 98 | 90 | 285 | 54 | 1.78 | 1.69 | 0.43 | 1.56 | 2.45 | 1.33 | 2.26 | 2.92 | 8.04 | 643 | 195 | 495 | 116 |
| Grignolino | 11.65 | 22.90 | 62.9 | 1.80 | 1.67 | 0.64 | 3.55 | 2.62 | 26.0 | 1045 | 125 | 88 | 281 | 36 | 1.92 | 1.61 | 0.40 | 1.34 | 2.60 | 1.36 | 3.21 | 3.27 | 9.54 | 608 | 262 | 562 | 120 |
| Grignolino | 11.64 | 24.20 | 72.4 | 1.84 | 2.06 | 0.89 | 3.40 | 2.46 | 21.6 | 962 | 79 | 84 | 304 | 70 | 1.95 | 1.69 | 0.48 | 1.35 | 2.80 | 1.00 | 2.75 | 3.60 | 7.97 | 523 | 223 | 680 | 120 |
| Grignolino | 12.08 | 24.00 | 67.6 | 1.93 | 1.33 | 1.05 | 3.50 | 2.30 | 23.6 | 932 | 65 | 70 | 278 | 27 | 2.20 | 1.59 | 0.42 | 1.38 | 1.74 | 1.07 | 3.21 | 3.77 | 8.47 | 557 | 200 | 625 | 163 |
| Grignolino | 12.08 | 25.50 | 78.9 | 1.93 | 1.83 | 0.77 | 3.25 | 2.32 | 18.5 | 960 | 128 | 81 | 329 | 48 | 1.60 | 1.50 | 0.52 | 1.64 | 2.40 | 1.08 | 2.27 | 2.28 | 8.33 | 563 | 314 | 480 | 105 |
| Grignolino | 12.00 | 25.30 | 75.6 | 1.80 | 1.51 | 0.74 | 3.27 | 2.42 | 22.0 | 915 | 102 | 86 | 342 | 110 | 1.45 | 1.25 | 0.50 | 1.63 | 3.60 | 1.05 | 2.65 | 2.75 | 8.21 | 495 | 170 | 450 | 152 |
| Grignolino | 12.69 | 25.00 | 70.9 | 1.47 | 1.53 | 0.82 | 3.43 | 2.26 | 20.7 | 845 | 92 | 80 | 214 | 73 | 1.38 | 1.46 | 0.58 | 1.62 | 3.05 | 0.96 | 2.06 | 2.28 | 8.88 | 792 | 198 | 495 | 101 |
| Grignolino | 12.29 | 25.00 | 86.0 | 1.84 | 2.83 | 0.71 | 3.24 | 2.22 | 18.0 | 915 | 94 | 88 | 329 | 84 | 2.45 | 2.25 | 0.25 | 1.99 | 2.15 | 1.15 | 3.30 | 3.75 | 5.64 | 594 | 190 | 290 | 117 |
| Grignolino | 11.62 | 28.40 | 92.8 | 1.35 | 1.99 | 0.84 | 3.22 | 2.28 | 18.0 | 794 | 88 | 98 | 372 | 76 | 3.02 | 2.26 | 0.17 | 1.35 | 3.25 | 1.16 | 2.96 | 2.97 | 13.60 | 930 | 200 | 345 | 120 |
| Grignolino | 12.47 | 24.95 | 72.0 | 1.93 | 1.52 | 1.02 | 3.32 | 2.20 | 19.0 | 790 | 188 | 162 | 464 | 84 | 2.50 | 2.27 | 0.32 | 3.28 | 2.60 | 1.16 | 2.63 | 2.99 | 6.21 | 683 | 268 | 937 | 79 |
| Grignolino | 11.81 | 27.50 | 75.3 | 1.75 | 2.12 | 0.91 | 3.29 | 2.74 | 21.5 | 942 | 125 | 134 | 375 | 83 | 1.60 | 0.99 | 0.14 | 1.56 | 2.50 | 0.95 | 2.26 | 2.88 | 7.56 | 687 | 179 | 625 | 84 |
| Grignolino | 12.29 | 25.30 | 68.5 | 1.80 | 1.41 | 0.57 | 3.30 | 1.98 | 16.0 | 890 | 82 | 85 | 440 | 40 | 2.55 | 2.50 | 0.29 | 1.77 | 2.90 | 1.23 | 2.74 | 3.14 | 8.44 | 696 | 335 | 428 | 117 |
| Grignolino | 12.37 | 24.80 | 61.2 | 1.60 | 1.07 | 1.01 | 3.40 | 2.10 | 18.5 | 845 | 84 | 88 | 385 | 80 | 3.52 | 3.75 | 0.24 | 1.95 | 4.50 | 1.04 | 2.77 | 3.05 | 7.23 | 655 | 180 | 660 | 127 |
| Grignolino | 12.29 | 26.50 | 112.4 | 2.61 | 3.17 | 1.09 | 2.95 | 2.21 | 18.0 | 845 | 122 | 88 | 438 | 35 | 2.85 | 2.99 | 0.45 | 2.81 | 2.30 | 1.42 | 2.83 | 3.90 | 8.45 | 759 | 159 | 406 | 146 |
| Grignolino | 12.08 | 22.90 | 75.2 | 2.20 | 2.08 | 0.67 | 3.15 | 1.70 | 17.5 | 805 | 62 | 97 | 212 | 42 | 2.23 | 2.17 | 0.26 | 1.40 | 3.30 | 1.27 | 2.96 | 3.41 | 7.08 | 591 | 399 | 710 | 105 |
| Grignolino | 12.60 | 21.90 | 63.7 | 2.00 | 1.34 | 0.64 | 3.15 | 1.90 | 18.5 | 870 | 135 | 88 | 224 | 80 | 1.45 | 1.36 | 0.29 | 1.35 | 2.45 | 1.04 | 2.77 | 3.75 | 8.56 | 610 | 195 | 562 | 130 |
| Grignolino | 12.34 | 25.80 | 78.0 | 2.50 | 2.45 | 0.57 | 3.42 | 2.46 | 21.0 | 915 | 144 | 98 | 146 | 82 | 2.56 | 2.11 | 0.34 | 1.31 | 2.80 | 0.80 | 3.38 | 4.19 | 8.36 | 536 | 306 | 438 | 98 |
| Grignolino | 11.82 | 22.70 | 67.2 | 2.17 | 1.72 | 0.80 | 3.40 | 1.88 | 19.5 | 874 | 64 | 86 | 442 | 85 | 2.50 | 1.64 | 0.37 | 1.42 | 2.06 | 0.94 | 2.44 | 3.80 | 7.36 | 653 | 194 | 415 | 103 |
| Grignolino | 12.51 | 24.50 | 63.2 | 1.34 | 1.73 | 0.67 | 3.50 | 1.98 | 20.5 | 905 | 74 | 85 | 254 | 50 | 2.20 | 1.92 | 0.32 | 1.48 | 2.94 | 1.04 | 3.57 | 4.50 | 10.44 | 882 | 158 | 672 | 99 |
| Grignolino | 12.42 | 23.50 | 78.7 | 1.92 | 2.55 | 0.92 | 3.30 | 2.27 | 22.0 | 980 | 93 | 90 | 342 | 92 | 1.68 | 1.84 | 0.66 | 1.42 | 2.70 | 0.86 | 3.30 | 3.50 | 7.92 | 680 | 219 | 315 | 89 |
| Grignolino | 12.25 | 25.00 | 75.2 | 1.40 | 1.73 | 0.64 | 3.45 | 2.12 | 19.0 | 890 | 102 | 80 | 265 | 53 | 1.65 | 2.03 | 0.37 | 1.63 | 3.40 | 1.00 | 3.17 | 4.16 | 10.13 | 790 | 207 | 510 | 126 |
| Grignolino | 12.72 | 24.10 | 85.6 | 2.34 | 1.75 | 0.71 | 3.33 | 2.28 | 22.5 | 910 | 58 | 84 | 159 | 67 | 1.38 | 1.76 | 0.48 | 1.63 | 3.30 | 0.88 | 2.42 | 2.54 | 7.61 | 855 | 194 | 488 | 81 |
| Grignolino | 12.22 | 24.50 | 70.1 | 1.42 | 1.29 | 0.60 | 3.36 | 1.94 | 19.0 | 897 | 103 | 92 | 157 | 65 | 2.36 | 2.04 | 0.39 | 2.08 | 2.70 | 0.86 | 3.02 | 3.64 | 7.24 | 780 | 132 | 312 | 97 |
| Grignolino | 11.61 | 27.60 | 84.0 | 1.85 | 1.35 | 0.87 | 3.46 | 2.70 | 20.0 | 950 | 98 | 94 | 408 | 58 | 2.74 | 2.92 | 0.29 | 2.49 | 2.65 | 0.96 | 3.26 | 3.85 | 6.42 | 592 | 386 | 680 | 110 |
| Grignolino | 11.46 | 24.84 | 104.4 | 2.20 | 3.74 | 0.78 | 3.07 | 1.82 | 19.5 | 685 | 143 | 107 | 322 | 70 | 3.18 | 2.58 | 0.24 | 3.58 | 2.90 | 0.75 | 2.81 | 3.60 | 7.87 | 684 | 196 | 562 | 91 |
| Grignolino | 12.52 | 26.35 | 100.4 | 1.45 | 2.43 | 0.97 | 3.21 | 2.17 | 21.0 | 680 | 112 | 88 | 339 | 48 | 2.55 | 2.27 | 0.26 | 1.22 | 2.00 | 0.90 | 2.78 | 3.10 | 8.50 | 730 | 171 | 325 | 60 |
| Grignolino | 11.76 | 29.60 | 90.3 | 2.10 | 2.68 | 1.04 | 3.30 | 2.92 | 20.0 | 1100 | 115 | 103 | 370 | 38 | 1.75 | 2.03 | 0.60 | 1.05 | 3.80 | 1.23 | 2.50 | 2.25 | 9.94 | 732 | 454 | 607 | 103 |
| Grignolino | 11.41 | 21.70 | 100.0 | 2.04 | 0.74 | 0.87 | 3.50 | 2.50 | 21.0 | 1085 | 105 | 88 | 315 | 56 | 2.48 | 2.01 | 0.42 | 1.44 | 3.08 | 1.10 | 2.31 | 4.16 | 6.56 | 638 | 228 | 434 | 81 |
| Grignolino | 12.08 | 23.50 | 95.7 | 2.31 | 1.39 | 0.66 | 3.30 | 2.50 | 22.5 | 1025 | 83 | 84 | 235 | 42 | 2.56 | 2.29 | 0.43 | 1.04 | 2.90 | 0.93 | 3.19 | 4.38 | 7.36 | 632 | 247 | 385 | 105 |
| Grignolino | 11.03 | 23.30 | 92.0 | 3.02 | 1.51 | 0.97 | 3.12 | 2.20 | 21.5 | 835 | 136 | 85 | 358 | 30 | 2.46 | 2.17 | 0.52 | 2.01 | 1.90 | 1.71 | 2.87 | 3.46 | 6.28 | 630 | 175 | 407 | 96 |
| Grignolino | 11.82 | 22.90 | 75.2 | 2.10 | 1.47 | 0.89 | 3.13 | 1.99 | 20.8 | 754 | 115 | 86 | 264 | 80 | 1.98 | 1.60 | 0.30 | 1.53 | 1.95 | 0.95 | 3.33 | 3.81 | 7.75 | 644 | 386 | 495 | 112 |
| Grignolino | 12.42 | 25.30 | 94.7 | 1.86 | 1.61 | 0.83 | 3.38 | 2.19 | 22.5 | 964 | 96 | 108 | 268 | 128 | 2.00 | 2.09 | 0.34 | 1.61 | 2.06 | 1.06 | 2.96 | 3.73 | 9.02 | 989 | 227 | 345 | 108 |
| Grignolino | 12.77 | 25.50 | 101.3 | 2.10 | 3.43 | 0.54 | 3.10 | 1.98 | 16.0 | 720 | 65 | 80 | 224 | 80 | 1.63 | 1.25 | 0.43 | 0.83 | 3.40 | 0.70 | 2.12 | 2.75 | 6.80 | 590 | 251 | 372 | 121 |
| Grignolino | 12.00 | 24.20 | 89.7 | 1.11 | 3.43 | 0.72 | 3.25 | 2.00 | 19.0 | 865 | 104 | 87 | 107 | 48 | 2.00 | 1.64 | 0.37 | 1.87 | 1.28 | 0.93 | 3.05 | 4.22 | 7.56 | 612 | 182 | 564 | 114 |
| Grignolino | 11.45 | 24.30 | 123.6 | 1.50 | 2.40 | 0.96 | 3.18 | 2.42 | 20.0 | 915 | 138 | 96 | 262 | 58 | 2.90 | 2.79 | 0.32 | 1.83 | 3.25 | 0.80 | 3.39 | 4.27 | 9.54 | 710 | 311 | 625 | 109 |
| Grignolino | 11.56 | 26.60 | 84.7 | 1.64 | 2.05 | 1.02 | 3.40 | 3.23 | 28.5 | 1160 | 92 | 119 | 490 | 94 | 3.18 | 5.08 | 0.47 | 1.87 | 6.00 | 0.93 | 3.69 | 4.37 | 7.68 | 687 | 538 | 465 | 183 |
| Grignolino | 12.42 | 25.00 | 110.0 | 2.13 | 4.43 | 0.93 | 3.23 | 2.73 | 26.5 | 1050 | 84 | 102 | 524 | 88 | 2.20 | 2.13 | 0.43 | 1.71 | 2.08 | 0.92 | 3.12 | 4.33 | 8.73 | 560 | 366 | 365 | 118 |
| Grignolino | 13.05 | 24.00 | 115.0 | 1.64 | 5.80 | 0.85 | 3.12 | 2.13 | 21.5 | 815 | 102 | 86 | 326 | 73 | 2.62 | 2.65 | 0.30 | 2.01 | 2.60 | 0.73 | 3.10 | 4.29 | 7.24 | 610 | 216 | 380 | 114 |
| Grignolino | 11.87 | 27.35 | 116.7 | 2.43 | 4.31 | 0.81 | 3.14 | 2.39 | 21.0 | 935 | 103 | 82 | 300 | 58 | 2.86 | 3.03 | 0.21 | 2.91 | 2.80 | 0.75 | 3.64 | 4.50 | 8.04 | 635 | 193 | 380 | 66 |
| Grignolino | 12.07 | 24.75 | 95.3 | 2.11 | 2.16 | 0.89 | 3.24 | 2.17 | 21.0 | 815 | 94 | 85 | 358 | 85 | 2.60 | 2.65 | 0.37 | 1.35 | 2.76 | 0.86 | 3.28 | 4.29 | 7.77 | 558 | 295 | 378 | 86 |
| Grignolino | 12.43 | 23.80 | 94.1 | 1.61 | 1.53 | 0.65 | 3.26 | 2.29 | 21.5 | 895 | 94 | 86 | 298 | 116 | 2.74 | 3.15 | 0.39 | 1.77 | 3.94 | 0.69 | 2.84 | 3.40 | 7.00 | 628 | 209 | 352 | 79 |
| Grignolino | 11.79 | 21.30 | 97.2 | 2.30 | 2.13 | 0.81 | 3.40 | 2.78 | 28.5 | 1075 | 105 | 92 | 345 | 70 | 2.13 | 2.24 | 0.58 | 1.76 | 3.00 | 0.97 | 2.44 | 4.00 | 7.17 | 634 | 173 | 466 | 56 |
| Grignolino | 12.37 | 23.30 | 102.6 | 1.91 | 1.63 | 0.96 | 3.21 | 2.30 | 24.5 | 925 | 120 | 88 | 302 | 79 | 2.22 | 2.45 | 0.40 | 1.90 | 2.12 | 0.89 | 2.78 | 3.70 | 8.85 | 530 | 166 | 342 | 108 |
| Grignolino | 12.04 | 22.80 | 111.8 | 1.40 | 4.30 | 0.74 | 3.20 | 2.38 | 22.0 | 930 | 98 | 80 | 138 | 41 | 2.10 | 1.75 | 0.42 | 1.35 | 2.60 | 0.79 | 2.57 | 4.40 | 6.57 | 585 | 144 | 580 | 115 |
| Barbera | 12.86 | 26.80 | 87.3 | 0.99 | 1.35 | 0.92 | 3.22 | 2.32 | 18.0 | 830 | 52 | 122 | 266 | 46 | 1.51 | 1.25 | 0.21 | 0.94 | 4.10 | 0.76 | 1.29 | 1.26 | 6.43 | 673 | 252 | 630 | 122 |
| Barbera | 12.88 | 23.95 | 78.9 | 1.85 | 2.99 | 0.98 | 3.50 | 2.40 | 20.0 | 795 | 55 | 104 | 269 | 72 | 1.30 | 1.22 | 0.24 | 0.83 | 5.40 | 0.74 | 1.42 | 1.34 | 10.10 | 918 | 319 | 530 | 102 |
| Barbera | 12.81 | 24.45 | 76.2 | 2.93 | 2.31 | 0.87 | 3.64 | 2.40 | 24.0 | 785 | 49 | 98 | 266 | 67 | 1.15 | 1.09 | 0.27 | 0.83 | 5.70 | 0.66 | 1.36 | 1.24 | 10.02 | 1095 | 258 | 560 | 132 |
| Barbera | 12.70 | 24.75 | 91.0 | 1.91 | 3.55 | 1.80 | 3.26 | 2.36 | 21.5 | 805 | 47 | 106 | 356 | 118 | 1.70 | 1.20 | 0.17 | 0.84 | 5.00 | 0.78 | 1.29 | 1.23 | 8.52 | 1020 | 238 | 600 | 121 |
| Barbera | 12.51 | 23.50 | 104.7 | 1.34 | 1.24 | 0.98 | 3.50 | 2.25 | 17.5 | 975 | 60 | 85 | 273 | 29 | 2.00 | 0.58 | 0.60 | 1.25 | 5.45 | 0.75 | 1.51 | 1.40 | 8.32 | 764 | 178 | 650 | 79 |
| Barbera | 12.60 | 23.60 | 80.6 | 2.26 | 2.46 | 0.97 | 3.31 | 2.20 | 18.5 | 760 | 103 | 94 | 275 | 77 | 1.62 | 0.66 | 0.63 | 0.94 | 7.10 | 0.73 | 1.58 | 1.37 | 6.47 | 573 | 174 | 695 | 100 |
| Barbera | 12.25 | 25.30 | 91.4 | 1.42 | 4.72 | 1.25 | 3.40 | 2.54 | 21.0 | 995 | 105 | 89 | 262 | 144 | 1.38 | 0.47 | 0.53 | 0.80 | 3.85 | 0.75 | 1.27 | 1.12 | 8.25 | 680 | 217 | 720 | 107 |
| Barbera | 12.53 | 27.10 | 99.8 | 1.88 | 5.51 | 1.19 | 3.30 | 2.64 | 25.0 | 930 | 100 | 96 | 360 | 6 | 1.79 | 0.60 | 0.63 | 1.10 | 5.00 | 0.82 | 1.69 | 1.80 | 8.35 | 821 | 230 | 515 | 139 |
| Barbera | 13.49 | 25.70 | 115.5 | 2.17 | 3.59 | 1.47 | 3.24 | 2.19 | 19.5 | 825 | 111 | 88 | 315 | 56 | 1.62 | 0.48 | 0.58 | 0.88 | 5.70 | 0.81 | 1.82 | 2.23 | 10.40 | 700 | 245 | 580 | 150 |
| Barbera | 12.84 | 26.20 | 82.0 | 1.79 | 2.96 | 1.26 | 3.50 | 2.61 | 24.0 | 925 | 48 | 101 | 398 | 15 | 2.32 | 0.60 | 0.53 | 0.81 | 4.92 | 0.89 | 2.15 | 2.25 | 10.60 | 940 | 269 | 590 | 132 |
| Barbera | 12.93 | 26.78 | 80.0 | 1.69 | 2.81 | 1.15 | 3.31 | 2.70 | 21.0 | 965 | 40 | 96 | 351 | 25 | 1.54 | 0.50 | 0.53 | 0.75 | 4.60 | 0.77 | 2.31 | 2.34 | 10.62 | 955 | 260 | 600 | 82 |
| Barbera | 13.36 | 24.12 | 97.8 | 2.83 | 2.56 | 0.77 | 3.35 | 2.35 | 20.0 | 880 | 47 | 89 | 235 | 71 | 1.40 | 0.50 | 0.37 | 0.64 | 5.60 | 0.70 | 2.47 | 2.60 | 10.41 | 814 | 216 | 780 | 106 |
| Barbera | 13.52 | 27.90 | 85.0 | 1.46 | 3.17 | 1.23 | 3.28 | 2.72 | 23.5 | 880 | 38 | 97 | 325 | 21 | 1.55 | 0.52 | 0.50 | 0.55 | 4.35 | 0.89 | 2.06 | 2.21 | 10.20 | 976 | 201 | 520 | 118 |
| Barbera | 13.62 | 25.52 | 93.7 | 2.70 | 4.95 | 1.56 | 3.41 | 2.35 | 20.0 | 805 | 57 | 92 | 191 | 16 | 2.00 | 0.80 | 0.47 | 1.02 | 4.40 | 0.91 | 2.05 | 2.55 | 8.90 | 899 | 205 | 550 | 140 |
| Barbera | 12.25 | 23.40 | 113.5 | 3.54 | 3.88 | 1.04 | 3.01 | 2.20 | 18.5 | 785 | 77 | 112 | 358 | 14 | 1.38 | 0.78 | 0.29 | 1.14 | 8.21 | 0.65 | 2.00 | 2.23 | 8.16 | 521 | 218 | 855 | 97 |
| Barbera | 13.16 | 22.90 | 117.9 | 3.15 | 3.57 | 1.18 | 3.14 | 2.15 | 21.0 | 805 | 88 | 102 | 456 | 17 | 1.50 | 0.55 | 0.43 | 1.30 | 4.00 | 0.60 | 1.68 | 2.24 | 5.61 | 696 | 252 | 830 | 63 |
| Barbera | 13.88 | 21.40 | 99.3 | 2.81 | 5.04 | 1.29 | 3.28 | 2.23 | 20.0 | 750 | 43 | 80 | 171 | 10 | 0.98 | 0.34 | 0.40 | 0.68 | 4.90 | 0.58 | 1.33 | 1.81 | 7.94 | 670 | 156 | 415 | 154 |
| Barbera | 12.87 | 24.35 | 98.9 | 2.51 | 4.61 | 1.25 | 3.18 | 2.48 | 21.5 | 830 | 63 | 86 | 366 | 50 | 1.70 | 0.65 | 0.47 | 0.86 | 7.65 | 0.54 | 1.86 | 2.10 | 8.52 | 806 | 213 | 625 | 122 |
| Barbera | 13.32 | 21.46 | 96.9 | 2.85 | 3.24 | 1.75 | 3.30 | 2.38 | 21.5 | 790 | 42 | 92 | 306 | 21 | 1.93 | 0.76 | 0.45 | 1.25 | 8.42 | 0.55 | 1.62 | 2.19 | 6.12 | 604 | 219 | 650 | 106 |
| Barbera | 13.08 | 26.80 | 120.6 | 2.90 | 3.90 | 1.11 | 3.16 | 2.36 | 21.5 | 790 | 73 | 113 | 303 | 50 | 1.41 | 1.39 | 0.34 | 1.14 | 9.40 | 0.57 | 1.33 | 1.26 | 7.36 | 733 | 164 | 550 | 114 |
| Barbera | 13.50 | 26.50 | 105.5 | 2.31 | 3.12 | 1.31 | 3.23 | 2.62 | 24.0 | 980 | 67 | 123 | 338 | 106 | 1.40 | 1.57 | 0.22 | 1.25 | 8.60 | 0.59 | 1.30 | 1.29 | 6.28 | 568 | 129 | 500 | 107 |
| Barbera | 12.79 | 23.40 | 117.8 | 3.12 | 2.67 | 0.82 | 3.21 | 2.48 | 22.0 | 890 | 53 | 112 | 407 | 127 | 1.48 | 1.36 | 0.24 | 1.26 | 10.80 | 0.48 | 1.47 | 1.40 | 7.00 | 898 | 154 | 480 | 91 |
| Barbera | 13.11 | 25.20 | 95.4 | 2.26 | 1.90 | 0.86 | 3.49 | 2.75 | 25.5 | 1140 | 74 | 116 | 289 | 55 | 2.20 | 1.28 | 0.26 | 1.56 | 7.10 | 0.61 | 1.33 | 1.25 | 8.57 | 905 | 249 | 425 | 125 |
| Barbera | 13.23 | 23.85 | 120.6 | 2.80 | 3.30 | 0.80 | 3.20 | 2.28 | 18.5 | 915 | 68 | 98 | 351 | 35 | 1.80 | 0.83 | 0.61 | 1.87 | 10.52 | 0.56 | 1.51 | 1.42 | 10.80 | 915 | 154 | 675 | 84 |
| Barbera | 12.58 | 21.75 | 102.7 | 2.92 | 1.29 | 0.79 | 3.21 | 2.10 | 20.0 | 875 | 107 | 103 | 368 | 100 | 1.48 | 0.58 | 0.53 | 1.40 | 7.60 | 0.58 | 1.55 | 1.34 | 7.52 | 924 | 142 | 640 | 100 |
| Barbera | 13.17 | 23.20 | 129.3 | 2.28 | 5.19 | 1.49 | 3.58 | 2.32 | 22.0 | 1045 | 102 | 93 | 241 | 84 | 1.74 | 0.63 | 0.61 | 1.55 | 7.90 | 0.60 | 1.48 | 1.31 | 9.50 | 969 | 207 | 725 | 84 |
| Barbera | 13.84 | 24.70 | 122.9 | 2.76 | 4.12 | 1.07 | 3.19 | 2.38 | 19.5 | 840 | 108 | 89 | 402 | 6 | 1.80 | 0.83 | 0.48 | 1.56 | 9.01 | 0.57 | 1.64 | 1.92 | 9.29 | 902 | 159 | 480 | 132 |
| Barbera | 12.45 | 25.35 | 105.9 | 2.23 | 3.03 | 1.24 | 3.62 | 2.64 | 27.0 | 1050 | 118 | 97 | 393 | 53 | 1.90 | 0.58 | 0.63 | 1.14 | 7.50 | 0.67 | 1.73 | 2.18 | 10.20 | 865 | 252 | 880 | 118 |
| Barbera | 14.34 | 29.10 | 97.5 | 2.73 | 1.68 | 1.60 | 3.42 | 2.70 | 25.0 | 1095 | 78 | 98 | 462 | 49 | 2.80 | 1.31 | 0.53 | 2.70 | 13.00 | 0.57 | 1.96 | 2.25 | 10.82 | 764 | 223 | 660 | 182 |
| Barbera | 13.48 | 26.95 | 102.5 | 3.75 | 1.67 | 1.37 | 3.41 | 2.64 | 22.5 | 1055 | 79 | 89 | 480 | 35 | 2.60 | 1.10 | 0.52 | 2.29 | 11.75 | 0.57 | 1.78 | 2.09 | 11.09 | 1080 | 250 | 620 | 160 |
| Barbera | 12.36 | 34.60 | 116.5 | 2.25 | 3.83 | 0.99 | 3.32 | 2.38 | 21.0 | 1035 | 112 | 88 | 394 | 28 | 2.30 | 0.92 | 0.50 | 1.04 | 7.65 | 0.56 | 1.58 | 2.00 | 9.29 | 636 | 154 | 520 | 127 |
| Barbera | 13.69 | 24.80 | 74.9 | 1.04 | 3.26 | 0.75 | 3.36 | 2.54 | 20.0 | 1010 | 54 | 107 | 394 | 21 | 1.83 | 0.56 | 0.50 | 0.80 | 5.88 | 0.96 | 1.82 | 2.61 | 9.31 | 653 | 275 | 680 | 130 |
| Barbera | 12.85 | 25.70 | 86.9 | 1.79 | 3.27 | 0.92 | 3.33 | 2.58 | 22.0 | 935 | 46 | 106 | 318 | 48 | 1.65 | 0.60 | 0.60 | 0.96 | 5.58 | 0.87 | 2.11 | 2.77 | 9.77 | 814 | 224 | 570 | 102 |
| Barbera | 12.96 | 23.30 | 97.9 | 2.66 | 3.45 | 1.31 | 3.11 | 2.35 | 18.5 | 795 | 35 | 106 | 257 | 11 | 1.39 | 0.70 | 0.40 | 0.94 | 5.28 | 0.68 | 1.75 | 2.00 | 10.13 | 667 | 212 | 675 | 123 |
| Barbera | 13.78 | 25.10 | 103.5 | 3.80 | 2.76 | 1.23 | 3.13 | 2.30 | 22.0 | 803 | 88 | 90 | 417 | 19 | 1.35 | 0.68 | 0.41 | 1.03 | 9.58 | 0.70 | 1.68 | 2.05 | 8.93 | 677 | 198 | 615 | 109 |
| Barbera | 13.73 | 24.65 | 92.6 | 2.91 | 4.36 | 1.10 | 3.31 | 2.26 | 22.5 | 785 | 96 | 88 | 360 | 34 | 1.28 | 0.47 | 0.52 | 1.15 | 6.62 | 0.78 | 1.75 | 2.15 | 9.67 | 670 | 275 | 520 | 131 |
| Barbera | 13.45 | 24.90 | 82.9 | 1.91 | 3.70 | 1.13 | 3.28 | 2.60 | 23.0 | 890 | 56 | 111 | 386 | 8 | 1.70 | 0.92 | 0.43 | 1.46 | 10.68 | 0.85 | 1.56 | 1.60 | 10.37 | 733 | 196 | 695 | 107 |
| Barbera | 12.82 | 22.40 | 119.9 | 3.86 | 3.37 | 0.96 | 2.98 | 2.30 | 19.5 | 810 | 81 | 88 | 308 | 14 | 1.48 | 0.66 | 0.40 | 0.97 | 10.26 | 0.72 | 1.75 | 1.90 | 8.45 | 589 | 158 | 685 | 132 |
| Barbera | 13.58 | 27.20 | 119.9 | 3.04 | 2.58 | 0.98 | 2.98 | 2.69 | 24.5 | 930 | 80 | 105 | 369 | 38 | 1.55 | 0.84 | 0.39 | 1.54 | 8.66 | 0.74 | 1.80 | 1.96 | 8.90 | 847 | 215 | 750 | 129 |
| Barbera | 13.40 | 28.15 | 137.8 | 3.48 | 4.60 | 1.34 | 3.06 | 2.86 | 25.0 | 1085 | 92 | 112 | 387 | 27 | 1.98 | 0.96 | 0.27 | 1.11 | 8.50 | 0.67 | 1.92 | 2.15 | 7.80 | 700 | 218 | 630 | 117 |
| Barbera | 12.20 | 23.70 | 107.3 | 3.23 | 3.03 | 0.74 | 3.08 | 2.32 | 19.0 | 845 | 87 | 96 | 265 | 56 | 1.25 | 0.49 | 0.40 | 0.73 | 5.50 | 0.66 | 1.83 | 2.80 | 7.90 | 854 | 224 | 510 | 77 |
| Barbera | 12.77 | 23.70 | 111.5 | 3.34 | 2.39 | 0.79 | 2.99 | 2.28 | 19.5 | 850 | 69 | 86 | 394 | 13 | 1.39 | 0.51 | 0.48 | 0.64 | 9.90 | 0.57 | 1.63 | 1.69 | 6.07 | 579 | 156 | 470 | 152 |
| Barbera | 14.16 | 23.82 | 118.2 | 3.63 | 2.51 | 1.12 | 3.10 | 2.48 | 20.0 | 840 | 73 | 91 | 319 | 15 | 1.68 | 0.70 | 0.44 | 1.24 | 9.70 | 0.62 | 1.71 | 1.90 | 8.93 | 953 | 196 | 660 | 135 |
| Barbera | 13.71 | 24.95 | 113.9 | 2.88 | 5.65 | 1.75 | 3.15 | 2.45 | 20.5 | 1035 | 72 | 95 | 298 | 12 | 1.68 | 0.61 | 0.52 | 1.06 | 7.70 | 0.64 | 1.74 | 1.94 | 9.90 | 1120 | 238 | 740 | 120 |
| Barbera | 13.40 | 24.60 | 126.2 | 2.94 | 3.91 | 1.25 | 3.12 | 2.48 | 23.0 | 860 | 84 | 102 | 490 | 15 | 1.80 | 0.75 | 0.43 | 1.41 | 7.30 | 0.70 | 1.56 | 1.93 | 7.58 | 855 | 226 | 750 | 96 |
| Barbera | 13.27 | 22.75 | 103.9 | 2.84 | 4.28 | 1.62 | 3.16 | 2.26 | 20.0 | 760 | 61 | 120 | 526 | 6 | 1.59 | 0.69 | 0.43 | 1.35 | 10.20 | 0.59 | 1.56 | 1.94 | 7.27 | 749 | 157 | 835 | 126 |
| Barbera | 13.17 | 23.45 | 113.9 | 3.87 | 2.59 | 1.59 | 3.17 | 2.37 | 20.0 | 785 | 62 | 120 | 534 | 6 | 1.65 | 0.68 | 0.53 | 1.46 | 9.30 | 0.60 | 1.62 | 2.05 | 11.16 | 1110 | 160 | 840 | 52 |
| Barbera | 14.13 | 27.20 | 125.9 | 3.18 | 4.10 | 1.43 | 3.21 | 2.74 | 24.5 | 930 | 53 | 96 | 315 | 35 | 2.05 | 0.76 | 0.56 | 1.35 | 9.20 | 0.61 | 1.60 | 1.87 | 11.28 | 857 | 198 | 560 | 112 |
Observed variables are:
colnames(df)
## [1] "type" "Alcohol"
## [3] "Sugar.free.extract" "Fixed.acidity"
## [5] "Tartaric.acid" "Malic.acid"
## [7] "Uronic.acids" "pH"
## [9] "Ash" "Alcalinity.of.ash"
## [11] "Potassium" "Calcium"
## [13] "Magnesium" "Phosphate"
## [15] "Chloride" "Total.phenols"
## [17] "Flavanoids" "Nonflavanoid.phenols"
## [19] "Proanthocyanins" "Color.intensity"
## [21] "Hue" "OD280.OD315.of.diluted.wines"
## [23] "OD280.OD315.of.flavonoids" "Glycerol"
## [25] "2.3.butanediol" "Total.nitrogen"
## [27] "Proline" "Methanol"
We can also divide the samples in three classes:
df %>% group_by(type) %>% summarise(count = n()) %>% kable() %>% kable_minimal(full_width = F)
| type | count |
|---|---|
| Barbera | 48 |
| Barolo | 59 |
| Grignolino | 71 |
#PCA
Befor performing PCA you need to autoscale in order
to have a dataset where all the columns have mean = 0 and standard
deviation = 1
\[
X^*_{i,j} = \frac{X_{i,j} - \overline{X_i}}{S_{X_i}}
\]
For all values within each column subtract their mean and then divide
by their standard deviation
dfa = df[,-1]
dfa = data.frame(scale(dfa))
kable(dfa) %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
scroll_box( height = "600px", width = '910px')
| Alcohol | Sugar.free.extract | Fixed.acidity | Tartaric.acid | Malic.acid | Uronic.acids | pH | Ash | Alcalinity.of.ash | Potassium | Calcium | Magnesium | Phosphate | Chloride | Total.phenols | Flavanoids | Nonflavanoid.phenols | Proanthocyanins | Color.intensity | Hue | OD280.OD315.of.diluted.wines | OD280.OD315.of.flavonoids | Glycerol | X2.3.butanediol | Total.nitrogen | Proline | Methanol |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.5143408 | -0.2053617 | -0.6700454 | -1.2514422 | -0.5606682 | -0.7715621 | 0.5368170 | 0.2313998 | -1.1663032 | 0.6446457 | -0.5940655 | 1.9085215 | -0.4861718 | 0.3696880 | 0.8067217 | 1.0319081 | -0.6577078 | 1.2214385 | 0.2510088 | 0.3610679 | 1.8427215 | 2.0160386 | 0.2856855 | 0.1788922 | -1.2542737 | 1.0101594 | 0.1257762 |
| 0.2455968 | 0.4558517 | -0.6860711 | -0.2528886 | -0.4980086 | -0.8111865 | -0.0240248 | -0.8256672 | -2.4838405 | -1.0830488 | -0.1100276 | 0.0180940 | 0.3253303 | 0.5295045 | 0.5670481 | 0.7315653 | -0.8184106 | -0.5431887 | -0.2924962 | 0.4048188 | 1.1103172 | 0.9232054 | 0.0712206 | 1.0708073 | -0.6715702 | 0.9625263 | -0.6420487 |
| 0.1963252 | 0.4558517 | -0.9157718 | -0.0943880 | 0.0211715 | -0.2960697 | 1.2378692 | 1.1062139 | -0.2679823 | 0.5139012 | -0.2961961 | 0.0881098 | 1.4289731 | 0.0700320 | 0.8067217 | 1.2121137 | -0.4970050 | 2.1299594 | 0.2682629 | 0.3173170 | 0.7863692 | 0.5401505 | 1.7452386 | 1.2074717 | -0.5010228 | 1.3912237 | 0.6107181 |
| 1.6867914 | 0.2548071 | -0.5738916 | -0.6491400 | -0.3458351 | -0.7715621 | 0.8873431 | 0.4865539 | -0.8069748 | 0.9715068 | -1.1525708 | 0.9282998 | 2.3270354 | -0.2895553 | 2.4844372 | 1.4623994 | -0.9791134 | 1.0292513 | 1.1827317 | -0.4264485 | 1.1807407 | 0.6302811 | 0.7861037 | 2.7827089 | 0.7212333 | 2.3280068 | -1.2078143 |
| 0.2948684 | 0.3441603 | -0.1144902 | -1.1087916 | 0.2270533 | 0.7341638 | 0.8172379 | 1.8352256 | 0.4506745 | 1.9334124 | -0.2961961 | 1.2783790 | 0.4659906 | 0.0300778 | 0.8067217 | 0.6614853 | 0.2261576 | 0.4002753 | -0.3183774 | 0.3610679 | 0.4483365 | 0.2697588 | 0.8695068 | 0.4809925 | -0.3731123 | -0.0377675 | -1.4906972 |
| 1.4773871 | 1.3940599 | -0.3067978 | 0.2226132 | -0.5159113 | 0.1794227 | 0.6069222 | 0.3043010 | -1.2860793 | -0.1211432 | -0.2589624 | 0.8582840 | 0.5741909 | -0.1097616 | 1.5576991 | 1.3622851 | -0.1755994 | 0.6623487 | 0.7298108 | 0.4048188 | 0.3356589 | 0.2021608 | 1.2150336 | 0.9557215 | 1.7445176 | 2.2327407 | -1.6927563 |
| 1.7114272 | 0.7775231 | -1.1401306 | -0.5698897 | -0.4174461 | 0.1397983 | 0.8172379 | 0.3043010 | -1.4657435 | 0.0749734 | -0.4078971 | -0.2619694 | -0.6376522 | -0.2296240 | 0.3273744 | 0.4912911 | -0.4970050 | 0.6798202 | 0.0827810 | 0.2735661 | 1.3638418 | 1.0809339 | 0.1427089 | 1.4304505 | 1.9434895 | 1.7246550 | -1.2078143 |
| 1.3049364 | 0.5005283 | -0.6486779 | -1.0612415 | -0.1668075 | 0.8926613 | 1.6585005 | 0.8875103 | -0.5674226 | 0.1216679 | -1.0408697 | 1.4884265 | 1.4830732 | 0.0101008 | 0.4871569 | 0.4812796 | -0.4166536 | -0.5956034 | -0.0034896 | 0.4485697 | 1.3638418 | 1.0809339 | 0.7861037 | 0.9557215 | 1.6592439 | 1.7405327 | -0.3995777 |
| 2.2534149 | 0.6792346 | -0.8623530 | -0.2845887 | -0.6233279 | -0.9696839 | -0.0240248 | -0.7163155 | -1.6454077 | -1.0830488 | -1.0781034 | -0.1919535 | 0.8122315 | -0.1097616 | 0.8067217 | 0.9518167 | -0.5773564 | 0.6798202 | 0.0612134 | 0.5360715 | 0.3356589 | 0.0556987 | 0.6431271 | 0.6680069 | 2.7962264 | 0.9466487 | 1.2573075 |
| 1.0585784 | 0.7685878 | -0.9157718 | -0.1260881 | -0.8829179 | -0.9696839 | -0.2343405 | -0.3518096 | -1.0465271 | -0.8122210 | -1.0036361 | -0.1219377 | 0.2820502 | 0.0101008 | 1.0943301 | 1.1220109 | -1.1398162 | 0.4526900 | 0.9325468 | 0.2298152 | 1.3215877 | 0.8668738 | 2.2873583 | 0.4018710 | 1.5455457 | 0.9466487 | 0.4490708 |
| 1.3542080 | 0.3575632 | -0.7020967 | -0.5698897 | -0.1578561 | -1.1678058 | 0.0460804 | -0.2424578 | -0.4476464 | -0.4013099 | -0.6312992 | 0.3681732 | 0.3686104 | -0.0498304 | 1.0463954 | 1.2922052 | -1.1398162 | 1.3786825 | 0.2984576 | 1.2798370 | 0.7863692 | 0.3260904 | -0.1313297 | 1.6678150 | 1.9434895 | 2.4232729 | 0.5298945 |
| 1.3788438 | 1.3717216 | -0.6807292 | -0.7759404 | -0.7665500 | 0.1794227 | -0.7250771 | -0.1695567 | -0.8069748 | -0.5040377 | -0.6685329 | -0.3319852 | 0.6391111 | 0.3097568 | -0.1519728 | 0.4011882 | -0.8184106 | -0.0365136 | -0.0250573 | 0.9298297 | 0.2934048 | 0.0669650 | 1.6141767 | 1.1643145 | 0.7496579 | 1.6928996 | 0.9744246 |
| 0.9230815 | 2.2205766 | -0.5632079 | -0.1260881 | -0.5427655 | -1.0885570 | -0.8652875 | 0.1584986 | -1.0465271 | -1.2044544 | -0.4823645 | -0.7520802 | 0.9528919 | 3.8656749 | 0.4871569 | 0.7315653 | -0.5773564 | 0.3828038 | 0.2337547 | 0.8423279 | 0.4060824 | -0.0682309 | 2.0431066 | 0.3730995 | 0.6785965 | 1.8199211 | 2.1867796 |
| 2.1548717 | 2.2875915 | 0.7081588 | 0.1275128 | -0.5427655 | -0.7715621 | -2.0570763 | 0.0855974 | -2.4239525 | 0.2710901 | -1.1898045 | -0.6120485 | 1.5696335 | -0.2695782 | 1.2860690 | 1.6626279 | 0.5475632 | 2.1299594 | 0.1474840 | 1.2798370 | 0.1666425 | -0.1808941 | 2.0728934 | 0.2436280 | -0.2452018 | 1.2800799 | -0.1975185 |
| 1.6991093 | 0.8132643 | -0.7127804 | -0.0785379 | -0.4174461 | -0.9696839 | -0.7250771 | 0.0491469 | -2.2442883 | 0.4298512 | -1.8227771 | 0.1581256 | 1.7102938 | -0.1696928 | 1.6056339 | 1.6125708 | -0.5773564 | 2.3920327 | 1.0533257 | 1.0610825 | 0.5469294 | 0.3824220 | 0.4286621 | 2.2216655 | 1.1760263 | 2.5407677 | 0.1661880 |
| 0.7752666 | 0.8356026 | -0.8570111 | -0.8234906 | -0.4711544 | -0.9696839 | 1.1677640 | 1.2155656 | -0.6871987 | 0.2243957 | -1.8600108 | 0.8582840 | 0.2171300 | -0.2695782 | 0.8866129 | 0.8817367 | -0.4970050 | -0.2287007 | 0.9670551 | 1.4110897 | 0.3779130 | 0.1570956 | -0.5304728 | 0.5744997 | -0.1741404 | 1.7881657 | -0.5208132 |
| 1.6005661 | 1.1706770 | -0.5738916 | -0.9344410 | -0.3726892 | -0.3753184 | 0.6770274 | 1.2884668 | 0.1512342 | -0.1958543 | 1.1186840 | 1.4184107 | 1.6020936 | -0.0298534 | 0.8067217 | 1.1119995 | -0.2559508 | 0.6623487 | 0.4925666 | 0.4923206 | 0.0539650 | 0.1345629 | 0.2558987 | 0.7471284 | 0.9486298 | 1.6928996 | 0.1257762 |
| 1.0216247 | 0.4558517 | -1.1080793 | -0.1102380 | -0.6859876 | -0.9300596 | 0.8873431 | 0.9239609 | 0.1512342 | 0.2243957 | -0.3706634 | 1.0683315 | 0.5850109 | -0.1097616 | 1.0463954 | 1.3722966 | 0.3065090 | 0.2255598 | 0.6651078 | 0.7548261 | -0.0587126 | -0.3611552 | 0.3571738 | -0.0728581 | 0.4654123 | 1.2165692 | -0.4399895 |
| 1.4650692 | 0.5005283 | -0.7288061 | -0.2370385 | -0.6680848 | -0.3753184 | 0.5368170 | 0.4136527 | -0.8968069 | 0.7753901 | 0.2995429 | 0.5782207 | 1.3315929 | -0.7090737 | 1.6056339 | 1.9029021 | -0.3363022 | 0.4701615 | 1.5709495 | 1.1923352 | 0.2934048 | 0.2134272 | 0.6192977 | 0.5457282 | -0.1599281 | 2.9631140 | 1.0148365 |
| 0.7875845 | 1.0902591 | 0.3128599 | -1.0295414 | 0.6835737 | -0.3753184 | -0.0240248 | 0.7052574 | -1.2860793 | 1.4664679 | 1.2303850 | 1.1383473 | 0.4010705 | 0.0700320 | 0.6469393 | 1.0018738 | -1.5415732 | 0.1207304 | 0.0180781 | 0.0110606 | 1.0539784 | 1.1485318 | 0.9409951 | -0.0440866 | -0.2025649 | 0.3115415 | 0.3682472 |
| 1.3049364 | 0.0180212 | -0.7768830 | -1.0453914 | -0.6322793 | 0.3379202 | 1.1677640 | -0.3153590 | -1.0465271 | 0.2243957 | 0.0389071 | 1.8385057 | -0.4537117 | 0.1898944 | 1.1262866 | 1.1420338 | -0.9791134 | 0.8894789 | 0.2553223 | 0.5798225 | 1.5469428 | 0.8668738 | 0.8873788 | 0.6895855 | -0.2309895 | 0.1051316 | 1.4189548 |
| -0.0869865 | 1.5727662 | 0.8790989 | -1.5050431 | 1.3101703 | -0.0979479 | -0.3044457 | 1.0333127 | -0.2679823 | 0.3177846 | 0.0389071 | 0.1581256 | -0.7674925 | -0.0298534 | 0.1835703 | 0.3811654 | -0.8987620 | 0.6798202 | -0.2407339 | 0.3173170 | 1.2793336 | 0.7654769 | 1.8286416 | -1.0295090 | -0.0604421 | 0.0733763 | 0.5298945 |
| 0.8738098 | 1.0500502 | -0.3014559 | 0.3652637 | -0.4263975 | 1.1700319 | 0.1862908 | -0.0237543 | -0.8668629 | -0.6161044 | 0.4112440 | 0.0881098 | 1.2017525 | 1.4084955 | 0.5031351 | 0.8517024 | -0.7380592 | 0.1731451 | -0.5426811 | 0.6673243 | 1.9553990 | 1.4977878 | -0.0002677 | -0.1232081 | 0.4085632 | 0.9148933 | -0.0358712 |
| -0.1855298 | 0.2324688 | -0.8570111 | -0.7283903 | -0.6591334 | -0.4941915 | 1.0275535 | 0.5594551 | -0.5075345 | 0.7193568 | 0.8580482 | -0.3319852 | 0.5417308 | 0.1898944 | 0.2954180 | 0.3411197 | -0.8184106 | -0.2287007 | -0.4866052 | 0.5798225 | 1.4342653 | 0.9457381 | 0.1963251 | -1.1805591 | 0.0958930 | 0.8513826 | -0.3187540 |
| 0.6151339 | -0.1249438 | -0.2159859 | -0.7125402 | -0.4711544 | 0.1397983 | 0.8172379 | 0.8875103 | 0.1512342 | 1.0368790 | -0.5940655 | -0.2619694 | 1.2017525 | -0.3295094 | 0.3753092 | 0.5813939 | -0.6577078 | 0.1207304 | -0.6634600 | 0.7110752 | 1.7018745 | 1.1485318 | 0.3810033 | -0.4684656 | -0.4441737 | 0.3115415 | -0.9653433 |
| 0.0608283 | 0.1967275 | -0.3922678 | -1.3465425 | -0.2563213 | 0.6549151 | 1.8688162 | 3.1109961 | 1.6484357 | 1.9987846 | -0.5568318 | 1.6984740 | 1.8509542 | 0.3696880 | 0.5350916 | 0.6514739 | 0.8689688 | 0.5749909 | -0.6375788 | 0.7548261 | 0.8286233 | 0.7316779 | 0.9112083 | 0.1501207 | -0.0462298 | 0.2639084 | 0.5703063 |
| 0.4796370 | 0.8132643 | -0.7127804 | -0.7600904 | -0.5069599 | 0.5360420 | 1.0976587 | 0.9239609 | -1.0165830 | 0.5139012 | -0.3706634 | -0.4720169 | 0.3253303 | -0.2296240 | 0.8866129 | 0.9117710 | -0.1755994 | -0.2461723 | -0.1113279 | -0.1639430 | 0.8567927 | 1.6442500 | 0.6848286 | 0.8766000 | 0.6217474 | 1.4229791 | -1.0057552 |
| 0.3687759 | -1.1525052 | -0.9264555 | -0.4113891 | -0.5517168 | 0.5756664 | 0.9574483 | -0.8256672 | -0.7470867 | 0.0096012 | -0.9664024 | -0.4020010 | 0.7473114 | -0.3494865 | 0.1675920 | 0.1609140 | -0.7380592 | -0.4208878 | -0.4779781 | 0.2735661 | 0.2229813 | 0.1345629 | 0.5299373 | 0.1788922 | 1.5455457 | 1.7087773 | -1.0461670 |
| 1.0708963 | 1.7961491 | -0.9264555 | -0.9819912 | -0.3905920 | -0.6526890 | 0.8172379 | 1.5800715 | -0.0284300 | 1.9053957 | -0.3706634 | 0.5082048 | 0.3361503 | 0.2498256 | 1.0463954 | 0.9418052 | 0.0654548 | 0.2954460 | -0.2407339 | 1.2798370 | 1.1103172 | 0.8330748 | 0.4286621 | -0.2167153 | 0.5506860 | 0.5338290 | -0.4399895 |
| 1.2556648 | -0.0355907 | -0.8570111 | -0.4589393 | -0.5875224 | -0.4941915 | -0.3044457 | -0.5705131 | -1.0465271 | -0.9429655 | -0.5940655 | -0.2619694 | 1.5696335 | -0.2096470 | 0.5670481 | 0.3010740 | -0.8184106 | 0.6798202 | -0.1544632 | 0.3610679 | 1.3779265 | 0.8894064 | 0.6729139 | -0.3102226 | 0.7354456 | 0.9148933 | -0.3995777 |
| 0.8984457 | 0.6568963 | -0.5578660 | -0.7442403 | -0.7486472 | -1.0093083 | -0.0240248 | 1.2155656 | 0.8998349 | 1.7372957 | -0.0727939 | 0.0881098 | 0.7689514 | -0.2096470 | 1.1262866 | 1.2221252 | -0.5773564 | 1.3786825 | 0.2768900 | 1.0173315 | 0.1384731 | 0.0218997 | 0.9707819 | 0.4306424 | 1.2897246 | 1.7087773 | 0.4086590 |
| 0.7136771 | 1.3717216 | -1.2629938 | -1.3623926 | -0.6054251 | -0.7715621 | -0.1642353 | -0.0237543 | -0.1182621 | -0.7094933 | -0.7430003 | 0.4381890 | 1.2991328 | 8.6801482 | 0.9025912 | 1.1620566 | -1.1398162 | 0.6274055 | 0.7945138 | 0.5798225 | 0.3779130 | 0.0894976 | 1.1435453 | -0.2311011 | 0.7780825 | 2.4391506 | -0.0762830 |
| 0.8368561 | 0.7596525 | -1.1134212 | -0.6332899 | -0.4532517 | -1.1678058 | 0.6770274 | -0.0237543 | -0.6871987 | 1.7466346 | -1.7110761 | 0.2981573 | 0.3577904 | 0.2498256 | 0.1995485 | 0.6614853 | 0.4672118 | 0.6623487 | -0.5254270 | 1.1923352 | 0.3638283 | 0.0669650 | 2.4958659 | 0.0062634 | 0.1527421 | 0.7719942 | 1.2573075 |
| 0.9353994 | 0.6792346 | -0.4563703 | -0.3004387 | -0.7217931 | -0.2960697 | 0.6770274 | 1.2155656 | 0.0015140 | 0.8687790 | -1.4504403 | 2.2586007 | 0.3145102 | 1.2886331 | 1.0463954 | 0.7115424 | 1.1100230 | -0.4208878 | 0.1474840 | 1.2798370 | 0.5469294 | 0.3711557 | -0.2862210 | 0.0566135 | 0.7780825 | 1.5500005 | -0.0358712 |
| 0.6274518 | 0.4201104 | -1.0867118 | -1.1404918 | -0.4801058 | -0.8508108 | 0.3966065 | 1.0333127 | -0.1482061 | -0.2332099 | -0.9291687 | 0.7182523 | 1.0719122 | -0.2096470 | 0.0877008 | 0.5013025 | -0.5773564 | -0.0889283 | -0.3701398 | 0.6235734 | 0.3638283 | -0.0794972 | 0.7682316 | -0.2311011 | 0.2380158 | 1.1054255 | -0.9653433 |
| 0.5904981 | 0.3664985 | -0.7875667 | -0.8868908 | -0.4711544 | -0.8904352 | 1.0275535 | 0.1584986 | 0.3009543 | -0.8589155 | -1.0781034 | 0.0180940 | 0.5525509 | -0.5692342 | 0.6469393 | 0.9518167 | -0.8184106 | 0.4701615 | 0.0180781 | 0.3610679 | 1.2089101 | 1.1935971 | -0.3577093 | -1.4251165 | 0.2380158 | 0.5497067 | -1.4098735 |
| 0.3441400 | 1.9748554 | -0.3602166 | -0.7917905 | -0.6233279 | -0.4545672 | -0.0240248 | 1.7258738 | -1.1962472 | 0.7753901 | 0.7463471 | 0.7182523 | 0.7148513 | -0.5093030 | 0.4871569 | 0.6514739 | -0.1755994 | -0.4034163 | -0.1975985 | 0.5798225 | 0.2370660 | 0.2134272 | 2.9128811 | -1.1661734 | -0.2452018 | 0.4226852 | -0.1975185 |
| 0.0608283 | -0.1249438 | -0.7875667 | -1.2989923 | -0.6143765 | -0.0979479 | 0.2563961 | 0.6688068 | -0.4476464 | 1.3450624 | 0.2623092 | -0.1219377 | 0.1846699 | -0.8089590 | 0.2474832 | 0.4011882 | -0.5773564 | -0.2636438 | -0.3485721 | 0.7110752 | -0.1432208 | -0.1245625 | 0.0414338 | -0.7561801 | -0.3020509 | 1.1371808 | 0.9744246 |
| 0.0854641 | -0.4376799 | -0.6273104 | -1.3306924 | -0.7486472 | 0.3379202 | 0.7471326 | -0.9714696 | -1.1962472 | 0.4578679 | -0.1100276 | -0.1219377 | 0.2279500 | -0.9088444 | 0.1675920 | 0.6114282 | -0.6577078 | -0.3859447 | -0.5858164 | 0.9735806 | 0.1103037 | 0.0669650 | 0.4107901 | -0.5332013 | -0.4157491 | 0.8672603 | 1.4189548 |
| 1.5020229 | 2.1982383 | 1.5575172 | -0.2370385 | 1.4802466 | -1.0885570 | -1.3560241 | 0.5230045 | -1.8849599 | 0.1310068 | 0.3740103 | 1.9785373 | -0.9189729 | 0.2498256 | 1.1262866 | 1.0118852 | -1.3005190 | 0.8545358 | 0.0180781 | -0.2951957 | 1.2934183 | 0.7654769 | 2.1026802 | 2.2720156 | -0.3731123 | 0.0416209 | -0.3591658 |
| 0.6890413 | 0.5898814 | -0.2854303 | -0.6808401 | -0.5606682 | -0.0186991 | 0.1161856 | -0.2060072 | -0.9866390 | 0.0843123 | -0.1100276 | 1.2083632 | -0.5294519 | 0.1299632 | 1.3659602 | 1.2621709 | -0.1755994 | 1.3087962 | 0.4623718 | -0.0326903 | 1.0821478 | 0.6190147 | 0.5716388 | 0.0062634 | 0.0674684 | 0.1527647 | 0.3278353 |
| 0.5042728 | 0.9919707 | 0.9111501 | -0.3321388 | 1.3459759 | 0.0209252 | -0.7951823 | -0.8985684 | -0.2080942 | -0.6161044 | 0.0016734 | -0.6820644 | 0.2171300 | 0.1299632 | 0.2474832 | 0.6514739 | -0.7380592 | -0.1937576 | -0.3356316 | -0.2076939 | 0.5469294 | 0.4274873 | 0.2380266 | -1.2021377 | -0.1457158 | 0.9148933 | -0.1571067 |
| 1.0832142 | 1.1260004 | -0.3602166 | 0.6188646 | -0.3995434 | -1.0489327 | 0.1862908 | 0.8146092 | -1.3459674 | 0.9248124 | -0.2589624 | 0.0881098 | 1.4830732 | 0.0700320 | 1.5257427 | 1.5324794 | -1.5415732 | 0.1906166 | 0.1604246 | -0.3389467 | 1.3356724 | 1.1485318 | -0.1194149 | -0.4828513 | 0.6785965 | 1.1054255 | 0.4490708 |
| 0.2948684 | 0.1431157 | 0.8363639 | -0.2687386 | 1.4712952 | -1.1678058 | -0.8652875 | -0.2789084 | -0.5973666 | 0.3644790 | -0.5568318 | 0.2281415 | 0.2604101 | -0.2096470 | 0.5510698 | 0.6014167 | -0.3363022 | 0.1207304 | -0.3011233 | -0.6014521 | 0.5469294 | 0.1908945 | -0.1194149 | -1.1230162 | 0.0958930 | -0.2124219 | -0.1975185 |
| 0.0608283 | -0.7057394 | -0.3014559 | -1.2355921 | -0.5069599 | -0.3753184 | 0.1862908 | -0.9714696 | -0.7470867 | 0.1870401 | -1.0781034 | 0.5082048 | 0.4659906 | -0.2695782 | 1.1262866 | 0.9718395 | -0.6577078 | 0.7671780 | -0.0078031 | -0.3389467 | 1.0398937 | 0.9006728 | 0.6848286 | 2.2432441 | -0.3304755 | 0.4385629 | 1.8230731 |
| 1.4897050 | 1.9525171 | 1.0286714 | -0.4113891 | 1.5250035 | -0.2168210 | 0.3265013 | 0.2678504 | -0.1781502 | 0.4578679 | -0.5568318 | 0.7882682 | -0.4428917 | -0.3494865 | 0.8866129 | 0.6214396 | -0.4970050 | -0.5956034 | 0.0784675 | -0.3826976 | 1.0117244 | 0.9006728 | 0.7563169 | -0.2311011 | 0.3232895 | 1.0577924 | -0.8036960 |
| 1.6991093 | 2.4216212 | 0.2487574 | -1.2038920 | 1.1221913 | 0.2982958 | -1.0054980 | -0.3153590 | -1.0465271 | -0.8682544 | -0.2589624 | 0.1581256 | 0.4659906 | 0.1299632 | 1.5257427 | 1.1420338 | -0.7380592 | 1.0467229 | -0.0681926 | 0.3610679 | 1.1666560 | 0.6528137 | 0.3988753 | 0.2436280 | -0.3304755 | 1.0101594 | -0.7632842 |
| 1.1078500 | 0.0090859 | -0.5578660 | -0.1102380 | -0.5875224 | -1.1281814 | -1.0054980 | -0.8985684 | -1.0465271 | -1.1110655 | 0.1133745 | 0.0881098 | 1.2883127 | -0.1497158 | 1.2860690 | 1.3622851 | -1.2201676 | 0.9593651 | 0.4494312 | -0.2076939 | 1.0117244 | 0.5964821 | -0.0181398 | -1.1661734 | 0.5648983 | 0.7561165 | -1.3290498 |
| 1.3542080 | 0.3128867 | -0.8356436 | -0.2053384 | -0.2831754 | -0.3356941 | -0.7250771 | 0.1220480 | -0.2080942 | -0.0090766 | -0.1100276 | 0.2281415 | 1.2450326 | 0.0101008 | 0.7268305 | 0.8917481 | -0.3363022 | 1.3786825 | 0.4925666 | 0.4923206 | 0.1948119 | -0.1020298 | 0.9588671 | -0.4540798 | 0.1101053 | 0.9942817 | -1.2886380 |
| 1.1571216 | 0.6792346 | -0.6914129 | 0.5554644 | -0.5427655 | -1.2470545 | -0.5147614 | -0.3518096 | -0.6273106 | -0.1211432 | -1.4132066 | 0.5782207 | 0.5958310 | 0.6493669 | 0.9345477 | 1.5124565 | -0.3363022 | 0.8545358 | 1.6572202 | 0.7110752 | 0.6877763 | 0.3598893 | 2.7579897 | 0.1213493 | 2.0145509 | 1.6293889 | 1.8230731 |
| 0.0608283 | -0.4376799 | -0.5151310 | 0.1275128 | -0.5427655 | -1.1281814 | -1.7065502 | -1.1901731 | -2.1245122 | -0.8308988 | -1.5993750 | -0.5420327 | 2.9545970 | -0.2695782 | 0.6788958 | 1.2421480 | -1.5415732 | 2.3046749 | 0.9239197 | 0.7110752 | 0.4201671 | 0.2472261 | 0.2141972 | -1.0223161 | -0.2452018 | 1.2800799 | 0.5703063 |
| 1.0216247 | 1.0366472 | -1.1935494 | -0.2845887 | -0.6143765 | -0.5734403 | 0.1161856 | 0.8510598 | -0.6871987 | 0.8127457 | -1.8600108 | -0.4020010 | 0.4984507 | -0.2096470 | 0.2474832 | 0.9618281 | -1.1398162 | 1.2214385 | 0.2337547 | 1.2360861 | 1.0680631 | 0.7992759 | 0.5716388 | 0.3227495 | 1.2613000 | 1.6452666 | 0.0045407 |
| 1.0093068 | 0.4335134 | -0.5952591 | -0.2687386 | -0.5248627 | -0.5734403 | 0.1862908 | 0.1949492 | -1.6454077 | -0.8962710 | -1.8227771 | 0.7882682 | 1.1584724 | -0.3295094 | 2.5323719 | 1.7126851 | -0.3363022 | 0.4876331 | 0.8592168 | 0.2298152 | 0.9131315 | 0.6190147 | -0.7032362 | -0.2023296 | 1.6876685 | 1.4071014 | -0.8845197 |
| 0.9477173 | -0.0355907 | -1.1134212 | -1.1246417 | -0.3905920 | -0.2960697 | 1.7987110 | 1.1426644 | -0.7171427 | 0.4298512 | -1.6738424 | 1.0683315 | 0.4335306 | -0.0897846 | 1.1262866 | 0.7615996 | 0.2261576 | 0.1556735 | 0.5357019 | 0.7548261 | 0.4483365 | 0.2584925 | -0.6436626 | 0.4522210 | 1.0196912 | 1.9945755 | -0.0358712 |
| 0.9107636 | -0.2142970 | -1.0920537 | -0.1894883 | -0.5964737 | -1.0093083 | 0.8873431 | -0.4247108 | -0.9267509 | -0.9056099 | -0.0727939 | 1.2783790 | 1.4830732 | -0.5292801 | 0.4871569 | 0.8717253 | -1.2201676 | 0.0508442 | 0.3415929 | -0.1639430 | 0.8286233 | 0.4274873 | -0.5006860 | 0.0062634 | 0.7212333 | 0.9942817 | -0.9249315 |
| 0.6890413 | -0.1249438 | -0.4082935 | -0.8076406 | -0.5427655 | -0.8904352 | 0.0460804 | 0.3407515 | 0.3009543 | -0.6814766 | 0.4857113 | 1.1383473 | 0.4984507 | -0.5093030 | 1.0623736 | 0.7515881 | -1.3005190 | 1.5009834 | 0.5141342 | 0.0985624 | 0.5891834 | 0.2021608 | -0.5304728 | -1.3100306 | 0.3517140 | 1.1848139 | -0.9653433 |
| 1.5020229 | 0.5898814 | 0.0778173 | -0.0309878 | -0.5696196 | -0.6923134 | -0.7250771 | -0.2424578 | -0.9566950 | -1.0550322 | -0.1844950 | 1.2783790 | 1.0827322 | 1.4484497 | 1.4458514 | 0.9718395 | -0.8184106 | 0.7671780 | 0.5702101 | -0.0764412 | 0.9835550 | 0.9344717 | 2.4958659 | 0.2723994 | 0.0958930 | 0.7084835 | 0.5703063 |
| 0.3564579 | 0.6792346 | -0.3014559 | -0.5857398 | -0.3279323 | 0.1794227 | -0.4446562 | 1.1426644 | -0.8069748 | 0.2243957 | -0.0727939 | 0.1581256 | -0.0533707 | -0.7889820 | 1.1262866 | 1.2021023 | -0.4166536 | 0.1207304 | 0.4062959 | 0.4923206 | 0.3215742 | 0.2584925 | 0.2916429 | -0.4037298 | 0.2380158 | 1.6611443 | 0.2470117 |
| 0.8861277 | 0.8132643 | -0.6593617 | -1.0453914 | -0.8113069 | 0.0605496 | 0.5368170 | 0.4865539 | -0.8369188 | 0.2337346 | -0.2589624 | 0.5782207 | 0.4118905 | -0.6091883 | 1.7654163 | 1.6426051 | -1.3808704 | 0.7846495 | 0.7513785 | -0.2951957 | 0.3638283 | 0.1345629 | 0.6729139 | 0.1645065 | -0.1315035 | 1.7087773 | 0.8531891 |
| -0.7767891 | -3.1182747 | 0.2380736 | 1.2687169 | -1.2499245 | -0.7319377 | -1.3560241 | -3.6688130 | -2.6635047 | -2.8107433 | -0.0355603 | -0.8220960 | -0.7458525 | -0.2296240 | -0.5034942 | -1.4609371 | -0.6577078 | -2.0457425 | -1.3406845 | 0.4048188 | -1.1150649 | -0.9695366 | -2.0317274 | 0.0278420 | 0.6501719 | -0.7205077 | -0.4804013 |
| -0.8260607 | -1.0631520 | -0.7181223 | 0.3969638 | -1.1067024 | -0.8904352 | -0.3044457 | -0.3153590 | -1.0465271 | -1.5499933 | 0.2623092 | 0.0881098 | 0.0007294 | 0.8890918 | -0.3916465 | -0.9403429 | 2.1545912 | -2.0632141 | -0.7712983 | 1.2798370 | -1.3263353 | -1.7581791 | -1.1381234 | -0.5332013 | 1.4744842 | -0.2124219 | 0.6915418 |
| -0.4442057 | -0.6163862 | 0.5372188 | -0.1102380 | -0.8739665 | 0.5756664 | -0.7951823 | -1.2630743 | -0.8069748 | -1.8021433 | 0.1878418 | 0.0180940 | 0.3253303 | -0.2096470 | -0.4395812 | -0.6199773 | 1.3510772 | -1.6963114 | 0.2984576 | 0.0985624 | -1.4390129 | -1.2624609 | -0.3636667 | -0.2958368 | 1.1333895 | -0.9427952 | -2.0160510 |
| 0.8245382 | -1.3758881 | -1.1134212 | 0.3177135 | -0.9724317 | -0.6923134 | 0.6770274 | -1.6275801 | -0.4476464 | -1.4566044 | -1.0036361 | -0.4020010 | -0.6917523 | -0.3295094 | -0.3117553 | -0.2395431 | -0.3363022 | -1.5041243 | -0.5426811 | 1.1923352 | -0.2136443 | -1.4089231 | -0.1253723 | 0.4666067 | 0.2948649 | -0.3711987 | -0.9249315 |
| -0.7767891 | -0.7950925 | -0.8356436 | 0.0958127 | -1.0798483 | -0.7715621 | -0.0240248 | -0.7527660 | -0.1482061 | -0.8962710 | -0.1844950 | -0.8921119 | 0.6174710 | 4.8445512 | 1.9251987 | 1.0719538 | -1.3808704 | 0.4876331 | -0.2623015 | 1.1485843 | 0.3638283 | 0.1007640 | -0.9594026 | 0.1141564 | -1.4248211 | -1.0380613 | 1.9038968 |
| -1.0231471 | -1.0050724 | -1.0653443 | -0.2528886 | -0.7934041 | -0.7715621 | 0.3265013 | 0.5959057 | -0.1482061 | -0.8495766 | -0.5940655 | 0.2981573 | 0.4984507 | 1.0489083 | -0.6472984 | -0.2795888 | 0.7082660 | -0.9799776 | -0.9093313 | 2.1548552 | -0.5375923 | -0.2822910 | -0.7806819 | -0.7561801 | -0.3162632 | -1.2444711 | -2.0968747 |
| -0.7767891 | 0.6792346 | -1.2256006 | -0.4747894 | -1.0082373 | -0.1375722 | 0.6770274 | 0.7052574 | -0.4177024 | 0.9061346 | -0.8547013 | -0.1219377 | -0.5943721 | 0.1099861 | 0.1995485 | 0.6214396 | 0.0654548 | 0.8545358 | -0.1975985 | 1.0173315 | -0.4389994 | -0.4287531 | -0.5066433 | -0.3749583 | 0.2522281 | -0.2187730 | 0.3278353 |
| 0.1347357 | -0.7057394 | -0.3014559 | -0.9502911 | -1.1872649 | -0.5734403 | -1.4261293 | -2.4294930 | -1.3459674 | -1.4099099 | 0.0761408 | -1.5222544 | -0.7350324 | 1.6881745 | 1.0943301 | 1.1520452 | -0.8184106 | 1.2039669 | 0.1043487 | 0.7110752 | 0.8004539 | 0.3936883 | -0.3636667 | -0.9216160 | -2.0075246 | -0.7776673 | 0.1661880 |
| -0.7767891 | -1.9566836 | -1.1721819 | -0.0943880 | -1.0440428 | -0.9696839 | 0.6770274 | -1.6275801 | 0.0314581 | -0.8962710 | -1.4132066 | -1.5222544 | -1.6547348 | -0.1896699 | -0.2957770 | -0.0293031 | -0.7380592 | -0.9625061 | -0.1630903 | 0.7110752 | 1.2229948 | 1.2273961 | -1.0189762 | -1.2812592 | 2.6114667 | -0.7522631 | -0.4804013 |
| 0.4180475 | -0.6968040 | -0.8356436 | 0.0324125 | -1.2499245 | 0.6945395 | -0.3044457 | -0.0237543 | -0.7470867 | -1.1297433 | -0.5195982 | 0.7182523 | 0.9312518 | 0.9490230 | 0.3753092 | -0.7301029 | 1.5117800 | -2.0457425 | -0.8144336 | 0.2735661 | -0.9601332 | -1.1948630 | -0.4232403 | -0.2023296 | 1.7303053 | 0.0098656 | 1.0956601 |
| -0.9738755 | -1.1525052 | 0.2701249 | 2.5684216 | -1.0261400 | 0.1001740 | -1.1457084 | -2.2472401 | -0.8069748 | -0.8028821 | 2.0867597 | 3.5889015 | 0.8987917 | 0.4895504 | -0.7112113 | -0.7501258 | -1.7826274 | 1.5883411 | -0.9524666 | 1.4110897 | 0.6455222 | 0.2810251 | -1.1917397 | -0.1304010 | -0.6573579 | -0.0917516 | 0.2470117 |
| -0.8753323 | -1.7333007 | -1.6048739 | -0.9027409 | -0.6501820 | -0.1771966 | 1.6585005 | -0.5705131 | 0.2710103 | -1.8581766 | 0.8952818 | 0.2281415 | -0.4428917 | -0.2695782 | -1.9095795 | -1.0104229 | 0.0654548 | -0.2287007 | -0.8661960 | -0.2076939 | -1.1150649 | -1.1047324 | -1.4479061 | -0.5116228 | 0.8491439 | 0.3909299 | -1.2886380 |
| 1.0585784 | -0.0132524 | -1.3965407 | -1.1563418 | -0.7396958 | 0.6945395 | 2.2894475 | 1.1062139 | 1.6484357 | -0.8962710 | -0.5568318 | -0.9621277 | 0.1954899 | -0.0897846 | 1.0463954 | 0.8316795 | -1.2201676 | 0.4876331 | -0.7238494 | 1.7610970 | 0.7722845 | 0.6077484 | -0.7091935 | 0.1141564 | -1.0126650 | -1.0698166 | -0.4399895 |
| 0.6028160 | -1.3312115 | -1.3217544 | -0.4113891 | -0.6054251 | -0.9696839 | 0.9574483 | -0.4611614 | 1.3489954 | -1.8768544 | -0.6685329 | -0.8921119 | -0.7025724 | -0.4094177 | -0.6632766 | -0.1894859 | -0.7380592 | -0.9799776 | -0.5685623 | 0.0985624 | 0.2370660 | 0.5852158 | -0.4589844 | -0.8496874 | -1.1547878 | -0.8729334 | -1.8544037 |
| -0.0130791 | 0.3664985 | -1.8773096 | -0.9185910 | -0.5964737 | 1.2889050 | 1.5182901 | 0.8510598 | 3.1456372 | 0.8687790 | -0.8547013 | 2.7487115 | 1.1692924 | -0.5692342 | 1.6056339 | 0.8617138 | -1.2201676 | 0.6448771 | -0.7367900 | 1.5423425 | 1.2511642 | 0.6978790 | -0.4828139 | -0.0081223 | 0.7354456 | 0.7561165 | 0.1257762 |
| -1.2818231 | -0.3483267 | -1.0653443 | 0.2860134 | -1.1156538 | -0.7319377 | 0.6770274 | -0.2424578 | 0.4506745 | -1.8675155 | 0.7463471 | 0.0881098 | 0.0115495 | -0.3095323 | 1.7334598 | 0.1108569 | -1.8629788 | 0.1032589 | -0.7971795 | 0.1423134 | 0.7300304 | 0.1908945 | -0.6615347 | -1.2165234 | -0.8279053 | 0.4417385 | -2.1372865 |
| -1.6513601 | -2.2247431 | -1.2790194 | -0.4747894 | -0.4084947 | -1.2470545 | -0.0240248 | -1.6275801 | -1.0465271 | -0.8962710 | -0.9664024 | -0.1919535 | -0.5727320 | -0.0897846 | -1.0946892 | -0.4597944 | -0.1755994 | -0.7703189 | -0.5426811 | 1.1923352 | -0.6643546 | -0.7104112 | -1.5908828 | -0.9791589 | -1.8796141 | -1.0126570 | 0.7723655 |
| 0.0361925 | -0.7950925 | -0.3762422 | -0.1577882 | -1.2857301 | -0.6130646 | -0.0240248 | -2.3930424 | -1.0465271 | -0.8495766 | -0.7802339 | -0.9621277 | 0.3361503 | 1.1687707 | -0.5514289 | 0.0007312 | -0.9791134 | -0.2287007 | -0.1975985 | 1.0173315 | -0.1854749 | -0.1470951 | -0.2445195 | 0.1716993 | -1.0553018 | -1.1269763 | 1.4189548 |
| -1.4296379 | 0.5005283 | 1.2316628 | -0.4747894 | 0.4955947 | -0.0186991 | -1.3560241 | -0.4976119 | -0.4476464 | -0.8495766 | -0.2589624 | 0.8582840 | -0.1615710 | -0.1097616 | -0.9189285 | -0.7100801 | 0.5475632 | -1.1197501 | -1.0387372 | 0.0110606 | -0.1291361 | 0.3035577 | -2.1389598 | -1.5689737 | 0.0674684 | -0.7840184 | 0.4894826 |
| -0.8260607 | -2.0907133 | -1.4392757 | 0.6505647 | -1.2051676 | -0.2960697 | 0.1161856 | -1.5182284 | -1.4058554 | -1.8768544 | 1.7144229 | 2.5386640 | 0.7905915 | 0.7092981 | -0.6313201 | -0.1794745 | -0.0952480 | 2.0426016 | -0.7152224 | 0.4485697 | -0.4249147 | -0.3160899 | -0.5066433 | -0.5619728 | 0.2522281 | 0.0098656 | -2.0564628 |
| -0.3702983 | 0.8356026 | 0.4090137 | -0.8551907 | 1.3728300 | 0.7737882 | -0.7951823 | 0.1220480 | 1.0495551 | 0.0843123 | 1.1931513 | 0.0881098 | -0.4753518 | -0.2296240 | 0.8546565 | 0.5213253 | 0.5475632 | 0.6274055 | -1.0732455 | 1.0173315 | 0.7300304 | 0.9457381 | -0.0896281 | -0.2311011 | -0.2025649 | -0.9015132 | -0.3591658 |
| -1.2325515 | -0.9291223 | -1.4553013 | -0.1894883 | -1.2678273 | -0.3753184 | -0.0240248 | -1.3359754 | -0.1482061 | -1.8768544 | -0.5568318 | -0.9621277 | 0.4659906 | -0.7290507 | 0.1995485 | 0.2309940 | -0.4970050 | -0.2811154 | -1.1034402 | 1.8485988 | 0.7159457 | 0.6077484 | -1.7934330 | -0.6267086 | -0.6005088 | -1.4889874 | -0.6016368 |
| -0.3456625 | -1.0631520 | -1.4553013 | -0.9502911 | -0.4711544 | -0.4149428 | 1.3780796 | -0.6069637 | -0.2080942 | 0.0843123 | 0.1878418 | -0.9621277 | 0.5741909 | 0.0101008 | -0.1519728 | 0.5013025 | -0.8184106 | 0.3129175 | -0.4995458 | 0.8860788 | 0.7441151 | 0.3936883 | -0.8521702 | -0.4900442 | -0.6005088 | -0.1044537 | 0.0449525 |
| -1.1340082 | -0.7950925 | -1.5354295 | -1.0612415 | -1.0798483 | -0.8111865 | 2.4296580 | 0.5230045 | 1.3489954 | 0.9248124 | 0.2623092 | -1.5222544 | -1.6222747 | -0.2096470 | -0.4715377 | -0.4497830 | 0.3065090 | -0.3335300 | -1.2328462 | 1.5423425 | 0.1525578 | 0.5852158 | -0.4172829 | -1.3244164 | -0.5436597 | -0.3711987 | 0.2065998 |
| 0.0608283 | 0.0984391 | 1.0233296 | -0.5698897 | 1.3638786 | -0.7319377 | -0.7951823 | -0.1695567 | 0.8998349 | 0.5325790 | 0.7463471 | -1.0321435 | -1.8386753 | -0.3095323 | -1.0307762 | -0.4397716 | 1.9938884 | 0.0508442 | -0.1113279 | -0.5139503 | -0.8474556 | -1.0258682 | -0.1015429 | -0.5979371 | -0.4868106 | -0.7363854 | 0.1661880 |
| -1.4296379 | -0.8397691 | -0.7929086 | -0.3162888 | -1.2946814 | 0.3379202 | 0.6770274 | 0.7781586 | -0.4476464 | 0.3831568 | 0.0761408 | -0.4020010 | 0.1413898 | 0.6293899 | -0.1519728 | 0.1809368 | -1.1398162 | 1.3262678 | -0.8661960 | -0.7327048 | 0.6596069 | 0.9344717 | -1.4598208 | -1.0510875 | -1.4674579 | -0.7205077 | 1.2573075 |
| -0.4072520 | -0.4376799 | -0.6166267 | -0.4747894 | -1.2141190 | -0.1375722 | 0.3265013 | -0.4611614 | -0.4476464 | -0.3826321 | 0.1133745 | -0.0519219 | -0.3130514 | 0.1299632 | -0.1519728 | -0.0893717 | -0.4970050 | -0.2287007 | -1.0516778 | 1.1923352 | 0.7722845 | 0.6978790 | -0.5423875 | -0.9503874 | -0.3446877 | -0.9427952 | 0.4490708 |
| -1.0354650 | 0.2324688 | -0.3602166 | -0.2528886 | -0.6501820 | -0.5338159 | 0.4667117 | -0.2060072 | 0.9896670 | -0.3359377 | 0.7463471 | -0.6820644 | -0.8648728 | -0.1896699 | -0.8230590 | -0.3396573 | 0.5475632 | -0.0539851 | -1.1250079 | 1.6298443 | -0.4953382 | -0.0682309 | -0.4589844 | -0.6410943 | -0.6573579 | -0.7998961 | 0.2470117 |
| -1.6636780 | -1.0631520 | -1.2149169 | -0.3162888 | -0.5964737 | -1.0885570 | 1.7286058 | 0.9239609 | 1.9478760 | 1.5318402 | 1.7516566 | -0.8220960 | -0.9081529 | -0.5492571 | -0.5993636 | -0.4197487 | 0.3065090 | -0.4383594 | -1.0603049 | 1.7610970 | 0.8427080 | 0.3260904 | 0.4346195 | -0.8928445 | 0.2948649 | -0.5871352 | 0.4086590 |
| -1.6759959 | -0.4823565 | -0.7074386 | -0.2528886 | -0.2473699 | -0.0979479 | 0.6770274 | 0.3407515 | 0.6303387 | 0.7567124 | 0.0389071 | -1.1021594 | -0.6592923 | 0.1299632 | -0.5514289 | -0.3396573 | 0.9493202 | -0.4208878 | -0.9740343 | 0.1860643 | 0.1948119 | 0.6978790 | -0.5006860 | -1.5042380 | -0.2594141 | -0.2124219 | 0.4086590 |
| -1.1340082 | -0.5717096 | -0.9638487 | -0.1102380 | -0.9008207 | 0.5360420 | 1.3780796 | -0.2424578 | 1.2292193 | 0.4765457 | -0.4823645 | -2.0823811 | -0.9406130 | -0.7290507 | -0.1519728 | -0.4397716 | 0.4672118 | -0.3684732 | -1.4312686 | 0.4923206 | 0.8427080 | 0.8894064 | -0.2028180 | -1.2596806 | -0.5862965 | -0.3870764 | 2.1463678 |
| -1.1340082 | 0.0984391 | -0.3602166 | -0.1102380 | -0.4532517 | -0.5734403 | -0.3745509 | -0.1695567 | -0.2979263 | 0.7380346 | 1.8633576 | -1.3122069 | -0.3887916 | -0.3095323 | -1.1106674 | -0.5298744 | 1.2707258 | 0.0857873 | -1.1465755 | 0.5360715 | -0.4812535 | -0.7892754 | -0.2862210 | -1.2165234 | 1.0339035 | -0.8475291 | -0.1975185 |
| -1.2325515 | 0.0090859 | -0.5364985 | -0.3162888 | -0.7396958 | -0.6923134 | -0.2343405 | 0.1949492 | 0.7501148 | 0.3177846 | 0.8952818 | -0.9621277 | -0.2481312 | 0.9290459 | -1.3503410 | -0.7801601 | 1.1100230 | 0.0683157 | -0.6289517 | 0.4048188 | 0.0539650 | -0.2597583 | -0.3577093 | -1.7056382 | -1.0126650 | -0.9427952 | 1.7018376 |
| -0.3826162 | -0.1249438 | -0.7875667 | -0.8393407 | -0.7217931 | -0.3753184 | 0.8873431 | -0.3882602 | 0.3608424 | -0.3359377 | 0.5229450 | -1.3822227 | -1.6330948 | 0.1898944 | -1.4621887 | -0.5699201 | 1.7528342 | 0.0508442 | -0.8661960 | 0.0110606 | -0.7770322 | -0.7892754 | 0.0414338 | 0.4306424 | -0.6147211 | -0.7998961 | -0.3591658 |
| -0.8753323 | -0.1249438 | 0.0190567 | -0.2528886 | 0.4418864 | -0.8111865 | -0.4446562 | -0.5340625 | -0.4476464 | 0.3177846 | 0.5974124 | -0.8220960 | -0.3887916 | 0.4096421 | 0.2474832 | 0.2209825 | -0.8987620 | 0.6972918 | -1.2544138 | 0.8423279 | 0.9694703 | 0.8668738 | -1.8887507 | -0.9935446 | -0.7284193 | -1.4508810 | 0.2874235 |
| -1.7006317 | 1.3940599 | 0.3823043 | -1.0295414 | -0.3100296 | -0.2960697 | -0.5848666 | -0.3153590 | -0.4476464 | -0.8122210 | 0.3740103 | -0.1219377 | 0.0764696 | 0.2498256 | 1.1582431 | 0.2309940 | -1.5415732 | -0.4208878 | -0.7799253 | 0.8860788 | 0.4905906 | -0.0118993 | 2.8533075 | 1.4232576 | -0.5862965 | -1.2762265 | 0.4086590 |
| -0.6536100 | -0.1472821 | -0.7288061 | -0.1102380 | -0.7307445 | 0.4171689 | 0.1161856 | -0.6069637 | -0.1482061 | -0.8495766 | 4.0973787 | 4.3590757 | 1.0719122 | 0.4096421 | 0.3273744 | 0.2410054 | -0.3363022 | 2.9511225 | -1.0603049 | 0.8860788 | 0.0257956 | 0.0106334 | -1.5491812 | -0.3533797 | 0.3801386 | 0.6036908 | -1.2482262 |
| -1.4665916 | 0.9919707 | -0.5525241 | -0.3955391 | -0.1936616 | -0.0186991 | -0.0941300 | 1.3613680 | 0.6003946 | 0.5699346 | 1.7516566 | 2.3986323 | 0.1089297 | 0.3896651 | -1.1106674 | -1.0404572 | -1.7826274 | -0.0539851 | -1.1034402 | -0.0326903 | -0.4953382 | -0.1132962 | -0.7449377 | -0.3246083 | -0.8847544 | -0.3870764 | -1.0461670 |
| -0.8753323 | 0.0090859 | -0.9157718 | -0.3162888 | -0.8292096 | -1.3659276 | -0.0240248 | -1.4088766 | -1.0465271 | 0.0843123 | 0.1506082 | -1.0321435 | 0.8122315 | -0.4693489 | 0.4072657 | 0.4712682 | -0.5773564 | 0.3129175 | -0.9308989 | 1.1923352 | 0.1807272 | 0.1796282 | -0.2206901 | -0.2598725 | 1.3323614 | -1.0126570 | 0.2874235 |
| -0.7767891 | -0.2142970 | -1.3057288 | -0.6332899 | -1.1335566 | 0.3775445 | 0.6770274 | -0.9714696 | -0.2979263 | -0.3359377 | 0.2250755 | -0.8220960 | 0.2171300 | 0.3297339 | 1.9571552 | 1.7226965 | -0.9791134 | 0.6274055 | -0.2407339 | 0.3610679 | 0.2229813 | 0.0782313 | -0.9415306 | -0.5547799 | -0.8705421 | -0.2759327 | 0.6915418 |
| -0.8753323 | 0.5452049 | 1.4293122 | 0.9675659 | 0.7462334 | 0.6945395 | -2.4777076 | -0.5705131 | -0.4476464 | -0.3359377 | 1.6399555 | -0.8220960 | 0.7905915 | -0.5692342 | 0.8866129 | 0.9618281 | 0.7082660 | 2.1299594 | -1.1897109 | 2.0236025 | 0.3074895 | 1.0358686 | -0.2147327 | 0.1932779 | -1.1690000 | -1.0825188 | 1.4593666 |
| -1.1340082 | -1.0631520 | -0.5578660 | 0.3177135 | -0.2294671 | -0.9696839 | -1.0756032 | -2.4294930 | -0.5973666 | -0.7094933 | -0.5940655 | -0.1919535 | -1.6547348 | -0.4293947 | -0.1040381 | 0.1408911 | -0.8184106 | -0.3335300 | -0.7583577 | 1.3673388 | 0.4905906 | 0.4838189 | -1.0308910 | -1.0151232 | 2.2419474 | -0.1171559 | -0.1975185 |
| -0.4934773 | -1.5099178 | -1.1721819 | 0.0007124 | -0.8918693 | -1.0885570 | -1.0756032 | -1.7004813 | -0.2979263 | -0.1024655 | 2.1239934 | -0.8220960 | -1.5248945 | 0.3297339 | -1.3503410 | -0.6700344 | -0.5773564 | -0.4208878 | -1.1250079 | 0.3610679 | 0.2229813 | 0.8668738 | -0.1492017 | -0.8784588 | -0.6573579 | -0.5871352 | 0.8127773 |
| -0.8137428 | 0.2324688 | -0.4082935 | 0.7932152 | 0.1017340 | -1.3659276 | 0.8172379 | 0.3407515 | 0.4506745 | 0.3177846 | 2.4590966 | -0.1219377 | -2.3688566 | 0.3696880 | 0.4232439 | 0.0808226 | -0.1755994 | -0.4907740 | -0.9740343 | -0.6889539 | 1.0821478 | 1.3625919 | -0.2683489 | -1.4107307 | 0.9202053 | -0.9809016 | -0.4804013 |
| -1.4542737 | -1.1525052 | -0.9852162 | 0.2701633 | -0.5517168 | -0.4545672 | 0.6770274 | -1.7733825 | 0.0015140 | -0.0651099 | -0.5195982 | -0.9621277 | 0.8338716 | 0.4296192 | 0.3273744 | -0.3897144 | 0.0654548 | -0.2985869 | -1.2932356 | -0.0764412 | -0.2418137 | 0.9232054 | -0.8640849 | -0.5691657 | -0.6715702 | -1.0539390 | -0.2783422 |
| -0.6043384 | -0.3483267 | -1.1988912 | -1.0453914 | -0.5427655 | -0.9696839 | 1.3780796 | -1.4088766 | 0.3009543 | 0.2243957 | -0.1472613 | -1.0321435 | -1.2002936 | -0.2695782 | -0.1519728 | -0.1093945 | -0.3363022 | -0.1937576 | -0.9136448 | 0.3610679 | 1.3497571 | 1.7118479 | 0.9707819 | 1.0780002 | -1.1832123 | -0.2378262 | -0.4399895 |
| -0.7151996 | -0.7950925 | -0.3709003 | -0.1260881 | 0.1912478 | 0.0209252 | -0.0240248 | -0.3518096 | 0.7501148 | 0.9248124 | 0.5601787 | -0.6820644 | -0.2481312 | 0.5694587 | -0.9828415 | -0.1894859 | 2.3956454 | -0.2985869 | -1.0171696 | -0.4264485 | 0.9694703 | 0.5852158 | -0.5304728 | -0.3749583 | -0.3162632 | -1.3714926 | -0.8441078 |
| -0.9246039 | -0.1249438 | -0.5578660 | -0.9502911 | -0.5427655 | -1.0885570 | 1.0275535 | -0.8985684 | -0.1482061 | 0.0843123 | 0.8952818 | -1.3822227 | -1.0812733 | -0.2096470 | -1.0307762 | 0.0007312 | 0.0654548 | 0.0683157 | -0.7152224 | 0.1860643 | 0.7863692 | 1.3287930 | 0.7861037 | 0.4162567 | -0.4868106 | -0.7522631 | 0.6511300 |
| -0.3456625 | -0.5270330 | -0.0023108 | 0.5396143 | -0.5248627 | -0.8111865 | 0.1862908 | -0.3153590 | 0.8998349 | 0.2710901 | -0.7430003 | -1.1021594 | -2.2281963 | 0.0700320 | -1.4621887 | -0.2695773 | 0.9493202 | 0.0683157 | -0.7583577 | -0.3389467 | -0.2699831 | -0.4963511 | -0.7151509 | 0.8837928 | -0.6715702 | -0.8221248 | -1.1674025 |
| -0.9615576 | -0.3483267 | -0.8303017 | -0.9185910 | -0.9366262 | -1.2470545 | 0.3966065 | -1.5546789 | -0.1482061 | 0.1496846 | 0.9325155 | -0.5420327 | -2.2498363 | 0.0300778 | 0.1036790 | 0.0107426 | 0.2261576 | 0.8545358 | -1.0171696 | -0.4264485 | 0.5750987 | 0.7429443 | -0.9355732 | 0.3443281 | -1.5527316 | -1.3810192 | -0.5208132 |
| -1.7129496 | 1.0366472 | -0.0877808 | -0.2370385 | -0.8829179 | -0.1771966 | 1.0976587 | 1.2155656 | 0.1512342 | 0.6446457 | 0.7463471 | -0.4020010 | 0.4659906 | -0.1097616 | 0.7108523 | 0.8917481 | -0.5773564 | 1.5708696 | -1.0387372 | 0.0110606 | 0.9131315 | 0.9795370 | -1.4240767 | -1.0079304 | 2.0571878 | -0.2124219 | 0.0045407 |
| -1.8977182 | -0.1964264 | 1.0019620 | 0.3177135 | 1.2564621 | -0.5338159 | -1.6364450 | -1.9920860 | 0.0015140 | -1.8301600 | 2.4218629 | 0.5082048 | -0.4645318 | 0.1299632 | 1.4138950 | 0.5513596 | -0.9791134 | 3.4752692 | -0.9308989 | -0.9077085 | 0.2793201 | 0.6978790 | -0.5602595 | -0.3461869 | -0.6431456 | -0.5871352 | -0.7632842 |
| -0.5920205 | 0.4781900 | 0.7882870 | -0.8710408 | 0.0838312 | 0.2190471 | -0.6549718 | -0.7163155 | 0.4506745 | -1.8768544 | 1.2676187 | -0.8220960 | -0.2805913 | -0.3095323 | 0.4072657 | 0.2410054 | -0.8184106 | -0.6480181 | -1.3191168 | -0.2514448 | 0.2370660 | 0.1345629 | -0.1849459 | -0.0153151 | -0.9984527 | -1.3397372 | -2.0160510 |
| -1.5281811 | 1.9301788 | 0.2487574 | 0.1592129 | 0.3076157 | 0.4964176 | -0.0240248 | 2.0174785 | 0.1512342 | 2.0454791 | 1.3793197 | 0.2281415 | 0.0548296 | -0.5093030 | -0.8709938 | 0.0007312 | 1.9135370 | -0.9450345 | -0.5426811 | 1.1923352 | -0.1573055 | -0.8230744 | 0.6729139 | -0.0009294 | 3.0236229 | -0.4442361 | -0.2783422 |
| -1.9593077 | -1.5992710 | 0.7669195 | 0.0641126 | -1.4289521 | -0.1771966 | 1.3780796 | 0.4865539 | 0.4506745 | 1.9053957 | 1.0069829 | -0.8220960 | -0.5402719 | -0.1497158 | 0.2954180 | -0.0192917 | 0.4672118 | -0.2636438 | -0.8532554 | 0.6235734 | -0.4249147 | 1.3287930 | -1.3406737 | -0.6770586 | -0.1883526 | -0.9936038 | -1.1674025 |
| -1.1340082 | -0.7950925 | 0.5372188 | 0.4920641 | -0.8471124 | -1.0093083 | -0.0240248 | 0.4865539 | 0.8998349 | 1.3450624 | 0.1878418 | -1.1021594 | -1.4058742 | -0.4293947 | 0.4232439 | 0.2610283 | 0.5475632 | -0.9625061 | -0.9308989 | -0.1201921 | 0.8145386 | 1.5766520 | -0.8640849 | -0.7202158 | 0.0816807 | -1.1492050 | -0.1975185 |
| -2.4273880 | -0.8844457 | 0.3395693 | 1.6174182 | -0.7396958 | 0.2190471 | -1.2859188 | -0.6069637 | 0.6003946 | -0.4293266 | 2.1612271 | -1.0321435 | -0.0750108 | -0.6691195 | 0.2634615 | 0.1408911 | 1.2707258 | 0.7322349 | -1.3622521 | 3.2923789 | 0.3638283 | 0.5401505 | -1.5074797 | -0.7346015 | -0.9416035 | -1.0793433 | -0.5612250 |
| -1.4542737 | -1.0631520 | -0.5578660 | 0.1592129 | -0.7755014 | -0.0979479 | -1.2158136 | -1.3724260 | 0.3907864 | -1.1857766 | 1.3793197 | -0.9621277 | -1.0920934 | 0.3297339 | -0.5034942 | -0.4297602 | -0.4970050 | -0.1063998 | -1.3406845 | -0.0326903 | 1.0117244 | 0.9344717 | -0.6317479 | -0.6339014 | 2.0571878 | -0.7998961 | 0.0853643 |
| -0.7151996 | 0.0090859 | 0.4838000 | -0.2211884 | -0.6501820 | -0.3356941 | 0.5368170 | -0.6434143 | 0.8998349 | 0.7753901 | 0.6718797 | 0.5782207 | -1.0488133 | 1.2886331 | -0.4715377 | 0.0607997 | -0.1755994 | 0.0333726 | -1.2932356 | 0.4485697 | 0.4905906 | 0.8443412 | 0.1248368 | 1.8476366 | -0.2025649 | -1.2762265 | -0.0762830 |
| -0.2840730 | 0.0984391 | 0.8363639 | 0.1592129 | 0.9789693 | -1.4848007 | -1.4261293 | -1.4088766 | -1.0465271 | -1.5032988 | -0.4823645 | -1.3822227 | -1.5248945 | 0.3297339 | -1.0627327 | -0.7801601 | 0.5475632 | -1.3294087 | -0.7152224 | -1.1264630 | -0.6925240 | -0.2597583 | -1.1976970 | -1.0223161 | 0.1385298 | -1.1904870 | 0.4490708 |
| -1.2325515 | -0.4823565 | 0.2167061 | -1.4099427 | 0.9789693 | -0.7715621 | -0.3745509 | -1.3359754 | -0.1482061 | -0.1491599 | 0.9697492 | -0.8921119 | -2.7908377 | -0.3095323 | -0.4715377 | -0.3897144 | 0.0654548 | 0.4876331 | -1.6296911 | -0.1201921 | 0.6173528 | 1.3963909 | -0.7449377 | -0.8640731 | -0.8421176 | -0.5807841 | 0.1661880 |
| -1.9100361 | -0.4376799 | 2.0276024 | -0.7917905 | 0.0569770 | 0.1794227 | -0.8652875 | 0.1949492 | 0.1512342 | 0.3177846 | 2.2356945 | -0.2619694 | -1.1137334 | -0.1097616 | 0.9665042 | 0.7615996 | -0.3363022 | 0.4177469 | -0.7799253 | -0.6889539 | 1.0962325 | 1.4527225 | 0.4346195 | -0.1591724 | 0.9912667 | -0.3870764 | -0.0358712 |
| -1.7745392 | 0.5898814 | -0.0503877 | -0.5698897 | -0.2563213 | 0.4171689 | 0.6770274 | 3.1474467 | 2.6964768 | 2.6058124 | 0.5229450 | 1.3483948 | 1.3532329 | 0.6094128 | 1.4138950 | 3.0542162 | 0.8689688 | 0.4876331 | 0.4062959 | -0.1201921 | 1.5187734 | 1.5653857 | -0.6734494 | -0.3246083 | 4.2174545 | -0.8951622 | 2.9546045 |
| -0.7151996 | -0.1249438 | 1.3011071 | 0.2067631 | 1.8741073 | 0.0605496 | -0.5147614 | 1.3249174 | 2.0975962 | 1.5785346 | 0.2250755 | 0.1581256 | 1.7211139 | 0.4895504 | -0.1519728 | 0.1008454 | 0.5475632 | 0.2080882 | -1.2846086 | -0.1639430 | 0.7159457 | 1.5203204 | -0.0479266 | -1.2381020 | 1.7729421 | -1.2127158 | 0.3278353 |
| 0.0608283 | -0.5717096 | 1.5682010 | -0.5698897 | 3.1004465 | -0.2564453 | -1.2859188 | -0.8621178 | 0.6003946 | -0.6161044 | 0.8952818 | -0.9621277 | -0.4212516 | 0.1898944 | 0.5191134 | 0.6214396 | -0.4970050 | 0.7322349 | -1.0603049 | -0.9952103 | 0.6877763 | 1.4752552 | -0.9355732 | -0.8784588 | -0.3589000 | -1.1650827 | 0.1661880 |
| -1.3926842 | 0.9249558 | 1.6590129 | 0.6822648 | 1.7666908 | -0.4149428 | -1.1457084 | 0.0855974 | 0.4506745 | 0.5045623 | 0.9325155 | -1.2421910 | -0.7025724 | -0.1097616 | 0.9025912 | 1.0018738 | -1.2201676 | 2.3046749 | -0.9740343 | -0.9077085 | 1.4483500 | 1.7118479 | -0.4589844 | -0.6986372 | -0.6857825 | -1.1650827 | -1.7735800 |
| -1.1463261 | -0.2366353 | 0.5158512 | 0.1750630 | -0.1578561 | -0.0979479 | -0.4446562 | -0.7163155 | 0.4506745 | -0.6161044 | 0.5974124 | -1.0321435 | -0.0750108 | 0.4296192 | 0.4871569 | 0.6214396 | 0.0654548 | -0.4208878 | -0.9912884 | -0.4264485 | 0.9413009 | 1.4752552 | -0.6198331 | -1.2524877 | 0.7638702 | -1.1714338 | -0.9653433 |
| -0.7028817 | -0.6610628 | 0.4517487 | -0.6174399 | -0.7217931 | -1.0489327 | -0.3044457 | -0.2789084 | 0.6003946 | 0.1310068 | 0.5974124 | -0.9621277 | -0.7242124 | 1.0489083 | 0.7108523 | 1.1220109 | 0.2261576 | 0.3129175 | -0.4822916 | -1.1702139 | 0.3215742 | 0.4725526 | -1.0785498 | -0.7489873 | -0.4583860 | -1.2539977 | -1.2482262 |
| -1.4912274 | -1.7779773 | 0.6173469 | 0.4762141 | -0.1847102 | -0.4149428 | 0.6770274 | 1.5071703 | 2.6964768 | 1.8120068 | 1.0069829 | -0.5420327 | -0.2156711 | 0.1299632 | -0.2638205 | 0.2109711 | 1.7528342 | 0.2954460 | -0.8877636 | 0.0548115 | -0.2418137 | 1.1485318 | -0.9772747 | -0.7058301 | -0.9700281 | -0.8919866 | -2.1776983 |
| -0.7767891 | -0.8844457 | 0.9058083 | -0.1419382 | -0.6322793 | 0.1794227 | -0.6549718 | -0.2424578 | 1.4987156 | 0.4111735 | 1.5654882 | -0.8220960 | -0.6809323 | 0.3097568 | -0.1200164 | 0.4212111 | 0.3065090 | 0.5400478 | -1.2673544 | -0.2951957 | 0.2370660 | 0.8105422 | 0.0235617 | -1.4538879 | -1.0695141 | -1.2857531 | -0.0762830 |
| -1.1832798 | -1.1078286 | 1.3972609 | -0.9502911 | 1.7577394 | -0.6923134 | -0.7250771 | 0.0491469 | 0.7501148 | 0.4578679 | 0.7463471 | -1.3822227 | -2.4554169 | -0.4493718 | -0.3117553 | -0.2795888 | 0.4672118 | -0.4208878 | -1.0603049 | -0.7327048 | -0.0587126 | 1.5991847 | -1.3347163 | -1.0582804 | -1.3821843 | -0.5299755 | 0.2065998 |
| -0.1732119 | 0.6792346 | 0.0885011 | -1.6001434 | -0.8829179 | 0.0209252 | -0.5848666 | -0.1695567 | -0.4476464 | -0.4760210 | -0.9664024 | 1.5584423 | -1.0704533 | -0.3494865 | -1.2544716 | -0.7801601 | -1.2201676 | -1.1372216 | -0.4132751 | -0.8639576 | -1.8615538 | -1.9384402 | -1.4181193 | -0.4253084 | 0.1527421 | -0.3711987 | 0.4894826 |
| -0.1485760 | -0.5940479 | -0.3602166 | -0.2370385 | 0.5851085 | 0.2586714 | 1.3780796 | 0.1220480 | 0.1512342 | -0.8028821 | -0.8547013 | 0.2981573 | -1.0379932 | 0.1699173 | -1.5900147 | -0.8101943 | -0.9791134 | -1.3294087 | 0.1474840 | -0.9514594 | -1.6784528 | -1.8483096 | 0.7682316 | 1.3369433 | 1.1049649 | -0.6887523 | -0.3187540 |
| -0.2348014 | -0.3706650 | -0.5044472 | 1.4747677 | -0.0235854 | -0.1771966 | 2.3595528 | 0.1220480 | 1.3489954 | -0.8962710 | -1.0781034 | -0.1219377 | -1.0704533 | 0.0700320 | -1.8296883 | -0.9403429 | -0.7380592 | -1.3294087 | 0.2768900 | -1.3014667 | -1.7629609 | -1.9609728 | 0.7205728 | 2.6100802 | 0.2380158 | -0.5934863 | 0.8936010 |
| -0.3702983 | -0.2366353 | 0.2861505 | -0.1419382 | 1.0863858 | 3.5078695 | -0.3044457 | -0.0237543 | 0.6003946 | -0.7094933 | -1.1525708 | 0.4381890 | -0.0966508 | 1.0888624 | -0.9508850 | -0.8302172 | -1.5415732 | -1.3119372 | -0.0250573 | -0.7764558 | -1.8615538 | -1.9722392 | -0.1730312 | 2.0706154 | -0.0462298 | -0.4664648 | 0.4490708 |
| -0.6043384 | -0.7950925 | 1.0179877 | -1.0453914 | -0.9813831 | 0.2586714 | 1.3780796 | -0.4247108 | -0.5973666 | 0.8781179 | -0.6685329 | -1.0321435 | -0.9947131 | -0.6890966 | -0.4715377 | -1.4509256 | 1.9135370 | -0.5956034 | 0.1690517 | -0.9077085 | -1.5516905 | -1.7807117 | -0.2921784 | 0.2292422 | -0.8989667 | -0.3076880 | -1.2482262 |
| -0.4934773 | -0.7504159 | -0.2694047 | 0.4128138 | 0.1106853 | 0.2190471 | 0.0460804 | -0.6069637 | -0.2979263 | -1.1297433 | 0.9325155 | -0.4020010 | -0.9730731 | 0.2698026 | -1.0787109 | -1.3708342 | 2.1545912 | -1.1372216 | 0.8807844 | -0.9952103 | -1.4530976 | -1.8145107 | -1.3942899 | -1.1445948 | -0.9558158 | -0.1647889 | -0.3995777 |
| -0.9246039 | 0.0090859 | 0.3075180 | -0.9185910 | 2.1336974 | 1.3285293 | 0.6770274 | 0.6323562 | 0.4506745 | 1.0648957 | 1.0069829 | -0.7520802 | -1.1137334 | 1.6082662 | -1.4621887 | -1.5610513 | 1.3510772 | -1.3818234 | -0.5211134 | -0.9077085 | -1.8897232 | -2.0961687 | -0.3338799 | -0.3749583 | -0.3446877 | -0.0854005 | -0.1166948 |
| -0.5797026 | 0.8132643 | 0.7562357 | -0.1894883 | 2.8408564 | 1.0907831 | -0.0240248 | 0.9968621 | 1.6484357 | 0.4578679 | 0.8208145 | -0.2619694 | -0.0533707 | -1.1485692 | -0.8070808 | -1.4309028 | 2.1545912 | -0.8576767 | -0.0250573 | -0.6014521 | -1.2981659 | -1.3300589 | -0.2743063 | 0.6392355 | -0.1599281 | -0.7363854 | 1.1764838 |
| 0.6028160 | 0.1877922 | 1.5949104 | 0.2701633 | 1.1221913 | 2.2002654 | -0.4446562 | -0.6434143 | 0.0015140 | -0.5227155 | 1.2303850 | -0.8220960 | -0.5402719 | -0.1497158 | -1.0787109 | -1.5510399 | 1.7528342 | -1.2420510 | 0.2768900 | -0.6452030 | -1.1150649 | -0.8456070 | 0.9469524 | -0.2311011 | 0.0532561 | -0.5299755 | 1.6210140 |
| -0.1978477 | 0.4111751 | -0.1946184 | -0.3321388 | 0.5582544 | 1.3681537 | 1.3780796 | 0.8875103 | 1.3489954 | 0.4111735 | -1.1153371 | 0.0881098 | 0.3577904 | -0.9687756 | 0.0397661 | -1.4309028 | 1.3510772 | -1.3643519 | -0.0595655 | -0.2951957 | -0.6502699 | -0.8230744 | 1.0660996 | 1.4951863 | 0.3943509 | -0.4982202 | 0.8936010 |
| -0.0869865 | 0.6702993 | -0.3014559 | -0.4906394 | 0.4239837 | 0.9322857 | 0.0460804 | 1.2155656 | 0.4506745 | 0.7847290 | -1.4132066 | -0.2619694 | -0.1507509 | -0.7690049 | -1.2065369 | -1.5310170 | 1.3510772 | -1.4691812 | -0.1975985 | -0.8202067 | -0.4249147 | -0.7216775 | 1.0780143 | 1.6030792 | 0.2664403 | -0.4664648 | -1.1269907 |
| 0.4426833 | -0.5180977 | 0.6493982 | 1.3162671 | 0.2001991 | -0.5734403 | 0.3265013 | -0.0602049 | 0.1512342 | -0.0090766 | -1.1525708 | -0.7520802 | -1.4058742 | 0.1499402 | -1.4302323 | -1.5310170 | 0.0654548 | -1.6613683 | 0.2337547 | -1.1264630 | -0.1995596 | -0.4287531 | 0.9529098 | 0.5888854 | -0.3589000 | 0.1051316 | -0.1571067 |
| 0.6397697 | 1.1706770 | -0.0343621 | -0.8551907 | 0.7462334 | 1.2492806 | -0.1642353 | 1.2884668 | 1.1992753 | -0.0090766 | -1.4876739 | -0.1919535 | -0.4320717 | -0.8489132 | -1.1905586 | -1.5109942 | 1.1100230 | -1.8186123 | -0.3054368 | -0.2951957 | -0.7770322 | -0.8681397 | 0.8278052 | 1.7541294 | -0.5720842 | -0.7205077 | 0.3278353 |
| 0.7629487 | 0.1073744 | 0.4303812 | 1.1102164 | 2.3395791 | 2.5568847 | 0.7471326 | -0.0602049 | 0.1512342 | -0.7094933 | -0.7802339 | -0.5420327 | -1.8819554 | -0.9487985 | -0.4715377 | -1.2306742 | 0.8689688 | -0.9974492 | -0.2838692 | -0.2076939 | -0.7911169 | -0.4850848 | 0.0533485 | 1.2002789 | -0.5152351 | -0.6252416 | 1.2168956 |
| -0.9246039 | -0.8397691 | 1.4880728 | 2.4416212 | 1.3817814 | 0.4964176 | -2.0570763 | -0.6069637 | -0.2979263 | -0.8962710 | -0.0355603 | 0.8582840 | -0.0750108 | -0.9887526 | -1.4621887 | -1.2506971 | -0.5773564 | -0.7877905 | 1.3595865 | -1.3452176 | -0.8615403 | -0.8456070 | -0.3874961 | -1.5186237 | -0.3304755 | 0.3432968 | -0.5208132 |
| 0.1963252 | -1.0631520 | 1.7231154 | 1.8234689 | 1.1042886 | 1.0511588 | -1.1457084 | -0.7892166 | 0.4506745 | -0.7094933 | 0.3740103 | 0.1581256 | 0.9853520 | -0.9288214 | -1.2704498 | -1.4809599 | 0.5475632 | -0.5082456 | -0.4564104 | -1.5639721 | -1.3122506 | -0.8343407 | -1.9066228 | -0.2598725 | 0.1527421 | 0.2639084 | -1.8948155 |
| 1.0832142 | -1.7333007 | 0.7295263 | 1.2845670 | 2.4201415 | 1.4870268 | -0.1642353 | -0.4976119 | 0.1512342 | -1.2231322 | -1.3015055 | -1.3822227 | -2.0983559 | -1.0686609 | -2.1013185 | -1.6911999 | 0.3065090 | -1.5914821 | -0.0681926 | -1.6514739 | -1.8052150 | -1.3187925 | -0.5185580 | -0.4468870 | -1.2116369 | -1.0539390 | 1.7826613 |
| -0.1608939 | -0.4153416 | 0.7081588 | 0.8090653 | 2.0352322 | 1.3285293 | -0.8652875 | 0.4136527 | 0.6003946 | -0.4760210 | -0.5568318 | -0.9621277 | 0.0115495 | -0.2695782 | -0.9508850 | -1.3808456 | 0.8689688 | -1.2769941 | 1.1180287 | -1.8264776 | -1.0587261 | -0.9920692 | -0.1730312 | 0.5313425 | -0.4015369 | -0.3870764 | 0.4894826 |
| 0.3934117 | -1.7064947 | 0.6013213 | 1.3479672 | 0.8088930 | 3.3097477 | -0.0240248 | 0.0491469 | 0.6003946 | -0.8495766 | -1.3387392 | -0.5420327 | -0.6376522 | -0.8489132 | -0.5833854 | -1.2707200 | 0.7082660 | -0.5956034 | 1.4501706 | -1.7827267 | -1.3967588 | -0.8906723 | -1.6027975 | -0.9216160 | -0.3162632 | -0.3076880 | -0.1571067 |
| 0.0977820 | 0.6792346 | 1.8673461 | 1.4272175 | 1.3996841 | 0.7737882 | -1.0054980 | -0.0237543 | 0.6003946 | -0.8495766 | -0.1844950 | 0.9282998 | -0.6701123 | -0.2695782 | -1.4142540 | -0.6400001 | -0.1755994 | -0.7877905 | 1.8728968 | -1.6952249 | -1.8052150 | -1.9384402 | -0.8640849 | 0.0062634 | -1.0979386 | -0.6252416 | 0.1661880 |
| 0.6151339 | 0.5452049 | 1.0607227 | 0.4920641 | 0.7014765 | 1.5662755 | -0.5147614 | 0.9239609 | 1.3489954 | 0.9248124 | -0.4078971 | 1.6284582 | -0.2914113 | 0.8491376 | -1.4302323 | -0.4597944 | -1.1398162 | -0.5956034 | 1.5278142 | -1.6077230 | -1.8474691 | -1.9046412 | -1.5074797 | -1.1805591 | -1.5953685 | -0.7840184 | -0.1166948 |
| -0.2594372 | -0.8397691 | 1.7177735 | 1.7759188 | 0.2986643 | -0.3753184 | -0.6549718 | 0.4136527 | 0.7501148 | 0.0843123 | -0.9291687 | 0.8582840 | 0.4551706 | 1.2686560 | -1.3024063 | -0.6700344 | -0.9791134 | -0.5781318 | 2.4767912 | -2.0889830 | -1.6080293 | -1.7807117 | -1.0785498 | 1.1930860 | -1.2400615 | -0.8475291 | -0.7632842 |
| 0.1347357 | -0.0355907 | 0.5211931 | 0.4128138 | -0.3905920 | -0.2168210 | 1.3079744 | 1.3978186 | 1.7981559 | 2.4190346 | -0.1472613 | 1.1383473 | -0.8215927 | -0.1696928 | -0.1519728 | -0.7501258 | -0.8184106 | -0.0539851 | 0.8807844 | -1.5202212 | -1.8052150 | -1.9497065 | -0.1432444 | 1.2434360 | 0.1101053 | -1.0221836 | 0.6107181 |
| 0.2825505 | -0.6387245 | 1.8673461 | 1.2687169 | 0.8626013 | -0.4545672 | -0.7250771 | -0.3153590 | -0.2979263 | 0.3177846 | -0.3706634 | -0.1219377 | -0.1507509 | -0.5692342 | -0.7911025 | -1.2006400 | 1.9938884 | 0.4876331 | 2.3560123 | -1.7389758 | -1.5516905 | -1.7581791 | 1.1852468 | 1.3153647 | -1.2400615 | -0.2282996 | -1.0461670 |
| -0.5181131 | -1.5769327 | 0.9111501 | 1.4589176 | -0.9366262 | -0.4941915 | -0.6549718 | -0.9714696 | 0.1512342 | -0.0557710 | 1.0814503 | 0.2281415 | 0.0331895 | 0.7292752 | -1.3024063 | -1.4509256 | 1.3510772 | -0.3335300 | 1.0964610 | -1.6514739 | -1.4953517 | -1.8483096 | -0.7687671 | 1.3801005 | -1.4106088 | -0.3394434 | -0.3995777 |
| 0.2086431 | -0.9291223 | 2.3320894 | 0.4445140 | 2.5544123 | 2.2795141 | 1.9389214 | -0.1695567 | 0.7501148 | 1.5318402 | 0.8952818 | -0.4720169 | -1.3409540 | 0.4096421 | -0.8869720 | -1.4008685 | 1.9938884 | -0.0714567 | 1.2258670 | -1.5639721 | -1.5939446 | -1.8821086 | 0.4107901 | 1.7037793 | -0.4868106 | -0.0695228 | -1.0461670 |
| 1.0339426 | -0.2589736 | 1.9902093 | 1.2053167 | 1.5966145 | 0.6152907 | -0.7951823 | 0.0491469 | 0.0015140 | -0.3826321 | 1.1186840 | -0.7520802 | 0.4010705 | -1.1485692 | -0.7911025 | -1.2006400 | 0.9493202 | -0.0539851 | 1.7046690 | -1.6952249 | -1.3685894 | -1.1948630 | 0.2856855 | 1.2218574 | -1.1690000 | -0.8475291 | 0.8936010 |
| -0.6782458 | 0.0314242 | 1.0820902 | 0.3652637 | 0.6209140 | 1.2889050 | 2.2193423 | 0.9968621 | 2.2473163 | 1.5785346 | 1.4910208 | -0.1919535 | 0.3036902 | -0.2096470 | -0.6313201 | -1.4509256 | 2.1545912 | -0.7877905 | 1.0533257 | -1.2577158 | -1.2418272 | -0.9019386 | 0.8278052 | 0.9557215 | 0.1527421 | 0.4226852 | 0.3278353 |
| 1.6498377 | 1.7067959 | 0.6333725 | 1.1577665 | -0.5875224 | 2.7153822 | 0.8172379 | 1.2155656 | 1.6484357 | 1.9987846 | 0.0016734 | -0.1219377 | 1.0502721 | -0.2895553 | 0.8067217 | -0.7200915 | 1.3510772 | 1.9377723 | 3.4257682 | -1.6952249 | -0.9178791 | -0.8230744 | 1.1971615 | 0.2292422 | -0.2594141 | -0.2759327 | 2.9141926 |
| 0.5904981 | 0.7462495 | 0.9004664 | 2.7744724 | -0.5964737 | 1.8040217 | 0.7471326 | 0.9968621 | 0.8998349 | 1.6252291 | 0.0389071 | -0.7520802 | 1.2450326 | -0.5692342 | 0.4871569 | -0.9303315 | 1.2707258 | 1.2214385 | 2.8865767 | -1.6952249 | -1.1714037 | -1.0033355 | 1.3580102 | 2.5021872 | 0.1243175 | -0.4029541 | 2.0251323 |
| -0.7891070 | 4.1640078 | 1.6483291 | 0.3969638 | 1.3370245 | 0.2982958 | 0.1161856 | 0.0491469 | 0.4506745 | 1.4384513 | 1.2676187 | -0.8220960 | 0.3145102 | -0.7090737 | 0.0078096 | -1.1105371 | 1.1100230 | -0.9625061 | 1.1180287 | -1.7389758 | -1.4530976 | -1.1047324 | 0.2856855 | -0.6914443 | -1.2400615 | -0.7205077 | 0.6915418 |
| 0.8491740 | -0.2142970 | -0.5738916 | -1.5208931 | 0.8267958 | -0.6526890 | 0.3966065 | 0.6323562 | 0.1512342 | 1.2049790 | -0.8919350 | 0.5082048 | 0.3145102 | -0.8489132 | -0.7431678 | -1.4709485 | 1.1100230 | -1.3818234 | 0.3545335 | 0.0110606 | -1.1150649 | -0.4174868 | 0.2976002 | -0.5691657 | 0.4796246 | -0.2124219 | 0.8127773 |
| -0.1855298 | 0.1877922 | 0.0671336 | -0.3321388 | 0.8357472 | 0.0209252 | 0.1862908 | 0.7781586 | 0.7501148 | 0.5045623 | -1.1898045 | 0.4381890 | -0.5078119 | -0.3095323 | -1.0307762 | -1.4309028 | 1.9135370 | -1.1022785 | 0.2251276 | -0.3826976 | -0.7066087 | -0.2372257 | 0.5716388 | 0.5888854 | -0.2452018 | -0.5617309 | -0.3187540 |
| -0.0500328 | -0.8844457 | 0.6547400 | 1.0468161 | 0.9968720 | 1.5662755 | -1.3560241 | -0.0602049 | -0.2979263 | -0.8028821 | -1.5993750 | 0.4381890 | -1.1678336 | -1.0486838 | -1.4462105 | -1.3307885 | 0.3065090 | -1.1372216 | 0.0957216 | -1.2139649 | -1.2136578 | -1.1047324 | 0.7861037 | -0.4684656 | -0.4157491 | -0.2282996 | 0.5298945 |
| 0.9600352 | -0.0802672 | 0.9538852 | 2.8537227 | 0.3792268 | 1.2492806 | -1.2158136 | -0.2424578 | 0.7501148 | -0.7281710 | 0.3740103 | -0.6820644 | 0.5633709 | -0.8888673 | -1.5101235 | -1.3508114 | 0.3868604 | -0.9799776 | 1.9505403 | -1.1264630 | -1.3122506 | -1.0484008 | 0.0712206 | -0.3965369 | -0.6147211 | -0.4188318 | -0.0358712 |
| 0.8984457 | -0.2813119 | 0.3716206 | 1.4430676 | 1.8114477 | 0.7341638 | 0.0460804 | -0.3882602 | 0.8998349 | -0.8962710 | 0.6718797 | -0.8220960 | -0.0533707 | -0.5892113 | -1.6219712 | -1.5610513 | 1.2707258 | -0.7703189 | 0.6737349 | -0.7764558 | -1.2136578 | -0.9357376 | 0.5120652 | -0.4468870 | 0.4796246 | -0.7205077 | 0.8531891 |
| 0.5535444 | -0.1696204 | -0.1465415 | -0.1419382 | 1.2206565 | 0.8530369 | -0.1642353 | 0.8510598 | 1.0495551 | 0.0843123 | -0.8174676 | 0.7882682 | 0.2279500 | -1.1086150 | -0.9508850 | -1.1105371 | 0.5475632 | -0.2287007 | 2.4250288 | -0.4701994 | -1.4812670 | -1.5553853 | 0.9290803 | 0.0062634 | -0.6431456 | -0.1647889 | -0.1166948 |
| -0.2224835 | -1.2865349 | 1.8299530 | 2.9488230 | 0.9252610 | 0.1794227 | -2.2673920 | -0.2424578 | 0.0015140 | -0.6627988 | 0.1133745 | -0.8220960 | -0.6160121 | -0.9887526 | -1.3024063 | -1.3708342 | 0.3065090 | -1.0848070 | 2.2438605 | -1.0389612 | -1.2136578 | -1.2173956 | -0.2147327 | -1.0295090 | -1.1832123 | -0.1965443 | 0.8936010 |
| 0.7136771 | 0.8579409 | 1.8299530 | 1.6491183 | 0.2181019 | 0.2586714 | -2.2673920 | 1.1791150 | 1.4987156 | 0.4578679 | 0.0761408 | 0.3681732 | 0.0440096 | -0.5093030 | -1.1905586 | -1.1906285 | 0.2261576 | -0.0889283 | 1.5536954 | -0.9514594 | -1.1432343 | -1.1497977 | 0.0533485 | 0.8262499 | -0.3731123 | 0.0098656 | 0.7723655 |
| 0.4919549 | 1.2823684 | 2.7861489 | 2.3465208 | 2.0262808 | 1.6851486 | -1.7065502 | 1.7987750 | 1.6484357 | 1.9053957 | 0.5229450 | 0.8582840 | 0.2387701 | -0.7290507 | -0.5034942 | -1.0704914 | -0.7380592 | -0.8402052 | 1.4846789 | -1.2577158 | -0.9742179 | -0.9357376 | -0.6019611 | -0.2311011 | -0.3304755 | -0.3711987 | 0.2874235 |
| -0.9861934 | -0.7057394 | 1.1568765 | 1.9502694 | 0.6209140 | -0.6923134 | -1.5663397 | -0.1695567 | -0.1482061 | -0.3359377 | 0.3367766 | -0.2619694 | -1.0812733 | -0.1497158 | -1.6699059 | -1.5410285 | 0.3065090 | -1.5041243 | 0.1906193 | -1.3014667 | -1.1009802 | -0.2034267 | -0.5423875 | 0.8766000 | -0.2452018 | -0.7522631 | -1.3290498 |
| -0.2840730 | -0.7057394 | 1.3812353 | 2.1246200 | 0.0480257 | -0.4941915 | -2.1972867 | -0.3153590 | 0.0015140 | -0.2892432 | -0.3334297 | -0.9621277 | 0.3145102 | -1.0087297 | -1.4462105 | -1.5210056 | 0.9493202 | -1.6613683 | 2.0885733 | -1.6952249 | -1.3826741 | -1.4539884 | -1.6325843 | -1.1014376 | -1.2116369 | -0.8792845 | 1.7018376 |
| 1.4281155 | -0.6521275 | 1.7391411 | 2.5842717 | 0.1554422 | 0.8134126 | -1.4261293 | 0.4136527 | 0.1512342 | -0.3826321 | -0.1844950 | -0.6120485 | -0.4969918 | -0.9687756 | -0.9828415 | -1.3307885 | 0.6279146 | -0.6130749 | 2.0023027 | -1.4764703 | -1.2699965 | -1.2173956 | 0.0712206 | 1.5886935 | -0.6431456 | -0.2759327 | 1.0148365 |
| 0.8738098 | -0.1472821 | 1.5094403 | 1.3955174 | 2.9661758 | 3.3097477 | -1.0756032 | 0.3043010 | 0.3009543 | 1.4384513 | -0.2217287 | -0.3319852 | -0.7242124 | -1.0287068 | -0.9828415 | -1.4208913 | 1.2707258 | -0.9275630 | 1.1395963 | -1.3889685 | -1.2277425 | -1.1723304 | 0.6490844 | 2.7899018 | -0.0462298 | -0.0218898 | 0.4086590 |
| 0.4919549 | -0.3036501 | 2.1664912 | 1.4906177 | 1.4086355 | 1.3285293 | -1.2859188 | 0.4136527 | 1.0495551 | -0.1958543 | 0.2250755 | 0.1581256 | 1.3532329 | -0.9687756 | -0.7911025 | -1.2807314 | 0.5475632 | -0.3160585 | 0.9670551 | -1.1264630 | -1.4812670 | -1.1835967 | -0.7330230 | 0.8837928 | -0.2167772 | 0.0098656 | -0.5612250 |
| 0.3318221 | -1.1301669 | 0.9752527 | 1.3321172 | 1.7398366 | 2.7946309 | -1.0054980 | -0.3882602 | 0.1512342 | -1.1297433 | -0.6312992 | 1.4184107 | 1.7427539 | -1.1485692 | -1.1266456 | -1.3407999 | 0.5475632 | -0.4208878 | 2.2179793 | -1.6077230 | -1.4812670 | -1.1723304 | -0.9177011 | 0.1213493 | -1.1974246 | 0.2797861 | 0.6511300 |
| 0.2086431 | -0.8174308 | 1.5094403 | 2.9646731 | 0.2270533 | 2.6757578 | -0.9353927 | 0.0126963 | 0.1512342 | -0.8962710 | -0.5940655 | 1.4184107 | 1.8293141 | -1.1485692 | -1.0307762 | -1.3508114 | 1.3510772 | -0.2287007 | 1.8297614 | -1.5639721 | -1.3967588 | -1.0484008 | 1.3997118 | 2.7179731 | -1.1547878 | 0.2956638 | -2.3393456 |
| 1.3911617 | 0.8579409 | 2.1504656 | 1.8710191 | 1.5787118 | 2.0417679 | -0.6549718 | 1.3613680 | 1.4987156 | 0.4578679 | -0.9291687 | -0.2619694 | -0.5402719 | -0.5692342 | -0.3916465 | -1.2707200 | 1.5921314 | -0.4208878 | 1.7866261 | -1.5202212 | -1.4249282 | -1.2511946 | 1.4712001 | 0.8981786 | -0.6147211 | -0.5934863 | 0.0853643 |
Let’s generate the correlation matrix (27 rows and 27 columns)
dfa_cor = data.frame(cor(dfa))
#datatable(dfa_cor,extensions = 'FixedColumns',options = list( scrollX = TRUE, pageLength= 10)) %>%
# formatStyle(1:27,backgroundColor = styleEqual(c(1:20), 'yellow'))
kable(dfa_cor) %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
scroll_box( height = "600px", width = '910px')
| Alcohol | Sugar.free.extract | Fixed.acidity | Tartaric.acid | Malic.acid | Uronic.acids | pH | Ash | Alcalinity.of.ash | Potassium | Calcium | Magnesium | Phosphate | Chloride | Total.phenols | Flavanoids | Nonflavanoid.phenols | Proanthocyanins | Color.intensity | Hue | OD280.OD315.of.diluted.wines | OD280.OD315.of.flavonoids | Glycerol | X2.3.butanediol | Total.nitrogen | Proline | Methanol | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Alcohol | 1.0000000 | 0.4124031 | -0.0400770 | -0.0195719 | 0.0943969 | 0.1072329 | 0.0080560 | 0.2115446 | -0.3102351 | 0.0005526 | -0.5035553 | 0.2707982 | 0.3788148 | -0.0421810 | 0.2891011 | 0.2368149 | -0.1559295 | 0.1366979 | 0.5463642 | -0.0718353 | 0.0723432 | -0.0878576 | 0.5074500 | 0.4074027 | 0.1607410 | 0.6437200 | 0.0898249 |
| Sugar.free.extract | 0.4124031 | 1.0000000 | 0.0719314 | -0.2400749 | 0.1484639 | 0.0187298 | -0.0202150 | 0.4945495 | -0.0897664 | 0.3384123 | -0.0706575 | 0.2209219 | 0.2889401 | 0.0870562 | 0.4061156 | 0.3680170 | -0.1184863 | 0.2523949 | 0.1906822 | 0.0693538 | 0.2403449 | 0.1216317 | 0.5405946 | 0.1888727 | 0.2040697 | 0.3786292 | 0.1605151 |
| Fixed.acidity | -0.0400770 | 0.0719314 | 1.0000000 | 0.5675909 | 0.6877515 | 0.4355117 | -0.5569699 | 0.0779802 | 0.2523674 | 0.1202581 | 0.2198174 | -0.0732503 | -0.1621801 | -0.2209237 | -0.3272809 | -0.4425712 | 0.3384899 | -0.1769754 | 0.3688295 | -0.6675706 | -0.4667117 | -0.3368467 | -0.0257136 | 0.1332041 | -0.2860797 | -0.3335044 | 0.0187283 |
| Tartaric.acid | -0.0195719 | -0.2400749 | 0.5675909 | 1.0000000 | 0.2839947 | 0.3666198 | -0.4543328 | -0.1131098 | 0.1612928 | -0.1506238 | 0.0854281 | -0.0509865 | 0.0129849 | -0.2071491 | -0.4184790 | -0.5143300 | 0.2504155 | -0.1916546 | 0.4793438 | -0.4826248 | -0.5115558 | -0.4453052 | -0.1356825 | 0.1464582 | -0.1675758 | -0.2295639 | 0.0373755 |
| Malic.acid | 0.0943969 | 0.1484639 | 0.6877515 | 0.2839947 | 1.0000000 | 0.4819607 | -0.3267622 | 0.1640455 | 0.2885004 | 0.0997244 | 0.0551196 | -0.0545751 | -0.1990815 | -0.2423567 | -0.3351670 | -0.4110066 | 0.2929771 | -0.2207462 | 0.2489853 | -0.5613720 | -0.3687104 | -0.2767655 | 0.0558314 | 0.1251496 | -0.1843969 | -0.1920106 | 0.0548492 |
| Uronic.acids | 0.1072329 | 0.0187298 | 0.4355117 | 0.3666198 | 0.4819607 | 1.0000000 | -0.0298627 | 0.2534374 | 0.3697245 | 0.1008272 | -0.0258082 | 0.0991191 | 0.0568225 | -0.2387192 | -0.2908666 | -0.4634240 | 0.3367068 | -0.2397020 | 0.3564417 | -0.4395001 | -0.4785483 | -0.4327349 | 0.0304916 | 0.2835991 | -0.1350174 | -0.1226900 | 0.1326399 |
| pH | 0.0080560 | -0.0202150 | -0.5569699 | -0.4543328 | -0.3267622 | -0.0298627 | 1.0000000 | 0.3211003 | 0.2346881 | 0.3369130 | -0.1353547 | 0.0502152 | -0.0238014 | 0.0298760 | 0.1543275 | 0.1472205 | 0.0091876 | -0.0260850 | -0.1669499 | 0.2250022 | 0.1862118 | 0.1432470 | 0.0893005 | 0.1274578 | 0.1633942 | 0.1562395 | -0.0497973 |
| Ash | 0.2115446 | 0.4945495 | 0.0779802 | -0.1131098 | 0.1640455 | 0.2534374 | 0.3211003 | 1.0000000 | 0.4433672 | 0.6807299 | -0.1149148 | 0.2865867 | 0.2491846 | -0.0836635 | 0.1289795 | 0.1150773 | 0.1862304 | 0.0096519 | 0.2588873 | -0.0747249 | 0.0039112 | -0.0147851 | 0.3044197 | 0.1605515 | 0.1822634 | 0.2236263 | 0.0781793 |
| Alcalinity.of.ash | -0.3102351 | -0.0897664 | 0.2523674 | 0.1612928 | 0.2885004 | 0.3697245 | 0.2346881 | 0.4433672 | 1.0000000 | 0.3954162 | 0.2064289 | -0.0833331 | -0.2031736 | -0.1061559 | -0.3211133 | -0.3513699 | 0.3619217 | -0.1973268 | 0.0187320 | -0.2739343 | -0.2767685 | -0.1535432 | -0.1513507 | -0.0471761 | -0.1320424 | -0.4405969 | 0.0444520 |
| Potassium | 0.0005526 | 0.3384123 | 0.1202581 | -0.1506238 | 0.0997244 | 0.1008272 | 0.3369130 | 0.6807299 | 0.3954162 | 1.0000000 | 0.0514741 | 0.0774548 | 0.0431303 | -0.0995655 | 0.1106805 | 0.1118491 | 0.2501900 | 0.1206613 | 0.1028338 | -0.0404874 | 0.0851523 | 0.1286263 | 0.2419732 | 0.1162352 | 0.0782048 | 0.0587181 | 0.1894566 |
| Calcium | -0.5035553 | -0.0706575 | 0.2198174 | 0.0854281 | 0.0551196 | -0.0258082 | -0.1353547 | -0.1149148 | 0.2064289 | 0.0514741 | 1.0000000 | -0.0070412 | -0.1917079 | 0.0288365 | -0.0889970 | -0.0821943 | 0.1154874 | 0.1967054 | -0.3327608 | -0.0083293 | 0.0297866 | 0.1370642 | -0.2333020 | -0.2853701 | -0.1399953 | -0.3463332 | -0.1056329 |
| Magnesium | 0.2707982 | 0.2209219 | -0.0732503 | -0.0509865 | -0.0545751 | 0.0991191 | 0.0502152 | 0.2865867 | -0.0833331 | 0.0774548 | -0.0070412 | 1.0000000 | 0.4132108 | 0.0627266 | 0.2144012 | 0.1957838 | -0.2562940 | 0.2364406 | 0.1999500 | 0.0554219 | 0.0660039 | -0.0430884 | 0.1096198 | 0.2021825 | 0.1842797 | 0.3933508 | -0.1282879 |
| Phosphate | 0.3788148 | 0.2889401 | -0.1621801 | 0.0129849 | -0.1990815 | 0.0568225 | -0.0238014 | 0.2491846 | -0.2031736 | 0.0431303 | -0.1917079 | 0.4132108 | 1.0000000 | 0.0970560 | 0.4530556 | 0.3952801 | -0.2074820 | 0.3673048 | 0.3063964 | 0.2002422 | 0.1915034 | 0.0774151 | 0.2403397 | 0.1419035 | 0.2482478 | 0.5253342 | 0.0163679 |
| Chloride | -0.0421810 | 0.0870562 | -0.2209237 | -0.2071491 | -0.2423567 | -0.2387192 | 0.0298760 | -0.0836635 | -0.1061559 | -0.0995655 | 0.0288365 | 0.0627266 | 0.0970560 | 1.0000000 | 0.1883902 | 0.2641855 | -0.2071262 | 0.1478057 | -0.1303209 | 0.1869861 | 0.1832014 | 0.1221586 | 0.0399425 | -0.0464040 | 0.0453626 | 0.0882419 | 0.0727942 |
| Total.phenols | 0.2891011 | 0.4061156 | -0.3272809 | -0.4184790 | -0.3351670 | -0.2908666 | 0.1543275 | 0.1289795 | -0.3211133 | 0.1106805 | -0.0889970 | 0.2144012 | 0.4530556 | 0.1883902 | 1.0000000 | 0.8645635 | -0.4499353 | 0.6124131 | -0.0551364 | 0.4335018 | 0.6999494 | 0.5966330 | 0.2499350 | 0.0310428 | 0.2813534 | 0.4981149 | -0.0060915 |
| Flavanoids | 0.2368149 | 0.3680170 | -0.4425712 | -0.5143300 | -0.4110066 | -0.4634240 | 0.1472205 | 0.1150773 | -0.3513699 | 0.1118491 | -0.0821943 | 0.1957838 | 0.3952801 | 0.2641855 | 0.8645635 | 1.0000000 | -0.5378996 | 0.6526918 | -0.1723794 | 0.5433903 | 0.7871939 | 0.6785504 | 0.2113079 | -0.0784984 | 0.3346486 | 0.4941931 | -0.0108081 |
| Nonflavanoid.phenols | -0.1559295 | -0.1184863 | 0.3384899 | 0.2504155 | 0.2929771 | 0.3367068 | 0.0091876 | 0.1862304 | 0.3619217 | 0.2501900 | 0.1154874 | -0.2562940 | -0.2074820 | -0.2071262 | -0.4499353 | -0.5378996 | 1.0000000 | -0.3658451 | 0.1390570 | -0.2626388 | -0.5032696 | -0.3991033 | -0.0204900 | 0.0649589 | -0.0695854 | -0.3113852 | 0.0529947 |
| Proanthocyanins | 0.1366979 | 0.2523949 | -0.1769754 | -0.1916546 | -0.2207462 | -0.2397020 | -0.0260850 | 0.0096519 | -0.1973268 | 0.1206613 | 0.1967054 | 0.2364406 | 0.3673048 | 0.1478057 | 0.6124131 | 0.6526918 | -0.3658451 | 1.0000000 | -0.0252499 | 0.2955280 | 0.5190671 | 0.4673242 | 0.1559191 | 0.0110107 | 0.0385652 | 0.3304167 | -0.0114812 |
| Color.intensity | 0.5463642 | 0.1906822 | 0.3688295 | 0.4793438 | 0.2489853 | 0.3564417 | -0.1669499 | 0.2588873 | 0.0187320 | 0.1028338 | -0.3327608 | 0.1999500 | 0.3063964 | -0.1303209 | -0.0551364 | -0.1723794 | 0.1390570 | -0.0252499 | 1.0000000 | -0.5219100 | -0.4288149 | -0.5067624 | 0.2945091 | 0.3831965 | -0.0622228 | 0.3161001 | 0.1906663 |
| Hue | -0.0718353 | 0.0693538 | -0.6675706 | -0.4826248 | -0.5613720 | -0.4395001 | 0.2250022 | -0.0747249 | -0.2739343 | -0.0404874 | -0.0083293 | 0.0554219 | 0.2002422 | 0.1869861 | 0.4335018 | 0.5433903 | -0.2626388 | 0.2955280 | -0.5219100 | 1.0000000 | 0.5653701 | 0.4711945 | 0.0339406 | -0.2026795 | 0.2473513 | 0.2362272 | -0.0037564 |
| OD280.OD315.of.diluted.wines | 0.0723432 | 0.2403449 | -0.4667117 | -0.5115558 | -0.3687104 | -0.4785483 | 0.1862118 | 0.0039112 | -0.2767685 | 0.0851523 | 0.0297866 | 0.0660039 | 0.1915034 | 0.1832014 | 0.6999494 | 0.7871939 | -0.5032696 | 0.5190671 | -0.4288149 | 0.5653701 | 1.0000000 | 0.9138155 | 0.1725603 | -0.1817294 | 0.2778624 | 0.3127611 | -0.0660986 |
| OD280.OD315.of.flavonoids | -0.0878576 | 0.1216317 | -0.3368467 | -0.4453052 | -0.2767655 | -0.4327349 | 0.1432470 | -0.0147851 | -0.1535432 | 0.1286263 | 0.1370642 | -0.0430884 | 0.0774151 | 0.1221586 | 0.5966330 | 0.6785504 | -0.3991033 | 0.4673242 | -0.5067624 | 0.4711945 | 0.9138155 | 1.0000000 | 0.0451278 | -0.2645117 | 0.1834899 | 0.1494997 | -0.0827086 |
| Glycerol | 0.5074500 | 0.5405946 | -0.0257136 | -0.1356825 | 0.0558314 | 0.0304916 | 0.0893005 | 0.3044197 | -0.1513507 | 0.2419732 | -0.2333020 | 0.1096198 | 0.2403397 | 0.0399425 | 0.2499350 | 0.2113079 | -0.0204900 | 0.1559191 | 0.2945091 | 0.0339406 | 0.1725603 | 0.0451278 | 1.0000000 | 0.4489515 | 0.1633914 | 0.4150893 | 0.1868202 |
| X2.3.butanediol | 0.4074027 | 0.1888727 | 0.1332041 | 0.1464582 | 0.1251496 | 0.2835991 | 0.1274578 | 0.1605515 | -0.0471761 | 0.1162352 | -0.2853701 | 0.2021825 | 0.1419035 | -0.0464040 | 0.0310428 | -0.0784984 | 0.0649589 | 0.0110107 | 0.3831965 | -0.2026795 | -0.1817294 | -0.2645117 | 0.4489515 | 1.0000000 | 0.0507209 | 0.2425320 | 0.0424956 |
| Total.nitrogen | 0.1607410 | 0.2040697 | -0.2860797 | -0.1675758 | -0.1843969 | -0.1350174 | 0.1633942 | 0.1822634 | -0.1320424 | 0.0782048 | -0.1399953 | 0.1842797 | 0.2482478 | 0.0453626 | 0.2813534 | 0.3346486 | -0.0695854 | 0.0385652 | -0.0622228 | 0.2473513 | 0.2778624 | 0.1834899 | 0.1633914 | 0.0507209 | 1.0000000 | 0.3847329 | 0.0248949 |
| Proline | 0.6437200 | 0.3786292 | -0.3335044 | -0.2295639 | -0.1920106 | -0.1226900 | 0.1562395 | 0.2236263 | -0.4405969 | 0.0587181 | -0.3463332 | 0.3933508 | 0.5253342 | 0.0882419 | 0.4981149 | 0.4941931 | -0.3113852 | 0.3304167 | 0.3161001 | 0.2362272 | 0.3127611 | 0.1494997 | 0.4150893 | 0.2425320 | 0.3847329 | 1.0000000 | -0.0282840 |
| Methanol | 0.0898249 | 0.1605151 | 0.0187283 | 0.0373755 | 0.0548492 | 0.1326399 | -0.0497973 | 0.0781793 | 0.0444520 | 0.1894566 | -0.1056329 | -0.1282879 | 0.0163679 | 0.0727942 | -0.0060915 | -0.0108081 | 0.0529947 | -0.0114812 | 0.1906663 | -0.0037564 | -0.0660986 | -0.0827086 | 0.1868202 | 0.0424956 | 0.0248949 | -0.0282840 | 1.0000000 |
Find eigenvalues of the correlation matrix,i.e., given the matrix
\({\bf C}\) finding all the scalars
\(\lambda\) and vectors \({\bf v}\) for which
\[ {\bf Cv} = {\bf \lambda v} \]
\({\bf C}\) is a simmetric matrix, so his eigenvalues will belong to \(\mathbb{R}\)
autovalori = eigen(dfa_cor)
autovalori_df = data.frame('PC'= c(1:length(autovalori$values)), 'Eigenvalues' = autovalori$values )
kable(autovalori_df) %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
scroll_box( height = "600px")
| PC | Eigenvalues |
|---|---|
| 1 | 6.8317794 |
| 2 | 4.2515407 |
| 3 | 2.5280146 |
| 4 | 1.9778221 |
| 5 | 1.3932847 |
| 6 | 1.1251778 |
| 7 | 1.0024894 |
| 8 | 0.9500365 |
| 9 | 0.8529229 |
| 10 | 0.7537384 |
| 11 | 0.7253604 |
| 12 | 0.6385046 |
| 13 | 0.5406406 |
| 14 | 0.4784583 |
| 15 | 0.4391382 |
| 16 | 0.3789690 |
| 17 | 0.3399381 |
| 18 | 0.3200851 |
| 19 | 0.2755318 |
| 20 | 0.2431034 |
| 21 | 0.2144411 |
| 22 | 0.2000665 |
| 23 | 0.1654097 |
| 24 | 0.1323651 |
| 25 | 0.1093742 |
| 26 | 0.0813498 |
| 27 | 0.0504575 |
You can repesent eigenvalues in relative terms as well
pca = prcomp(dfa)
var = pca$sdev^2
pca_var = round(var/sum(var)*100, 2)
pc = pca(dfa, scale = F)
a = c(1:length(autovalori$values))
pc_names = c()
for (i in a) {
pc_names = append(pc_names, paste('PC',i,sep ='' ))
}
autovalori_df = data.frame('PC' = c(1:length(autovalori$values)),'Eigenvalues' = pca_var )
autovalori_df1 = autovalori_df
rownames(autovalori_df) = pc_names
autovalori_df1[2] = lapply(autovalori_df1[2], paste0, '%')
kable(autovalori_df1) %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
scroll_box( height = "600px")
| PC | Eigenvalues |
|---|---|
| 1 | 25.3% |
| 2 | 15.75% |
| 3 | 9.36% |
| 4 | 7.33% |
| 5 | 5.16% |
| 6 | 4.17% |
| 7 | 3.71% |
| 8 | 3.52% |
| 9 | 3.16% |
| 10 | 2.79% |
| 11 | 2.69% |
| 12 | 2.36% |
| 13 | 2% |
| 14 | 1.77% |
| 15 | 1.63% |
| 16 | 1.4% |
| 17 | 1.26% |
| 18 | 1.19% |
| 19 | 1.02% |
| 20 | 0.9% |
| 21 | 0.79% |
| 22 | 0.74% |
| 23 | 0.61% |
| 24 | 0.49% |
| 25 | 0.41% |
| 26 | 0.3% |
| 27 | 0.19% |
autovalori_df2 = autovalori_df[1:9,]
p = ggplot(autovalori_df, aes(y=Eigenvalues,x = reorder(PC, -Eigenvalues)))+
geom_col(width = 0.8, fill = 'cornflowerblue')+
geom_line(aes(x=PC))+
geom_point()+
theme_classic()+
geom_text(label = autovalori_df1$Eigenvalues, size = 3, nudge_y = 1.5, nudge_x = 0.6, angle = 30)+
ylim(0,27)+
labs(x='PC',y='Explained variance (%)')+
theme(axis.text.x = element_text(size = 9, angle = 0))+
ggtitle('Scree Plot')
ggplotly(p)
We talk before about eigenvectors, in PCA they’re called
loadings. For the first two principal components
loading vectors are
loadingdf = data.frame(autovalori$vectors[,1:2])
colnames(loadingdf) = c('V1', 'V2')
loadingdf$Variable = colnames(df[-1])
kable(loadingdf) %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
scroll_box( height = "500px")
| V1 | V2 | Variable |
|---|---|---|
| 0.0947178 | -0.3605457 | Alcohol |
| 0.1305410 | -0.2789443 | Sugar.free.extract |
| -0.2572863 | -0.1233457 | Fixed.acidity |
| -0.2410748 | -0.0847243 | Tartaric.acid |
| -0.2178324 | -0.1480722 | Malic.acid |
| -0.2101676 | -0.2022898 | Uronic.acids |
| 0.1112612 | -0.0026499 | pH |
| 0.0224119 | -0.2757054 | Ash |
| -0.1699383 | 0.0046834 | Alcalinity.of.ash |
| 0.0206117 | -0.1636632 | Potassium |
| -0.0491952 | 0.1995560 | Calcium |
| 0.0940340 | -0.1974412 | Magnesium |
| 0.1588299 | -0.2366248 | Phosphate |
| 0.1153329 | 0.0555492 | Chloride |
| 0.3126062 | -0.0906483 | Total.phenols |
| 0.3462961 | -0.0310953 | Flavanoids |
| -0.2233480 | -0.0340345 | Nonflavanoid.phenols |
| 0.2278198 | -0.0454079 | Proanthocyanins |
| -0.1133362 | -0.3693302 | Color.intensity |
| 0.2662477 | 0.1508639 | Hue |
| 0.3246313 | 0.0866188 | OD280.OD315.of.diluted.wines |
| 0.2716018 | 0.1477125 | OD280.OD315.of.flavonoids |
| 0.1008240 | -0.2996720 | Glycerol |
| -0.0285027 | -0.2892599 | 2.3.butanediol |
| 0.1510805 | -0.0892620 | Total.nitrogen |
| 0.2228657 | -0.2727261 | Proline |
| -0.0169842 | -0.0976458 | Methanol |
loadings = as.matrix(loadingdf[,1:2])
Dot product between each loading vector \({\bf v}\) and each row \(\bf{x}\) of the dataset gives the so-called
score vectors \(\bf{t}\). For
the first PC score vector will be
\[ {\bf t_1} = PC1 = { \bf v1 \cdot X} \] For \(m\) variables
\[ PC_{1,m} = v_{1,1}x_1+v_{1,2}x_2+...+v_{1,m}x_m \]
Or, in scalar notation
\[ {\bf PC1_i} = || {\bf v1} ||*|| {\bf x_i} ||*\cos\theta \qquad \qquad \textrm{con} \quad \theta \in [0,\pi] \]
For \(PC1\) and \(PC2\) score vectors are
scoredf = as.matrix(dfa) %*% loadings
pca_df = data.frame(scoredf)
colnames(pca_df) = c('PC1','PC2')
pca_df$Type = df$type
kable(pca_df) %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
scroll_box( height = "600px")
| PC1 | PC2 | Type |
|---|---|---|
| 3.6308600 | -0.6292087 | Barolo |
| 2.4400531 | 0.3574711 | Barolo |
| 2.9604247 | -2.1851389 | Barolo |
| 4.1730598 | -3.8371757 | Barolo |
| 1.3808962 | -1.5983210 | Barolo |
| 3.1071849 | -2.8943718 | Barolo |
| 2.9821856 | -1.3610763 | Barolo |
| 3.0215099 | -2.4866169 | Barolo |
| 3.1054514 | -1.6262975 | Barolo |
| 3.4380875 | -1.5870281 | Barolo |
| 3.7167079 | -1.6407545 | Barolo |
| 2.2156140 | -1.9559817 | Barolo |
| 3.1093151 | -1.8686257 | Barolo |
| 3.1033252 | -3.0104960 | Barolo |
| 4.3312544 | -3.3834754 | Barolo |
| 2.7461945 | -1.6536923 | Barolo |
| 2.7388679 | -2.4480227 | Barolo |
| 2.2908597 | -1.5470332 | Barolo |
| 3.3815226 | -2.8328371 | Barolo |
| 2.3994991 | -1.2343417 | Barolo |
| 3.1369044 | -0.9624110 | Barolo |
| 1.4898105 | -0.7279734 | Barolo |
| 2.7595049 | -0.4237672 | Barolo |
| 2.4550198 | 0.8141001 | Barolo |
| 2.2989926 | -0.1393205 | Barolo |
| 2.1381058 | -2.0901235 | Barolo |
| 2.5831589 | -1.2601220 | Barolo |
| 1.6179669 | -0.2181538 | Barolo |
| 3.2716582 | -1.3456544 | Barolo |
| 2.8389313 | -0.3431892 | Barolo |
| 3.0493534 | -2.0541357 | Barolo |
| 4.5437015 | -1.3312017 | Barolo |
| 2.6637058 | -1.5407107 | Barolo |
| 2.4543365 | -1.8096604 | Barolo |
| 2.2961557 | -0.8516623 | Barolo |
| 2.7553028 | 0.5545296 | Barolo |
| 2.1705141 | -1.6150722 | Barolo |
| 1.3692965 | -0.0587028 | Barolo |
| 1.5903138 | 0.4884558 | Barolo |
| 2.0673947 | -2.7657933 | Barolo |
| 2.4894792 | -0.7831143 | Barolo |
| 0.5674966 | -0.0561462 | Barolo |
| 3.4274759 | -1.4377863 | Barolo |
| 0.4706982 | 0.0417069 | Barolo |
| 2.2770015 | -0.8318321 | Barolo |
| 1.3278129 | -2.0080217 | Barolo |
| 2.7108450 | -1.6829857 | Barolo |
| 2.9112307 | 0.1441564 | Barolo |
| 2.1546086 | -1.2992650 | Barolo |
| 3.2743058 | -2.8366165 | Barolo |
| 3.0882041 | -0.4708518 | Barolo |
| 3.5516567 | -1.6564722 | Barolo |
| 3.7187677 | -1.5063930 | Barolo |
| 2.8659766 | -1.7443776 | Barolo |
| 2.5899480 | -0.3590137 | Barolo |
| 2.4616163 | -0.0495328 | Barolo |
| 3.0401335 | -1.9680481 | Barolo |
| 2.0032499 | -1.2597682 | Barolo |
| 3.0641206 | -2.0006794 | Barolo |
| -2.0884339 | 4.4367256 | Grignolino |
| -1.3118828 | 1.9565697 | Grignolino |
| -2.0524475 | 1.1059742 | Grignolino |
| -0.1551462 | 1.5256468 | Grignolino |
| 2.2757136 | 2.1411336 | Grignolino |
| 0.1549999 | 2.4972307 | Grignolino |
| 1.2584024 | 0.4249755 | Grignolino |
| 1.7766068 | 2.8242968 | Grignolino |
| 1.0332506 | 3.5687698 | Grignolino |
| -0.5003386 | -0.0020774 | Grignolino |
| 0.4549277 | 2.0188020 | Grignolino |
| -1.0632387 | 2.6541637 | Grignolino |
| 2.1970273 | 0.9252274 | Grignolino |
| -0.0876740 | 2.6350332 | Grignolino |
| 3.2407141 | -0.9291790 | Grignolino |
| 1.7422561 | 2.4818928 | Grignolino |
| -0.9264655 | 3.7936989 | Grignolino |
| 0.4068257 | 1.9654843 | Grignolino |
| -1.5180199 | 2.0946467 | Grignolino |
| 0.9719135 | 2.3654701 | Grignolino |
| 0.4253382 | 0.8473329 | Grignolino |
| 1.0466202 | 3.8455100 | Grignolino |
| 1.6257835 | 2.0034056 | Grignolino |
| 0.6179027 | 3.1502434 | Grignolino |
| -2.7661843 | 0.7623246 | Grignolino |
| 0.8984946 | 2.1500607 | Grignolino |
| 1.0797038 | 2.3574108 | Grignolino |
| -0.4853396 | 2.4245825 | Grignolino |
| 0.4198705 | 2.6541453 | Grignolino |
| -0.3943813 | 2.2573790 | Grignolino |
| -0.0561648 | 2.4184422 | Grignolino |
| -0.9645965 | 2.2614618 | Grignolino |
| -0.9821298 | 2.3090858 | Grignolino |
| -1.4558716 | 1.8565688 | Grignolino |
| 0.7607398 | 3.0168495 | Grignolino |
| 1.3367742 | 0.1995947 | Grignolino |
| 2.0049181 | 1.2904155 | Grignolino |
| -0.2593154 | 0.9354176 | Grignolino |
| 1.7906397 | 2.0275219 | Grignolino |
| 2.1392142 | 1.6159967 | Grignolino |
| 0.2836264 | 1.1006212 | Grignolino |
| 0.7908182 | 3.1525499 | Grignolino |
| -0.3382040 | 3.7858558 | Grignolino |
| 0.3722644 | 2.6817709 | Grignolino |
| 0.0476232 | 2.9021583 | Grignolino |
| 1.4347165 | 2.0307499 | Grignolino |
| -1.1586059 | 2.0504316 | Grignolino |
| 0.6078082 | 2.2181697 | Grignolino |
| -1.8286098 | 1.7093764 | Grignolino |
| 0.2843367 | 3.4061021 | Grignolino |
| 2.2556971 | 1.2524388 | Grignolino |
| 0.4295913 | 2.4880918 | Grignolino |
| -0.4663111 | 2.1866433 | Grignolino |
| -0.5838877 | -0.8999848 | Grignolino |
| -0.3006135 | 2.8731598 | Grignolino |
| -0.2337933 | 2.4665992 | Grignolino |
| -0.4619611 | 3.9714932 | Grignolino |
| 0.0589802 | 3.5258207 | Grignolino |
| 0.2074522 | 1.3310928 | Grignolino |
| -2.4080265 | 2.3841260 | Grignolino |
| -0.3702052 | 3.6531893 | Grignolino |
| 0.4498231 | 1.5467709 | Grignolino |
| 2.7407280 | -1.4536995 | Grignolino |
| -0.2252235 | 0.0779608 | Grignolino |
| -0.6646233 | 1.7130359 | Grignolino |
| 0.4922118 | 1.6112849 | Grignolino |
| 0.3029392 | 2.5584966 | Grignolino |
| 0.1965154 | 2.3740318 | Grignolino |
| -1.3228126 | 2.1620338 | Grignolino |
| -0.7170673 | 2.5394542 | Grignolino |
| -1.9196053 | 2.9246339 | Grignolino |
| -1.5573691 | 0.3752379 | Barbera |
| -2.2055050 | -0.5847499 | Barbera |
| -2.9884890 | -1.0340765 | Barbera |
| -3.1004210 | -1.5971030 | Barbera |
| -2.7300472 | 0.4903295 | Barbera |
| -3.5971717 | 1.3538013 | Barbera |
| -3.8366155 | 0.1940621 | Barbera |
| -4.0212313 | -1.2236204 | Barbera |
| -3.7957193 | -0.8228648 | Barbera |
| -1.8872972 | -1.9205438 | Barbera |
| -2.1643027 | -1.6168873 | Barbera |
| -2.4710001 | -0.3665622 | Barbera |
| -2.6102608 | -1.8628066 | Barbera |
| -3.3918646 | -1.0758938 | Barbera |
| -3.7504996 | -0.1591000 | Barbera |
| -3.8912280 | 0.1874222 | Barbera |
| -5.6010922 | 0.2597836 | Barbera |
| -4.1348640 | -1.2994407 | Barbera |
| -4.3420472 | -0.6589090 | Barbera |
| -4.4426665 | -1.5560849 | Barbera |
| -3.5038037 | -1.5298532 | Barbera |
| -3.7355479 | -1.5568556 | Barbera |
| -2.2378501 | -1.9207520 | Barbera |
| -3.8957122 | -2.2757988 | Barbera |
| -3.8346097 | 0.2765473 | Barbera |
| -4.8687403 | -2.0711920 | Barbera |
| -4.1931138 | -2.0368152 | Barbera |
| -3.2751077 | -1.9981468 | Barbera |
| -1.7592127 | -5.1243595 | Barbera |
| -2.5974194 | -4.6675257 | Barbera |
| -3.1312710 | -1.8884911 | Barbera |
| -1.1345177 | -0.9471860 | Barbera |
| -2.2456814 | -0.8584042 | Barbera |
| -3.6906983 | -0.7321010 | Barbera |
| -4.2252261 | -1.4553541 | Barbera |
| -3.7821678 | -0.6720054 | Barbera |
| -2.6940927 | -2.5314831 | Barbera |
| -4.8594426 | -0.3894455 | Barbera |
| -3.3361836 | -2.5746286 | Barbera |
| -4.0655334 | -3.1446850 | Barbera |
| -3.8424993 | 0.8950589 | Barbera |
| -4.9337046 | 0.0243347 | Barbera |
| -4.2722408 | -2.4156104 | Barbera |
| -4.9345429 | -3.6757807 | Barbera |
| -3.9221483 | -2.0850240 | Barbera |
| -4.2542812 | -2.4593670 | Barbera |
| -4.1401235 | -3.6508823 | Barbera |
| -4.4790529 | -3.9402470 | Barbera |
scoreplot = ggplot(pca_df, aes(PC1,PC2*-1, color=Type))+geom_point(size = 0.8)+
xlab(paste('PC1 - ', pca_var[1], '%'))+
ylab(paste('PC2 - ', pca_var[2], '%'))+
theme_bw()+
theme(plot.title = element_text(hjust = 0.5))+
geom_hline(yintercept = 0, alpha= 0.2, linetype = 'dashed')+
geom_vline(xintercept = 0, alpha= 0.2, linetype = 'dashed')+
stat_ellipse()
ggplotly(scoreplot)
From the graph you can appreciate how the three types of wine are arranged in 3 main clusters
However, there is no further information concerning the original
variables and their influence onto the data variability along major
components
Then a loading plot will be useful
nomi = colnames(df[2:28])
loadingplot = ggplot(loadingdf, aes(V1,V2*-1))+geom_point(color= 'white')+
xlab(paste('PC1 - ', pca_var[1], '%'))+
ylab(paste('PC2 - ', pca_var[2], '%'))+
geom_text(label=nomi, color='black', size=3)+
#geom_label(label=nomi,size= 3, fill= 'cornflowerblue', color= 'white', fontface= 'bold')+
geom_segment(aes(xend=0, yend=0), color="orange", alpha= 0.3) +
ggtitle('Loading plot')+theme_bw()+
theme(plot.title = element_text(hjust = 0.5))+
geom_hline(yintercept = 0, alpha= 0.2, linetype = 'dashed')+
geom_vline(xintercept = 0, alpha= 0.2, linetype = 'dashed')
ggplotly(loadingplot)
biplot = ggplot()+geom_point(data=pca_df, aes(PC1,PC2*-1, color=Type))+
xlab(paste('PC1 - ', pca_var[1], '%'))+
ylab(paste('PC2 - ', pca_var[2], '%'))+
ggtitle('Biplot')+theme_bw()+
geom_text(data = loadingdf,aes(V1*12,V2*-12), label = nomi, size=2.5)+
theme(plot.title = element_text(hjust = 0.5))+
geom_hline(yintercept = 0, alpha= 0.2, linetype = 'dashed')+
geom_vline(xintercept = 0, alpha= 0.2, linetype = 'dashed')
ggplotly(biplot)
We’re going to use PLS Discriminant Analysis method (PLS-DA)
Start by splitting the dataset in train and test set
set.seed(100)
trts = sample(c('TR', 'TS'), nrow(df), replace = T, prob = c(0.7,0.3))
df1 = cbind('TR/TS' = trts, df)
df1TR = df1[df1$`TR/TS` == 'TR',]
df1TS = df1[df1$`TR/TS` == 'TS',]
kable(df1) %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
scroll_box( height = "500px")
| TR/TS | type | Alcohol | Sugar.free.extract | Fixed.acidity | Tartaric.acid | Malic.acid | Uronic.acids | pH | Ash | Alcalinity.of.ash | Potassium | Calcium | Magnesium | Phosphate | Chloride | Total.phenols | Flavanoids | Nonflavanoid.phenols | Proanthocyanins | Color.intensity | Hue | OD280.OD315.of.diluted.wines | OD280.OD315.of.flavonoids | Glycerol | 2.3.butanediol | Total.nitrogen | Proline | Methanol |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TR | Barolo | 14.23 | 24.82 | 73.1 | 1.21 | 1.71 | 0.72 | 3.38 | 2.43 | 15.6 | 950 | 62 | 127 | 320 | 82 | 2.80 | 3.06 | 0.28 | 2.29 | 5.64 | 1.04 | 3.92 | 4.77 | 9.29 | 757 | 153 | 1065 | 113 |
| TR | Barolo | 13.20 | 26.30 | 72.8 | 1.84 | 1.78 | 0.71 | 3.30 | 2.14 | 11.2 | 765 | 75 | 100 | 395 | 90 | 2.65 | 2.76 | 0.26 | 1.28 | 4.38 | 1.05 | 3.40 | 3.80 | 8.93 | 881 | 194 | 1050 | 94 |
| TR | Barolo | 13.16 | 26.30 | 68.5 | 1.94 | 2.36 | 0.84 | 3.48 | 2.67 | 18.6 | 936 | 70 | 101 | 497 | 67 | 2.80 | 3.24 | 0.30 | 2.81 | 5.68 | 1.03 | 3.17 | 3.46 | 11.74 | 900 | 206 | 1185 | 125 |
| TR | Barolo | 14.37 | 25.85 | 74.9 | 1.59 | 1.95 | 0.72 | 3.43 | 2.50 | 16.8 | 985 | 47 | 113 | 580 | 49 | 3.85 | 3.49 | 0.24 | 2.18 | 7.80 | 0.86 | 3.45 | 3.54 | 10.13 | 1119 | 292 | 1480 | 80 |
| TR | Barolo | 13.24 | 26.05 | 83.5 | 1.30 | 2.59 | 1.10 | 3.42 | 2.87 | 21.0 | 1088 | 70 | 118 | 408 | 65 | 2.80 | 2.69 | 0.39 | 1.82 | 4.32 | 1.04 | 2.93 | 3.22 | 10.27 | 799 | 215 | 735 | 73 |
| TR | Barolo | 14.20 | 28.40 | 79.9 | 2.14 | 1.76 | 0.96 | 3.39 | 2.45 | 15.2 | 868 | 71 | 112 | 418 | 58 | 3.27 | 3.39 | 0.34 | 1.97 | 6.75 | 1.05 | 2.85 | 3.16 | 10.85 | 865 | 364 | 1450 | 68 |
| TS | Barolo | 14.39 | 27.02 | 64.3 | 1.64 | 1.87 | 0.95 | 3.42 | 2.45 | 14.6 | 889 | 67 | 96 | 306 | 52 | 2.50 | 2.52 | 0.30 | 1.98 | 5.25 | 1.02 | 3.58 | 3.94 | 9.05 | 931 | 378 | 1290 | 80 |
| TR | Barolo | 14.06 | 26.40 | 73.5 | 1.33 | 2.15 | 1.14 | 3.54 | 2.61 | 17.6 | 894 | 50 | 121 | 502 | 64 | 2.60 | 2.51 | 0.31 | 1.25 | 5.05 | 1.06 | 3.58 | 3.94 | 10.13 | 865 | 358 | 1295 | 100 |
| TR | Barolo | 14.83 | 26.80 | 69.5 | 1.82 | 1.64 | 0.67 | 3.30 | 2.17 | 14.0 | 765 | 49 | 97 | 440 | 58 | 2.80 | 2.98 | 0.29 | 1.98 | 5.20 | 1.08 | 2.85 | 3.03 | 9.89 | 825 | 438 | 1045 | 141 |
| TR | Barolo | 13.86 | 27.00 | 68.5 | 1.92 | 1.35 | 0.67 | 3.27 | 2.27 | 16.0 | 794 | 51 | 98 | 391 | 64 | 2.98 | 3.15 | 0.22 | 1.85 | 7.22 | 1.01 | 3.55 | 3.75 | 12.65 | 788 | 350 | 1045 | 121 |
| TR | Barolo | 14.10 | 26.08 | 72.5 | 1.64 | 2.16 | 0.62 | 3.31 | 2.30 | 18.0 | 838 | 61 | 105 | 399 | 61 | 2.95 | 3.32 | 0.22 | 2.38 | 5.75 | 1.25 | 3.17 | 3.27 | 8.59 | 964 | 378 | 1510 | 123 |
| TS | Barolo | 14.12 | 28.35 | 72.9 | 1.51 | 1.48 | 0.96 | 3.20 | 2.32 | 16.8 | 827 | 60 | 95 | 424 | 79 | 2.20 | 2.43 | 0.26 | 1.57 | 5.00 | 1.17 | 2.82 | 3.04 | 11.52 | 894 | 294 | 1280 | 134 |
| TR | Barolo | 13.75 | 30.25 | 75.1 | 1.92 | 1.73 | 0.64 | 3.18 | 2.41 | 16.0 | 752 | 65 | 89 | 453 | 257 | 2.60 | 2.76 | 0.29 | 1.81 | 5.60 | 1.15 | 2.90 | 2.92 | 12.24 | 784 | 289 | 1320 | 164 |
| TR | Barolo | 14.75 | 30.40 | 98.9 | 2.08 | 1.73 | 0.72 | 3.01 | 2.39 | 11.4 | 910 | 46 | 91 | 510 | 50 | 3.10 | 3.69 | 0.43 | 2.81 | 5.40 | 1.25 | 2.73 | 2.82 | 12.29 | 766 | 224 | 1150 | 105 |
| TS | Barolo | 14.38 | 27.10 | 72.3 | 1.95 | 1.87 | 0.67 | 3.20 | 2.38 | 12.0 | 927 | 29 | 102 | 523 | 55 | 3.30 | 3.64 | 0.29 | 2.96 | 7.50 | 1.20 | 3.00 | 3.32 | 9.53 | 1041 | 324 | 1547 | 114 |
| TR | Barolo | 13.63 | 27.15 | 69.6 | 1.48 | 1.81 | 0.67 | 3.47 | 2.70 | 17.2 | 905 | 28 | 112 | 385 | 50 | 2.85 | 2.91 | 0.30 | 1.46 | 7.30 | 1.28 | 2.88 | 3.12 | 7.92 | 812 | 229 | 1310 | 97 |
| TR | Barolo | 14.30 | 27.90 | 74.9 | 1.41 | 1.92 | 0.82 | 3.40 | 2.72 | 20.0 | 860 | 108 | 120 | 513 | 62 | 2.80 | 3.14 | 0.33 | 1.97 | 6.20 | 1.07 | 2.65 | 3.10 | 9.24 | 836 | 308 | 1280 | 113 |
| TR | Barolo | 13.83 | 26.30 | 64.9 | 1.93 | 1.57 | 0.68 | 3.43 | 2.62 | 20.0 | 905 | 68 | 115 | 419 | 58 | 2.95 | 3.40 | 0.40 | 1.72 | 6.60 | 1.13 | 2.57 | 2.66 | 9.41 | 722 | 274 | 1130 | 99 |
| TR | Barolo | 14.19 | 26.40 | 72.0 | 1.85 | 1.59 | 0.82 | 3.38 | 2.48 | 16.5 | 964 | 86 | 108 | 488 | 28 | 3.30 | 3.93 | 0.32 | 1.86 | 8.70 | 1.23 | 2.82 | 3.17 | 9.85 | 808 | 230 | 1680 | 135 |
| TR | Barolo | 13.64 | 27.72 | 91.5 | 1.35 | 3.10 | 0.82 | 3.30 | 2.56 | 15.2 | 1038 | 111 | 116 | 402 | 67 | 2.70 | 3.03 | 0.17 | 1.66 | 5.10 | 0.96 | 3.36 | 4.00 | 10.39 | 726 | 227 | 845 | 119 |
| TR | Barolo | 14.06 | 25.32 | 71.1 | 1.34 | 1.63 | 1.00 | 3.47 | 2.28 | 16.0 | 905 | 79 | 126 | 323 | 73 | 3.00 | 3.17 | 0.24 | 2.10 | 5.65 | 1.09 | 3.71 | 3.75 | 10.30 | 828 | 225 | 780 | 145 |
| TS | Barolo | 12.93 | 28.80 | 102.1 | 1.05 | 3.80 | 0.89 | 3.26 | 2.65 | 18.6 | 915 | 79 | 102 | 294 | 62 | 2.41 | 2.41 | 0.25 | 1.98 | 4.50 | 1.03 | 3.52 | 3.66 | 11.88 | 589 | 237 | 770 | 123 |
| TR | Barolo | 13.71 | 27.63 | 80.0 | 2.23 | 1.86 | 1.21 | 3.33 | 2.36 | 16.6 | 815 | 89 | 101 | 476 | 134 | 2.61 | 2.88 | 0.27 | 1.69 | 3.80 | 1.11 | 4.00 | 4.31 | 8.81 | 715 | 270 | 1035 | 109 |
| TS | Barolo | 12.85 | 25.80 | 69.6 | 1.54 | 1.60 | 0.79 | 3.45 | 2.52 | 17.8 | 958 | 101 | 95 | 415 | 73 | 2.48 | 2.37 | 0.26 | 1.46 | 3.93 | 1.09 | 3.63 | 3.82 | 9.14 | 568 | 248 | 1015 | 102 |
| TR | Barolo | 13.50 | 25.00 | 81.6 | 1.55 | 1.81 | 0.95 | 3.42 | 2.61 | 20.0 | 992 | 62 | 96 | 476 | 47 | 2.53 | 2.61 | 0.28 | 1.66 | 3.52 | 1.12 | 3.82 | 4.00 | 9.45 | 667 | 210 | 845 | 86 |
| TR | Barolo | 13.05 | 25.72 | 78.3 | 1.15 | 2.05 | 1.08 | 3.57 | 3.22 | 25.0 | 1095 | 63 | 124 | 536 | 82 | 2.63 | 2.68 | 0.47 | 1.92 | 3.58 | 1.13 | 3.20 | 3.63 | 10.34 | 753 | 238 | 830 | 124 |
| TS | Barolo | 13.39 | 27.10 | 72.3 | 1.52 | 1.77 | 1.05 | 3.46 | 2.62 | 16.1 | 936 | 68 | 93 | 395 | 52 | 2.85 | 2.94 | 0.34 | 1.45 | 4.80 | 0.92 | 3.22 | 4.44 | 9.96 | 854 | 285 | 1195 | 85 |
| TS | Barolo | 13.30 | 22.70 | 68.3 | 1.74 | 1.72 | 1.06 | 3.44 | 2.14 | 17.0 | 882 | 52 | 94 | 434 | 46 | 2.40 | 2.19 | 0.27 | 1.35 | 3.95 | 1.02 | 2.77 | 3.10 | 9.70 | 757 | 350 | 1285 | 84 |
| TR | Barolo | 13.87 | 29.30 | 68.3 | 1.38 | 1.90 | 0.75 | 3.42 | 2.80 | 19.4 | 1085 | 68 | 107 | 396 | 76 | 2.95 | 2.97 | 0.37 | 1.76 | 4.50 | 1.25 | 3.40 | 3.72 | 9.53 | 702 | 280 | 915 | 99 |
| TR | Barolo | 14.02 | 25.20 | 69.6 | 1.71 | 1.68 | 0.79 | 3.26 | 2.21 | 16.0 | 780 | 62 | 96 | 510 | 53 | 2.65 | 2.33 | 0.26 | 1.98 | 4.70 | 1.04 | 3.59 | 3.77 | 9.94 | 689 | 293 | 1035 | 100 |
| TR | Barolo | 13.73 | 26.75 | 75.2 | 1.53 | 1.50 | 0.66 | 3.30 | 2.70 | 22.5 | 1067 | 76 | 101 | 436 | 53 | 3.00 | 3.25 | 0.29 | 2.38 | 5.70 | 1.19 | 2.71 | 3.00 | 10.44 | 792 | 332 | 1285 | 120 |
| TS | Barolo | 13.58 | 28.35 | 62.0 | 1.14 | 1.66 | 0.72 | 3.28 | 2.36 | 19.1 | 805 | 58 | 106 | 485 | 498 | 2.86 | 3.19 | 0.22 | 1.95 | 6.90 | 1.09 | 2.88 | 3.06 | 10.73 | 700 | 296 | 1515 | 108 |
| TR | Barolo | 13.68 | 26.98 | 64.8 | 1.60 | 1.83 | 0.62 | 3.40 | 2.36 | 17.2 | 1068 | 32 | 104 | 398 | 76 | 2.42 | 2.69 | 0.42 | 1.97 | 3.84 | 1.23 | 2.87 | 3.04 | 13.00 | 733 | 252 | 990 | 141 |
| TS | Barolo | 13.76 | 26.80 | 77.1 | 1.81 | 1.53 | 0.84 | 3.40 | 2.70 | 19.5 | 974 | 39 | 132 | 394 | 128 | 2.95 | 2.74 | 0.50 | 1.35 | 5.40 | 1.25 | 3.00 | 3.31 | 8.33 | 740 | 296 | 1235 | 109 |
| TR | Barolo | 13.51 | 26.22 | 65.3 | 1.28 | 1.80 | 0.70 | 3.36 | 2.65 | 19.0 | 856 | 53 | 110 | 464 | 53 | 2.35 | 2.53 | 0.29 | 1.54 | 4.20 | 1.10 | 2.87 | 2.91 | 10.10 | 700 | 258 | 1095 | 86 |
| TS | Barolo | 13.48 | 26.10 | 70.9 | 1.44 | 1.81 | 0.69 | 3.45 | 2.41 | 20.5 | 789 | 49 | 100 | 416 | 35 | 2.70 | 2.98 | 0.26 | 1.86 | 5.10 | 1.04 | 3.47 | 4.04 | 8.21 | 534 | 258 | 920 | 75 |
| TR | Barolo | 13.28 | 29.70 | 78.9 | 1.50 | 1.64 | 0.80 | 3.30 | 2.84 | 15.5 | 964 | 98 | 110 | 431 | 38 | 2.60 | 2.68 | 0.34 | 1.36 | 4.60 | 1.09 | 2.78 | 3.17 | 13.70 | 570 | 224 | 880 | 105 |
| TR | Barolo | 13.05 | 25.00 | 70.9 | 1.18 | 1.65 | 0.89 | 3.34 | 2.55 | 18.0 | 1025 | 85 | 98 | 382 | 23 | 2.45 | 2.43 | 0.29 | 1.44 | 4.25 | 1.12 | 2.51 | 2.87 | 8.88 | 627 | 220 | 1105 | 134 |
| TS | Barolo | 13.07 | 24.30 | 73.9 | 1.16 | 1.50 | 1.00 | 3.41 | 2.10 | 15.5 | 930 | 75 | 98 | 386 | 18 | 2.40 | 2.64 | 0.28 | 1.37 | 3.70 | 1.18 | 2.69 | 3.04 | 9.50 | 658 | 212 | 1020 | 145 |
| TR | Barolo | 14.22 | 30.20 | 114.8 | 1.85 | 3.99 | 0.64 | 3.11 | 2.51 | 13.2 | 895 | 88 | 128 | 280 | 76 | 3.00 | 3.04 | 0.20 | 2.08 | 5.10 | 0.89 | 3.53 | 3.66 | 12.34 | 1048 | 215 | 760 | 101 |
| TR | Barolo | 13.56 | 26.60 | 80.3 | 1.57 | 1.71 | 0.91 | 3.32 | 2.31 | 16.2 | 890 | 75 | 117 | 316 | 70 | 3.15 | 3.29 | 0.34 | 2.34 | 6.13 | 0.95 | 3.38 | 3.53 | 9.77 | 733 | 246 | 795 | 118 |
| TS | Barolo | 13.41 | 27.50 | 102.7 | 1.79 | 3.84 | 0.92 | 3.19 | 2.12 | 18.8 | 815 | 78 | 90 | 385 | 70 | 2.45 | 2.68 | 0.27 | 1.48 | 4.28 | 0.91 | 3.00 | 3.36 | 9.21 | 565 | 231 | 1035 | 106 |
| TS | Barolo | 13.88 | 27.80 | 78.9 | 2.39 | 1.89 | 0.65 | 3.33 | 2.59 | 15.0 | 980 | 71 | 101 | 502 | 67 | 3.25 | 3.56 | 0.17 | 1.70 | 5.43 | 0.88 | 3.56 | 4.00 | 8.61 | 665 | 289 | 1095 | 121 |
| TS | Barolo | 13.24 | 25.60 | 101.3 | 1.83 | 3.98 | 0.62 | 3.18 | 2.29 | 17.5 | 920 | 63 | 103 | 389 | 53 | 2.64 | 2.63 | 0.32 | 1.66 | 4.36 | 0.82 | 3.00 | 3.15 | 8.61 | 576 | 248 | 680 | 105 |
| TR | Barolo | 13.05 | 23.70 | 80.0 | 1.22 | 1.77 | 0.82 | 3.33 | 2.10 | 17.0 | 901 | 49 | 107 | 408 | 50 | 3.00 | 3.00 | 0.28 | 2.03 | 5.04 | 0.88 | 3.35 | 3.78 | 9.96 | 1044 | 218 | 885 | 155 |
| TR | Barolo | 14.21 | 29.65 | 104.9 | 1.74 | 4.04 | 0.86 | 3.35 | 2.44 | 18.9 | 930 | 63 | 111 | 324 | 46 | 2.85 | 2.65 | 0.30 | 1.25 | 5.24 | 0.87 | 3.33 | 3.78 | 10.08 | 700 | 264 | 1080 | 90 |
| TS | Barolo | 14.38 | 30.70 | 90.3 | 1.24 | 3.59 | 0.99 | 3.16 | 2.28 | 16.0 | 788 | 71 | 102 | 408 | 70 | 3.25 | 3.17 | 0.27 | 2.19 | 4.90 | 1.04 | 3.44 | 3.56 | 9.48 | 766 | 218 | 1065 | 91 |
| TS | Barolo | 13.90 | 25.30 | 75.2 | 1.93 | 1.68 | 0.63 | 3.16 | 2.12 | 16.0 | 762 | 81 | 101 | 484 | 56 | 3.10 | 3.39 | 0.21 | 2.14 | 6.10 | 0.91 | 3.33 | 3.51 | 8.78 | 570 | 281 | 985 | 77 |
| TR | Barolo | 14.10 | 25.98 | 70.0 | 1.87 | 2.02 | 0.83 | 3.20 | 2.40 | 18.8 | 880 | 75 | 103 | 480 | 64 | 2.75 | 2.92 | 0.32 | 2.38 | 6.20 | 1.07 | 2.75 | 2.89 | 10.42 | 669 | 249 | 1060 | 78 |
| TR | Barolo | 13.94 | 26.80 | 72.7 | 2.35 | 1.73 | 0.60 | 3.23 | 2.27 | 17.4 | 868 | 40 | 108 | 420 | 96 | 2.88 | 3.54 | 0.32 | 2.08 | 8.90 | 1.12 | 3.10 | 3.30 | 13.44 | 749 | 383 | 1260 | 155 |
| TR | Barolo | 13.05 | 24.30 | 76.0 | 2.08 | 1.73 | 0.63 | 3.06 | 2.04 | 12.4 | 792 | 35 | 92 | 638 | 50 | 2.72 | 3.27 | 0.17 | 2.91 | 7.20 | 1.12 | 2.91 | 3.20 | 9.17 | 590 | 224 | 1150 | 124 |
| TR | Barolo | 13.83 | 27.60 | 63.3 | 1.82 | 1.65 | 0.77 | 3.32 | 2.60 | 17.2 | 968 | 28 | 94 | 411 | 53 | 2.45 | 2.99 | 0.22 | 2.29 | 5.60 | 1.24 | 3.37 | 3.69 | 9.77 | 777 | 330 | 1265 | 110 |
| TR | Barolo | 13.82 | 26.25 | 74.5 | 1.83 | 1.75 | 0.77 | 3.33 | 2.42 | 14.0 | 785 | 29 | 111 | 472 | 47 | 3.88 | 3.74 | 0.32 | 1.87 | 7.05 | 1.01 | 3.26 | 3.53 | 7.63 | 704 | 360 | 1190 | 88 |
| TR | Barolo | 13.77 | 25.20 | 64.8 | 1.29 | 1.90 | 0.84 | 3.56 | 2.68 | 17.1 | 927 | 33 | 115 | 405 | 59 | 3.00 | 2.79 | 0.39 | 1.68 | 6.30 | 1.13 | 2.93 | 3.21 | 7.73 | 795 | 313 | 1375 | 109 |
| TR | Barolo | 13.74 | 24.80 | 65.2 | 1.88 | 1.67 | 0.66 | 3.43 | 2.25 | 16.4 | 784 | 76 | 118 | 502 | 37 | 2.60 | 2.90 | 0.21 | 1.62 | 5.85 | 0.92 | 3.20 | 3.36 | 7.97 | 733 | 292 | 1060 | 87 |
| TR | Barolo | 13.56 | 25.00 | 78.0 | 1.49 | 1.73 | 0.69 | 3.31 | 2.46 | 20.5 | 808 | 91 | 116 | 411 | 38 | 2.96 | 2.78 | 0.20 | 2.45 | 6.25 | 0.98 | 3.03 | 3.16 | 7.92 | 550 | 266 | 1120 | 86 |
| TR | Barolo | 14.22 | 26.60 | 87.1 | 1.98 | 1.70 | 0.74 | 3.20 | 2.30 | 16.3 | 768 | 73 | 118 | 465 | 136 | 3.20 | 3.00 | 0.26 | 2.03 | 6.38 | 0.94 | 3.31 | 3.81 | 13.00 | 770 | 248 | 970 | 124 |
| TR | Barolo | 13.29 | 26.80 | 80.0 | 1.63 | 1.97 | 0.96 | 3.24 | 2.68 | 16.8 | 905 | 76 | 102 | 360 | 24 | 3.00 | 3.23 | 0.31 | 1.66 | 6.00 | 1.07 | 2.84 | 3.21 | 9.30 | 676 | 258 | 1270 | 116 |
| TR | Barolo | 13.72 | 27.10 | 73.3 | 1.34 | 1.43 | 0.93 | 3.38 | 2.50 | 16.7 | 906 | 71 | 108 | 403 | 33 | 3.40 | 3.67 | 0.19 | 2.04 | 6.80 | 0.89 | 2.87 | 3.10 | 9.94 | 755 | 232 | 1285 | 131 |
| TR | Grignolino | 12.37 | 18.30 | 90.1 | 2.80 | 0.94 | 0.73 | 3.11 | 1.36 | 10.6 | 580 | 77 | 88 | 296 | 52 | 1.98 | 0.57 | 0.28 | 0.42 | 1.95 | 1.05 | 1.82 | 2.12 | 5.40 | 736 | 287 | 520 | 98 |
| TR | Grignolino | 12.33 | 22.90 | 72.2 | 2.25 | 1.10 | 0.69 | 3.26 | 2.28 | 16.0 | 715 | 85 | 101 | 365 | 108 | 2.05 | 1.09 | 0.63 | 0.41 | 3.27 | 1.25 | 1.67 | 1.42 | 6.90 | 658 | 345 | 680 | 127 |
| TR | Grignolino | 12.64 | 23.90 | 95.7 | 1.93 | 1.36 | 1.06 | 3.19 | 2.02 | 16.8 | 688 | 83 | 100 | 395 | 53 | 2.02 | 1.41 | 0.53 | 0.62 | 5.75 | 0.98 | 1.59 | 1.86 | 8.20 | 691 | 321 | 450 | 60 |
| TS | Grignolino | 13.67 | 22.20 | 64.8 | 2.20 | 1.25 | 0.74 | 3.40 | 1.92 | 18.0 | 725 | 51 | 94 | 301 | 47 | 2.10 | 1.79 | 0.32 | 0.73 | 3.80 | 1.23 | 2.46 | 1.73 | 8.60 | 797 | 262 | 630 | 87 |
| TR | Grignolino | 12.37 | 23.50 | 70.0 | 2.06 | 1.13 | 0.72 | 3.30 | 2.16 | 19.0 | 785 | 73 | 87 | 422 | 306 | 3.50 | 3.10 | 0.19 | 1.87 | 4.45 | 1.22 | 2.87 | 3.07 | 7.20 | 748 | 141 | 420 | 157 |
| TR | Grignolino | 12.17 | 23.03 | 65.7 | 1.84 | 1.45 | 0.72 | 3.35 | 2.53 | 19.0 | 790 | 62 | 104 | 411 | 116 | 1.89 | 1.75 | 0.45 | 1.03 | 2.95 | 1.45 | 2.23 | 2.73 | 7.50 | 627 | 219 | 355 | 58 |
| TR | Grignolino | 12.37 | 26.80 | 62.7 | 1.70 | 1.21 | 0.88 | 3.40 | 2.56 | 18.1 | 978 | 55 | 98 | 310 | 69 | 2.42 | 2.65 | 0.37 | 2.08 | 4.60 | 1.19 | 2.30 | 2.60 | 7.96 | 680 | 259 | 678 | 118 |
| TR | Grignolino | 13.11 | 23.70 | 80.0 | 1.40 | 1.01 | 0.77 | 3.10 | 1.70 | 15.0 | 730 | 80 | 78 | 297 | 148 | 2.98 | 3.18 | 0.26 | 2.28 | 5.30 | 1.12 | 3.18 | 3.33 | 8.20 | 604 | 100 | 502 | 114 |
| TR | Grignolino | 12.37 | 20.90 | 63.7 | 1.94 | 1.17 | 0.67 | 3.40 | 1.92 | 19.6 | 785 | 40 | 78 | 212 | 54 | 2.11 | 2.00 | 0.27 | 1.04 | 4.68 | 1.12 | 3.48 | 4.07 | 7.10 | 554 | 425 | 510 | 98 |
| TR | Grignolino | 13.34 | 23.72 | 70.0 | 2.02 | 0.94 | 1.09 | 3.26 | 2.36 | 17.0 | 760 | 64 | 110 | 451 | 111 | 2.53 | 1.30 | 0.55 | 0.42 | 3.17 | 1.02 | 1.93 | 1.92 | 8.10 | 704 | 363 | 750 | 137 |
| TR | Grignolino | 12.21 | 22.70 | 90.7 | 3.62 | 1.19 | 0.94 | 3.14 | 1.75 | 16.8 | 795 | 134 | 151 | 448 | 88 | 1.85 | 1.28 | 0.14 | 2.50 | 2.85 | 1.28 | 3.07 | 3.23 | 6.81 | 714 | 195 | 718 | 116 |
| TR | Grignolino | 12.29 | 21.40 | 55.6 | 1.43 | 1.61 | 0.87 | 3.54 | 2.21 | 20.4 | 682 | 102 | 103 | 324 | 50 | 1.10 | 1.02 | 0.37 | 1.46 | 3.05 | 0.91 | 1.82 | 2.00 | 6.38 | 661 | 301 | 870 | 78 |
| TR | Grignolino | 13.86 | 25.25 | 59.5 | 1.27 | 1.51 | 1.09 | 3.63 | 2.67 | 25.0 | 785 | 63 | 86 | 383 | 59 | 2.95 | 2.86 | 0.21 | 1.87 | 3.38 | 1.36 | 3.16 | 3.52 | 7.62 | 748 | 170 | 410 | 99 |
| TR | Grignolino | 13.49 | 22.30 | 60.9 | 1.74 | 1.66 | 0.67 | 3.44 | 2.24 | 24.0 | 680 | 60 | 87 | 300 | 43 | 1.88 | 1.84 | 0.27 | 1.03 | 3.74 | 0.98 | 2.78 | 3.50 | 8.04 | 614 | 160 | 472 | 64 |
| TS | Grignolino | 12.99 | 26.10 | 50.5 | 1.42 | 1.67 | 1.24 | 3.52 | 2.60 | 30.0 | 974 | 55 | 139 | 473 | 35 | 3.30 | 2.89 | 0.21 | 1.96 | 3.35 | 1.31 | 3.50 | 3.60 | 8.00 | 731 | 293 | 985 | 113 |
| TR | Grignolino | 11.96 | 24.50 | 65.7 | 2.18 | 1.09 | 0.73 | 3.40 | 2.30 | 21.0 | 681 | 98 | 101 | 366 | 48 | 3.38 | 2.14 | 0.13 | 1.65 | 3.21 | 0.99 | 3.13 | 3.15 | 7.70 | 563 | 183 | 886 | 57 |
| TR | Grignolino | 11.66 | 20.30 | 61.7 | 1.70 | 1.88 | 0.60 | 3.30 | 1.92 | 16.0 | 785 | 52 | 97 | 312 | 59 | 1.61 | 1.57 | 0.34 | 1.15 | 3.80 | 1.23 | 2.14 | 2.35 | 6.14 | 596 | 109 | 428 | 129 |
| TS | Grignolino | 13.03 | 23.50 | 78.6 | 1.90 | 0.90 | 0.76 | 3.30 | 1.71 | 16.0 | 790 | 57 | 86 | 396 | 122 | 1.95 | 2.03 | 0.24 | 1.46 | 4.60 | 1.19 | 2.48 | 2.85 | 8.40 | 756 | 167 | 392 | 145 |
| TS | Grignolino | 11.84 | 26.40 | 108.7 | 1.70 | 2.89 | 0.91 | 3.11 | 2.23 | 18.0 | 790 | 71 | 112 | 350 | 58 | 1.72 | 1.32 | 0.43 | 0.95 | 2.65 | 0.96 | 2.52 | 3.25 | 5.22 | 514 | 246 | 500 | 122 |
| TS | Grignolino | 12.33 | 20.60 | 58.7 | 2.41 | 0.99 | 0.84 | 3.32 | 1.95 | 14.8 | 680 | 124 | 136 | 438 | 99 | 1.90 | 1.85 | 0.35 | 2.76 | 3.40 | 1.06 | 2.31 | 2.70 | 7.96 | 654 | 259 | 750 | 59 |
| TR | Grignolino | 12.70 | 27.15 | 93.3 | 1.46 | 3.87 | 1.11 | 3.19 | 2.40 | 23.0 | 890 | 110 | 101 | 321 | 52 | 2.83 | 2.55 | 0.43 | 1.95 | 2.57 | 1.19 | 3.13 | 3.82 | 8.66 | 700 | 227 | 463 | 101 |
| TR | Grignolino | 12.00 | 23.20 | 58.4 | 1.88 | 0.92 | 0.82 | 3.30 | 2.00 | 19.0 | 680 | 63 | 86 | 408 | 27 | 2.42 | 2.26 | 0.30 | 1.43 | 2.50 | 1.38 | 3.12 | 3.52 | 5.80 | 645 | 199 | 278 | 95 |
| TR | Grignolino | 12.72 | 22.90 | 58.4 | 1.40 | 1.81 | 0.81 | 3.50 | 2.20 | 18.8 | 890 | 83 | 86 | 418 | 64 | 2.20 | 2.53 | 0.26 | 1.77 | 3.90 | 1.16 | 3.14 | 3.33 | 7.38 | 664 | 199 | 714 | 111 |
| TS | Grignolino | 12.08 | 23.50 | 56.9 | 1.33 | 1.13 | 0.71 | 3.65 | 2.51 | 24.0 | 980 | 85 | 78 | 215 | 53 | 2.00 | 1.58 | 0.40 | 1.40 | 2.20 | 1.31 | 2.72 | 3.50 | 8.11 | 548 | 203 | 630 | 115 |
| TS | Grignolino | 13.05 | 25.50 | 104.8 | 1.64 | 3.86 | 0.73 | 3.19 | 2.32 | 22.5 | 938 | 98 | 85 | 195 | 48 | 1.65 | 1.59 | 0.61 | 1.62 | 4.80 | 0.84 | 2.01 | 2.07 | 8.64 | 649 | 207 | 515 | 114 |
| TR | Grignolino | 11.84 | 23.40 | 70.8 | 1.80 | 0.89 | 1.00 | 3.40 | 2.58 | 18.0 | 922 | 80 | 94 | 378 | 95 | 2.20 | 2.21 | 0.22 | 2.35 | 3.05 | 0.79 | 3.08 | 3.81 | 6.36 | 586 | 138 | 520 | 141 |
| TR | Grignolino | 12.67 | 24.30 | 74.1 | 1.70 | 0.98 | 0.88 | 3.35 | 2.24 | 18.0 | 840 | 81 | 99 | 336 | 70 | 2.20 | 1.94 | 0.30 | 1.46 | 2.62 | 1.23 | 3.16 | 3.60 | 7.90 | 600 | 217 | 450 | 121 |
| TS | Grignolino | 12.16 | 25.80 | 78.9 | 1.84 | 1.61 | 0.78 | 3.37 | 2.31 | 22.8 | 845 | 98 | 90 | 285 | 54 | 1.78 | 1.69 | 0.43 | 1.56 | 2.45 | 1.33 | 2.26 | 2.92 | 8.04 | 643 | 195 | 495 | 116 |
| TR | Grignolino | 11.65 | 22.90 | 62.9 | 1.80 | 1.67 | 0.64 | 3.55 | 2.62 | 26.0 | 1045 | 125 | 88 | 281 | 36 | 1.92 | 1.61 | 0.40 | 1.34 | 2.60 | 1.36 | 3.21 | 3.27 | 9.54 | 608 | 262 | 562 | 120 |
| TR | Grignolino | 11.64 | 24.20 | 72.4 | 1.84 | 2.06 | 0.89 | 3.40 | 2.46 | 21.6 | 962 | 79 | 84 | 304 | 70 | 1.95 | 1.69 | 0.48 | 1.35 | 2.80 | 1.00 | 2.75 | 3.60 | 7.97 | 523 | 223 | 680 | 120 |
| TS | Grignolino | 12.08 | 24.00 | 67.6 | 1.93 | 1.33 | 1.05 | 3.50 | 2.30 | 23.6 | 932 | 65 | 70 | 278 | 27 | 2.20 | 1.59 | 0.42 | 1.38 | 1.74 | 1.07 | 3.21 | 3.77 | 8.47 | 557 | 200 | 625 | 163 |
| TS | Grignolino | 12.08 | 25.50 | 78.9 | 1.93 | 1.83 | 0.77 | 3.25 | 2.32 | 18.5 | 960 | 128 | 81 | 329 | 48 | 1.60 | 1.50 | 0.52 | 1.64 | 2.40 | 1.08 | 2.27 | 2.28 | 8.33 | 563 | 314 | 480 | 105 |
| TR | Grignolino | 12.00 | 25.30 | 75.6 | 1.80 | 1.51 | 0.74 | 3.27 | 2.42 | 22.0 | 915 | 102 | 86 | 342 | 110 | 1.45 | 1.25 | 0.50 | 1.63 | 3.60 | 1.05 | 2.65 | 2.75 | 8.21 | 495 | 170 | 450 | 152 |
| TR | Grignolino | 12.69 | 25.00 | 70.9 | 1.47 | 1.53 | 0.82 | 3.43 | 2.26 | 20.7 | 845 | 92 | 80 | 214 | 73 | 1.38 | 1.46 | 0.58 | 1.62 | 3.05 | 0.96 | 2.06 | 2.28 | 8.88 | 792 | 198 | 495 | 101 |
| TR | Grignolino | 12.29 | 25.00 | 86.0 | 1.84 | 2.83 | 0.71 | 3.24 | 2.22 | 18.0 | 915 | 94 | 88 | 329 | 84 | 2.45 | 2.25 | 0.25 | 1.99 | 2.15 | 1.15 | 3.30 | 3.75 | 5.64 | 594 | 190 | 290 | 117 |
| TS | Grignolino | 11.62 | 28.40 | 92.8 | 1.35 | 1.99 | 0.84 | 3.22 | 2.28 | 18.0 | 794 | 88 | 98 | 372 | 76 | 3.02 | 2.26 | 0.17 | 1.35 | 3.25 | 1.16 | 2.96 | 2.97 | 13.60 | 930 | 200 | 345 | 120 |
| TR | Grignolino | 12.47 | 24.95 | 72.0 | 1.93 | 1.52 | 1.02 | 3.32 | 2.20 | 19.0 | 790 | 188 | 162 | 464 | 84 | 2.50 | 2.27 | 0.32 | 3.28 | 2.60 | 1.16 | 2.63 | 2.99 | 6.21 | 683 | 268 | 937 | 79 |
| TR | Grignolino | 11.81 | 27.50 | 75.3 | 1.75 | 2.12 | 0.91 | 3.29 | 2.74 | 21.5 | 942 | 125 | 134 | 375 | 83 | 1.60 | 0.99 | 0.14 | 1.56 | 2.50 | 0.95 | 2.26 | 2.88 | 7.56 | 687 | 179 | 625 | 84 |
| TR | Grignolino | 12.29 | 25.30 | 68.5 | 1.80 | 1.41 | 0.57 | 3.30 | 1.98 | 16.0 | 890 | 82 | 85 | 440 | 40 | 2.55 | 2.50 | 0.29 | 1.77 | 2.90 | 1.23 | 2.74 | 3.14 | 8.44 | 696 | 335 | 428 | 117 |
| TR | Grignolino | 12.37 | 24.80 | 61.2 | 1.60 | 1.07 | 1.01 | 3.40 | 2.10 | 18.5 | 845 | 84 | 88 | 385 | 80 | 3.52 | 3.75 | 0.24 | 1.95 | 4.50 | 1.04 | 2.77 | 3.05 | 7.23 | 655 | 180 | 660 | 127 |
| TS | Grignolino | 12.29 | 26.50 | 112.4 | 2.61 | 3.17 | 1.09 | 2.95 | 2.21 | 18.0 | 845 | 122 | 88 | 438 | 35 | 2.85 | 2.99 | 0.45 | 2.81 | 2.30 | 1.42 | 2.83 | 3.90 | 8.45 | 759 | 159 | 406 | 146 |
| TR | Grignolino | 12.08 | 22.90 | 75.2 | 2.20 | 2.08 | 0.67 | 3.15 | 1.70 | 17.5 | 805 | 62 | 97 | 212 | 42 | 2.23 | 2.17 | 0.26 | 1.40 | 3.30 | 1.27 | 2.96 | 3.41 | 7.08 | 591 | 399 | 710 | 105 |
| TR | Grignolino | 12.60 | 21.90 | 63.7 | 2.00 | 1.34 | 0.64 | 3.15 | 1.90 | 18.5 | 870 | 135 | 88 | 224 | 80 | 1.45 | 1.36 | 0.29 | 1.35 | 2.45 | 1.04 | 2.77 | 3.75 | 8.56 | 610 | 195 | 562 | 130 |
| TR | Grignolino | 12.34 | 25.80 | 78.0 | 2.50 | 2.45 | 0.57 | 3.42 | 2.46 | 21.0 | 915 | 144 | 98 | 146 | 82 | 2.56 | 2.11 | 0.34 | 1.31 | 2.80 | 0.80 | 3.38 | 4.19 | 8.36 | 536 | 306 | 438 | 98 |
| TR | Grignolino | 11.82 | 22.70 | 67.2 | 2.17 | 1.72 | 0.80 | 3.40 | 1.88 | 19.5 | 874 | 64 | 86 | 442 | 85 | 2.50 | 1.64 | 0.37 | 1.42 | 2.06 | 0.94 | 2.44 | 3.80 | 7.36 | 653 | 194 | 415 | 103 |
| TR | Grignolino | 12.51 | 24.50 | 63.2 | 1.34 | 1.73 | 0.67 | 3.50 | 1.98 | 20.5 | 905 | 74 | 85 | 254 | 50 | 2.20 | 1.92 | 0.32 | 1.48 | 2.94 | 1.04 | 3.57 | 4.50 | 10.44 | 882 | 158 | 672 | 99 |
| TR | Grignolino | 12.42 | 23.50 | 78.7 | 1.92 | 2.55 | 0.92 | 3.30 | 2.27 | 22.0 | 980 | 93 | 90 | 342 | 92 | 1.68 | 1.84 | 0.66 | 1.42 | 2.70 | 0.86 | 3.30 | 3.50 | 7.92 | 680 | 219 | 315 | 89 |
| TS | Grignolino | 12.25 | 25.00 | 75.2 | 1.40 | 1.73 | 0.64 | 3.45 | 2.12 | 19.0 | 890 | 102 | 80 | 265 | 53 | 1.65 | 2.03 | 0.37 | 1.63 | 3.40 | 1.00 | 3.17 | 4.16 | 10.13 | 790 | 207 | 510 | 126 |
| TS | Grignolino | 12.72 | 24.10 | 85.6 | 2.34 | 1.75 | 0.71 | 3.33 | 2.28 | 22.5 | 910 | 58 | 84 | 159 | 67 | 1.38 | 1.76 | 0.48 | 1.63 | 3.30 | 0.88 | 2.42 | 2.54 | 7.61 | 855 | 194 | 488 | 81 |
| TR | Grignolino | 12.22 | 24.50 | 70.1 | 1.42 | 1.29 | 0.60 | 3.36 | 1.94 | 19.0 | 897 | 103 | 92 | 157 | 65 | 2.36 | 2.04 | 0.39 | 2.08 | 2.70 | 0.86 | 3.02 | 3.64 | 7.24 | 780 | 132 | 312 | 97 |
| TR | Grignolino | 11.61 | 27.60 | 84.0 | 1.85 | 1.35 | 0.87 | 3.46 | 2.70 | 20.0 | 950 | 98 | 94 | 408 | 58 | 2.74 | 2.92 | 0.29 | 2.49 | 2.65 | 0.96 | 3.26 | 3.85 | 6.42 | 592 | 386 | 680 | 110 |
| TS | Grignolino | 11.46 | 24.84 | 104.4 | 2.20 | 3.74 | 0.78 | 3.07 | 1.82 | 19.5 | 685 | 143 | 107 | 322 | 70 | 3.18 | 2.58 | 0.24 | 3.58 | 2.90 | 0.75 | 2.81 | 3.60 | 7.87 | 684 | 196 | 562 | 91 |
| TS | Grignolino | 12.52 | 26.35 | 100.4 | 1.45 | 2.43 | 0.97 | 3.21 | 2.17 | 21.0 | 680 | 112 | 88 | 339 | 48 | 2.55 | 2.27 | 0.26 | 1.22 | 2.00 | 0.90 | 2.78 | 3.10 | 8.50 | 730 | 171 | 325 | 60 |
| TR | Grignolino | 11.76 | 29.60 | 90.3 | 2.10 | 2.68 | 1.04 | 3.30 | 2.92 | 20.0 | 1100 | 115 | 103 | 370 | 38 | 1.75 | 2.03 | 0.60 | 1.05 | 3.80 | 1.23 | 2.50 | 2.25 | 9.94 | 732 | 454 | 607 | 103 |
| TR | Grignolino | 11.41 | 21.70 | 100.0 | 2.04 | 0.74 | 0.87 | 3.50 | 2.50 | 21.0 | 1085 | 105 | 88 | 315 | 56 | 2.48 | 2.01 | 0.42 | 1.44 | 3.08 | 1.10 | 2.31 | 4.16 | 6.56 | 638 | 228 | 434 | 81 |
| TS | Grignolino | 12.08 | 23.50 | 95.7 | 2.31 | 1.39 | 0.66 | 3.30 | 2.50 | 22.5 | 1025 | 83 | 84 | 235 | 42 | 2.56 | 2.29 | 0.43 | 1.04 | 2.90 | 0.93 | 3.19 | 4.38 | 7.36 | 632 | 247 | 385 | 105 |
| TR | Grignolino | 11.03 | 23.30 | 92.0 | 3.02 | 1.51 | 0.97 | 3.12 | 2.20 | 21.5 | 835 | 136 | 85 | 358 | 30 | 2.46 | 2.17 | 0.52 | 2.01 | 1.90 | 1.71 | 2.87 | 3.46 | 6.28 | 630 | 175 | 407 | 96 |
| TS | Grignolino | 11.82 | 22.90 | 75.2 | 2.10 | 1.47 | 0.89 | 3.13 | 1.99 | 20.8 | 754 | 115 | 86 | 264 | 80 | 1.98 | 1.60 | 0.30 | 1.53 | 1.95 | 0.95 | 3.33 | 3.81 | 7.75 | 644 | 386 | 495 | 112 |
| TS | Grignolino | 12.42 | 25.30 | 94.7 | 1.86 | 1.61 | 0.83 | 3.38 | 2.19 | 22.5 | 964 | 96 | 108 | 268 | 128 | 2.00 | 2.09 | 0.34 | 1.61 | 2.06 | 1.06 | 2.96 | 3.73 | 9.02 | 989 | 227 | 345 | 108 |
| TR | Grignolino | 12.77 | 25.50 | 101.3 | 2.10 | 3.43 | 0.54 | 3.10 | 1.98 | 16.0 | 720 | 65 | 80 | 224 | 80 | 1.63 | 1.25 | 0.43 | 0.83 | 3.40 | 0.70 | 2.12 | 2.75 | 6.80 | 590 | 251 | 372 | 121 |
| TS | Grignolino | 12.00 | 24.20 | 89.7 | 1.11 | 3.43 | 0.72 | 3.25 | 2.00 | 19.0 | 865 | 104 | 87 | 107 | 48 | 2.00 | 1.64 | 0.37 | 1.87 | 1.28 | 0.93 | 3.05 | 4.22 | 7.56 | 612 | 182 | 564 | 114 |
| TR | Grignolino | 11.45 | 24.30 | 123.6 | 1.50 | 2.40 | 0.96 | 3.18 | 2.42 | 20.0 | 915 | 138 | 96 | 262 | 58 | 2.90 | 2.79 | 0.32 | 1.83 | 3.25 | 0.80 | 3.39 | 4.27 | 9.54 | 710 | 311 | 625 | 109 |
| TR | Grignolino | 11.56 | 26.60 | 84.7 | 1.64 | 2.05 | 1.02 | 3.40 | 3.23 | 28.5 | 1160 | 92 | 119 | 490 | 94 | 3.18 | 5.08 | 0.47 | 1.87 | 6.00 | 0.93 | 3.69 | 4.37 | 7.68 | 687 | 538 | 465 | 183 |
| TR | Grignolino | 12.42 | 25.00 | 110.0 | 2.13 | 4.43 | 0.93 | 3.23 | 2.73 | 26.5 | 1050 | 84 | 102 | 524 | 88 | 2.20 | 2.13 | 0.43 | 1.71 | 2.08 | 0.92 | 3.12 | 4.33 | 8.73 | 560 | 366 | 365 | 118 |
| TR | Grignolino | 13.05 | 24.00 | 115.0 | 1.64 | 5.80 | 0.85 | 3.12 | 2.13 | 21.5 | 815 | 102 | 86 | 326 | 73 | 2.62 | 2.65 | 0.30 | 2.01 | 2.60 | 0.73 | 3.10 | 4.29 | 7.24 | 610 | 216 | 380 | 114 |
| TR | Grignolino | 11.87 | 27.35 | 116.7 | 2.43 | 4.31 | 0.81 | 3.14 | 2.39 | 21.0 | 935 | 103 | 82 | 300 | 58 | 2.86 | 3.03 | 0.21 | 2.91 | 2.80 | 0.75 | 3.64 | 4.50 | 8.04 | 635 | 193 | 380 | 66 |
| TR | Grignolino | 12.07 | 24.75 | 95.3 | 2.11 | 2.16 | 0.89 | 3.24 | 2.17 | 21.0 | 815 | 94 | 85 | 358 | 85 | 2.60 | 2.65 | 0.37 | 1.35 | 2.76 | 0.86 | 3.28 | 4.29 | 7.77 | 558 | 295 | 378 | 86 |
| TS | Grignolino | 12.43 | 23.80 | 94.1 | 1.61 | 1.53 | 0.65 | 3.26 | 2.29 | 21.5 | 895 | 94 | 86 | 298 | 116 | 2.74 | 3.15 | 0.39 | 1.77 | 3.94 | 0.69 | 2.84 | 3.40 | 7.00 | 628 | 209 | 352 | 79 |
| TS | Grignolino | 11.79 | 21.30 | 97.2 | 2.30 | 2.13 | 0.81 | 3.40 | 2.78 | 28.5 | 1075 | 105 | 92 | 345 | 70 | 2.13 | 2.24 | 0.58 | 1.76 | 3.00 | 0.97 | 2.44 | 4.00 | 7.17 | 634 | 173 | 466 | 56 |
| TR | Grignolino | 12.37 | 23.30 | 102.6 | 1.91 | 1.63 | 0.96 | 3.21 | 2.30 | 24.5 | 925 | 120 | 88 | 302 | 79 | 2.22 | 2.45 | 0.40 | 1.90 | 2.12 | 0.89 | 2.78 | 3.70 | 8.85 | 530 | 166 | 342 | 108 |
| TR | Grignolino | 12.04 | 22.80 | 111.8 | 1.40 | 4.30 | 0.74 | 3.20 | 2.38 | 22.0 | 930 | 98 | 80 | 138 | 41 | 2.10 | 1.75 | 0.42 | 1.35 | 2.60 | 0.79 | 2.57 | 4.40 | 6.57 | 585 | 144 | 580 | 115 |
| TR | Barbera | 12.86 | 26.80 | 87.3 | 0.99 | 1.35 | 0.92 | 3.22 | 2.32 | 18.0 | 830 | 52 | 122 | 266 | 46 | 1.51 | 1.25 | 0.21 | 0.94 | 4.10 | 0.76 | 1.29 | 1.26 | 6.43 | 673 | 252 | 630 | 122 |
| TS | Barbera | 12.88 | 23.95 | 78.9 | 1.85 | 2.99 | 0.98 | 3.50 | 2.40 | 20.0 | 795 | 55 | 104 | 269 | 72 | 1.30 | 1.22 | 0.24 | 0.83 | 5.40 | 0.74 | 1.42 | 1.34 | 10.10 | 918 | 319 | 530 | 102 |
| TS | Barbera | 12.81 | 24.45 | 76.2 | 2.93 | 2.31 | 0.87 | 3.64 | 2.40 | 24.0 | 785 | 49 | 98 | 266 | 67 | 1.15 | 1.09 | 0.27 | 0.83 | 5.70 | 0.66 | 1.36 | 1.24 | 10.02 | 1095 | 258 | 560 | 132 |
| TR | Barbera | 12.70 | 24.75 | 91.0 | 1.91 | 3.55 | 1.80 | 3.26 | 2.36 | 21.5 | 805 | 47 | 106 | 356 | 118 | 1.70 | 1.20 | 0.17 | 0.84 | 5.00 | 0.78 | 1.29 | 1.23 | 8.52 | 1020 | 238 | 600 | 121 |
| TR | Barbera | 12.51 | 23.50 | 104.7 | 1.34 | 1.24 | 0.98 | 3.50 | 2.25 | 17.5 | 975 | 60 | 85 | 273 | 29 | 2.00 | 0.58 | 0.60 | 1.25 | 5.45 | 0.75 | 1.51 | 1.40 | 8.32 | 764 | 178 | 650 | 79 |
| TR | Barbera | 12.60 | 23.60 | 80.6 | 2.26 | 2.46 | 0.97 | 3.31 | 2.20 | 18.5 | 760 | 103 | 94 | 275 | 77 | 1.62 | 0.66 | 0.63 | 0.94 | 7.10 | 0.73 | 1.58 | 1.37 | 6.47 | 573 | 174 | 695 | 100 |
| TR | Barbera | 12.25 | 25.30 | 91.4 | 1.42 | 4.72 | 1.25 | 3.40 | 2.54 | 21.0 | 995 | 105 | 89 | 262 | 144 | 1.38 | 0.47 | 0.53 | 0.80 | 3.85 | 0.75 | 1.27 | 1.12 | 8.25 | 680 | 217 | 720 | 107 |
| TR | Barbera | 12.53 | 27.10 | 99.8 | 1.88 | 5.51 | 1.19 | 3.30 | 2.64 | 25.0 | 930 | 100 | 96 | 360 | 6 | 1.79 | 0.60 | 0.63 | 1.10 | 5.00 | 0.82 | 1.69 | 1.80 | 8.35 | 821 | 230 | 515 | 139 |
| TR | Barbera | 13.49 | 25.70 | 115.5 | 2.17 | 3.59 | 1.47 | 3.24 | 2.19 | 19.5 | 825 | 111 | 88 | 315 | 56 | 1.62 | 0.48 | 0.58 | 0.88 | 5.70 | 0.81 | 1.82 | 2.23 | 10.40 | 700 | 245 | 580 | 150 |
| TR | Barbera | 12.84 | 26.20 | 82.0 | 1.79 | 2.96 | 1.26 | 3.50 | 2.61 | 24.0 | 925 | 48 | 101 | 398 | 15 | 2.32 | 0.60 | 0.53 | 0.81 | 4.92 | 0.89 | 2.15 | 2.25 | 10.60 | 940 | 269 | 590 | 132 |
| TR | Barbera | 12.93 | 26.78 | 80.0 | 1.69 | 2.81 | 1.15 | 3.31 | 2.70 | 21.0 | 965 | 40 | 96 | 351 | 25 | 1.54 | 0.50 | 0.53 | 0.75 | 4.60 | 0.77 | 2.31 | 2.34 | 10.62 | 955 | 260 | 600 | 82 |
| TR | Barbera | 13.36 | 24.12 | 97.8 | 2.83 | 2.56 | 0.77 | 3.35 | 2.35 | 20.0 | 880 | 47 | 89 | 235 | 71 | 1.40 | 0.50 | 0.37 | 0.64 | 5.60 | 0.70 | 2.47 | 2.60 | 10.41 | 814 | 216 | 780 | 106 |
| TR | Barbera | 13.52 | 27.90 | 85.0 | 1.46 | 3.17 | 1.23 | 3.28 | 2.72 | 23.5 | 880 | 38 | 97 | 325 | 21 | 1.55 | 0.52 | 0.50 | 0.55 | 4.35 | 0.89 | 2.06 | 2.21 | 10.20 | 976 | 201 | 520 | 118 |
| TS | Barbera | 13.62 | 25.52 | 93.7 | 2.70 | 4.95 | 1.56 | 3.41 | 2.35 | 20.0 | 805 | 57 | 92 | 191 | 16 | 2.00 | 0.80 | 0.47 | 1.02 | 4.40 | 0.91 | 2.05 | 2.55 | 8.90 | 899 | 205 | 550 | 140 |
| TR | Barbera | 12.25 | 23.40 | 113.5 | 3.54 | 3.88 | 1.04 | 3.01 | 2.20 | 18.5 | 785 | 77 | 112 | 358 | 14 | 1.38 | 0.78 | 0.29 | 1.14 | 8.21 | 0.65 | 2.00 | 2.23 | 8.16 | 521 | 218 | 855 | 97 |
| TS | Barbera | 13.16 | 22.90 | 117.9 | 3.15 | 3.57 | 1.18 | 3.14 | 2.15 | 21.0 | 805 | 88 | 102 | 456 | 17 | 1.50 | 0.55 | 0.43 | 1.30 | 4.00 | 0.60 | 1.68 | 2.24 | 5.61 | 696 | 252 | 830 | 63 |
| TS | Barbera | 13.88 | 21.40 | 99.3 | 2.81 | 5.04 | 1.29 | 3.28 | 2.23 | 20.0 | 750 | 43 | 80 | 171 | 10 | 0.98 | 0.34 | 0.40 | 0.68 | 4.90 | 0.58 | 1.33 | 1.81 | 7.94 | 670 | 156 | 415 | 154 |
| TR | Barbera | 12.87 | 24.35 | 98.9 | 2.51 | 4.61 | 1.25 | 3.18 | 2.48 | 21.5 | 830 | 63 | 86 | 366 | 50 | 1.70 | 0.65 | 0.47 | 0.86 | 7.65 | 0.54 | 1.86 | 2.10 | 8.52 | 806 | 213 | 625 | 122 |
| TR | Barbera | 13.32 | 21.46 | 96.9 | 2.85 | 3.24 | 1.75 | 3.30 | 2.38 | 21.5 | 790 | 42 | 92 | 306 | 21 | 1.93 | 0.76 | 0.45 | 1.25 | 8.42 | 0.55 | 1.62 | 2.19 | 6.12 | 604 | 219 | 650 | 106 |
| TR | Barbera | 13.08 | 26.80 | 120.6 | 2.90 | 3.90 | 1.11 | 3.16 | 2.36 | 21.5 | 790 | 73 | 113 | 303 | 50 | 1.41 | 1.39 | 0.34 | 1.14 | 9.40 | 0.57 | 1.33 | 1.26 | 7.36 | 733 | 164 | 550 | 114 |
| TR | Barbera | 13.50 | 26.50 | 105.5 | 2.31 | 3.12 | 1.31 | 3.23 | 2.62 | 24.0 | 980 | 67 | 123 | 338 | 106 | 1.40 | 1.57 | 0.22 | 1.25 | 8.60 | 0.59 | 1.30 | 1.29 | 6.28 | 568 | 129 | 500 | 107 |
| TS | Barbera | 12.79 | 23.40 | 117.8 | 3.12 | 2.67 | 0.82 | 3.21 | 2.48 | 22.0 | 890 | 53 | 112 | 407 | 127 | 1.48 | 1.36 | 0.24 | 1.26 | 10.80 | 0.48 | 1.47 | 1.40 | 7.00 | 898 | 154 | 480 | 91 |
| TR | Barbera | 13.11 | 25.20 | 95.4 | 2.26 | 1.90 | 0.86 | 3.49 | 2.75 | 25.5 | 1140 | 74 | 116 | 289 | 55 | 2.20 | 1.28 | 0.26 | 1.56 | 7.10 | 0.61 | 1.33 | 1.25 | 8.57 | 905 | 249 | 425 | 125 |
| TR | Barbera | 13.23 | 23.85 | 120.6 | 2.80 | 3.30 | 0.80 | 3.20 | 2.28 | 18.5 | 915 | 68 | 98 | 351 | 35 | 1.80 | 0.83 | 0.61 | 1.87 | 10.52 | 0.56 | 1.51 | 1.42 | 10.80 | 915 | 154 | 675 | 84 |
| TR | Barbera | 12.58 | 21.75 | 102.7 | 2.92 | 1.29 | 0.79 | 3.21 | 2.10 | 20.0 | 875 | 107 | 103 | 368 | 100 | 1.48 | 0.58 | 0.53 | 1.40 | 7.60 | 0.58 | 1.55 | 1.34 | 7.52 | 924 | 142 | 640 | 100 |
| TS | Barbera | 13.17 | 23.20 | 129.3 | 2.28 | 5.19 | 1.49 | 3.58 | 2.32 | 22.0 | 1045 | 102 | 93 | 241 | 84 | 1.74 | 0.63 | 0.61 | 1.55 | 7.90 | 0.60 | 1.48 | 1.31 | 9.50 | 969 | 207 | 725 | 84 |
| TS | Barbera | 13.84 | 24.70 | 122.9 | 2.76 | 4.12 | 1.07 | 3.19 | 2.38 | 19.5 | 840 | 108 | 89 | 402 | 6 | 1.80 | 0.83 | 0.48 | 1.56 | 9.01 | 0.57 | 1.64 | 1.92 | 9.29 | 902 | 159 | 480 | 132 |
| TS | Barbera | 12.45 | 25.35 | 105.9 | 2.23 | 3.03 | 1.24 | 3.62 | 2.64 | 27.0 | 1050 | 118 | 97 | 393 | 53 | 1.90 | 0.58 | 0.63 | 1.14 | 7.50 | 0.67 | 1.73 | 2.18 | 10.20 | 865 | 252 | 880 | 118 |
| TR | Barbera | 14.34 | 29.10 | 97.5 | 2.73 | 1.68 | 1.60 | 3.42 | 2.70 | 25.0 | 1095 | 78 | 98 | 462 | 49 | 2.80 | 1.31 | 0.53 | 2.70 | 13.00 | 0.57 | 1.96 | 2.25 | 10.82 | 764 | 223 | 660 | 182 |
| TR | Barbera | 13.48 | 26.95 | 102.5 | 3.75 | 1.67 | 1.37 | 3.41 | 2.64 | 22.5 | 1055 | 79 | 89 | 480 | 35 | 2.60 | 1.10 | 0.52 | 2.29 | 11.75 | 0.57 | 1.78 | 2.09 | 11.09 | 1080 | 250 | 620 | 160 |
| TS | Barbera | 12.36 | 34.60 | 116.5 | 2.25 | 3.83 | 0.99 | 3.32 | 2.38 | 21.0 | 1035 | 112 | 88 | 394 | 28 | 2.30 | 0.92 | 0.50 | 1.04 | 7.65 | 0.56 | 1.58 | 2.00 | 9.29 | 636 | 154 | 520 | 127 |
| TR | Barbera | 13.69 | 24.80 | 74.9 | 1.04 | 3.26 | 0.75 | 3.36 | 2.54 | 20.0 | 1010 | 54 | 107 | 394 | 21 | 1.83 | 0.56 | 0.50 | 0.80 | 5.88 | 0.96 | 1.82 | 2.61 | 9.31 | 653 | 275 | 680 | 130 |
| TR | Barbera | 12.85 | 25.70 | 86.9 | 1.79 | 3.27 | 0.92 | 3.33 | 2.58 | 22.0 | 935 | 46 | 106 | 318 | 48 | 1.65 | 0.60 | 0.60 | 0.96 | 5.58 | 0.87 | 2.11 | 2.77 | 9.77 | 814 | 224 | 570 | 102 |
| TR | Barbera | 12.96 | 23.30 | 97.9 | 2.66 | 3.45 | 1.31 | 3.11 | 2.35 | 18.5 | 795 | 35 | 106 | 257 | 11 | 1.39 | 0.70 | 0.40 | 0.94 | 5.28 | 0.68 | 1.75 | 2.00 | 10.13 | 667 | 212 | 675 | 123 |
| TR | Barbera | 13.78 | 25.10 | 103.5 | 3.80 | 2.76 | 1.23 | 3.13 | 2.30 | 22.0 | 803 | 88 | 90 | 417 | 19 | 1.35 | 0.68 | 0.41 | 1.03 | 9.58 | 0.70 | 1.68 | 2.05 | 8.93 | 677 | 198 | 615 | 109 |
| TR | Barbera | 13.73 | 24.65 | 92.6 | 2.91 | 4.36 | 1.10 | 3.31 | 2.26 | 22.5 | 785 | 96 | 88 | 360 | 34 | 1.28 | 0.47 | 0.52 | 1.15 | 6.62 | 0.78 | 1.75 | 2.15 | 9.67 | 670 | 275 | 520 | 131 |
| TR | Barbera | 13.45 | 24.90 | 82.9 | 1.91 | 3.70 | 1.13 | 3.28 | 2.60 | 23.0 | 890 | 56 | 111 | 386 | 8 | 1.70 | 0.92 | 0.43 | 1.46 | 10.68 | 0.85 | 1.56 | 1.60 | 10.37 | 733 | 196 | 695 | 107 |
| TS | Barbera | 12.82 | 22.40 | 119.9 | 3.86 | 3.37 | 0.96 | 2.98 | 2.30 | 19.5 | 810 | 81 | 88 | 308 | 14 | 1.48 | 0.66 | 0.40 | 0.97 | 10.26 | 0.72 | 1.75 | 1.90 | 8.45 | 589 | 158 | 685 | 132 |
| TS | Barbera | 13.58 | 27.20 | 119.9 | 3.04 | 2.58 | 0.98 | 2.98 | 2.69 | 24.5 | 930 | 80 | 105 | 369 | 38 | 1.55 | 0.84 | 0.39 | 1.54 | 8.66 | 0.74 | 1.80 | 1.96 | 8.90 | 847 | 215 | 750 | 129 |
| TS | Barbera | 13.40 | 28.15 | 137.8 | 3.48 | 4.60 | 1.34 | 3.06 | 2.86 | 25.0 | 1085 | 92 | 112 | 387 | 27 | 1.98 | 0.96 | 0.27 | 1.11 | 8.50 | 0.67 | 1.92 | 2.15 | 7.80 | 700 | 218 | 630 | 117 |
| TR | Barbera | 12.20 | 23.70 | 107.3 | 3.23 | 3.03 | 0.74 | 3.08 | 2.32 | 19.0 | 845 | 87 | 96 | 265 | 56 | 1.25 | 0.49 | 0.40 | 0.73 | 5.50 | 0.66 | 1.83 | 2.80 | 7.90 | 854 | 224 | 510 | 77 |
| TR | Barbera | 12.77 | 23.70 | 111.5 | 3.34 | 2.39 | 0.79 | 2.99 | 2.28 | 19.5 | 850 | 69 | 86 | 394 | 13 | 1.39 | 0.51 | 0.48 | 0.64 | 9.90 | 0.57 | 1.63 | 1.69 | 6.07 | 579 | 156 | 470 | 152 |
| TR | Barbera | 14.16 | 23.82 | 118.2 | 3.63 | 2.51 | 1.12 | 3.10 | 2.48 | 20.0 | 840 | 73 | 91 | 319 | 15 | 1.68 | 0.70 | 0.44 | 1.24 | 9.70 | 0.62 | 1.71 | 1.90 | 8.93 | 953 | 196 | 660 | 135 |
| TS | Barbera | 13.71 | 24.95 | 113.9 | 2.88 | 5.65 | 1.75 | 3.15 | 2.45 | 20.5 | 1035 | 72 | 95 | 298 | 12 | 1.68 | 0.61 | 0.52 | 1.06 | 7.70 | 0.64 | 1.74 | 1.94 | 9.90 | 1120 | 238 | 740 | 120 |
| TS | Barbera | 13.40 | 24.60 | 126.2 | 2.94 | 3.91 | 1.25 | 3.12 | 2.48 | 23.0 | 860 | 84 | 102 | 490 | 15 | 1.80 | 0.75 | 0.43 | 1.41 | 7.30 | 0.70 | 1.56 | 1.93 | 7.58 | 855 | 226 | 750 | 96 |
| TR | Barbera | 13.27 | 22.75 | 103.9 | 2.84 | 4.28 | 1.62 | 3.16 | 2.26 | 20.0 | 760 | 61 | 120 | 526 | 6 | 1.59 | 0.69 | 0.43 | 1.35 | 10.20 | 0.59 | 1.56 | 1.94 | 7.27 | 749 | 157 | 835 | 126 |
| TS | Barbera | 13.17 | 23.45 | 113.9 | 3.87 | 2.59 | 1.59 | 3.17 | 2.37 | 20.0 | 785 | 62 | 120 | 534 | 6 | 1.65 | 0.68 | 0.53 | 1.46 | 9.30 | 0.60 | 1.62 | 2.05 | 11.16 | 1110 | 160 | 840 | 52 |
| TR | Barbera | 14.13 | 27.20 | 125.9 | 3.18 | 4.10 | 1.43 | 3.21 | 2.74 | 24.5 | 930 | 53 | 96 | 315 | 35 | 2.05 | 0.76 | 0.56 | 1.35 | 9.20 | 0.61 | 1.60 | 1.87 | 11.28 | 857 | 198 | 560 | 112 |
model = plsda(df1TR[-(1:2)], df1TR$type, cv = list('ven', 5), lim.type = 'jm', scale = T, method = 'simpls')
dfrmse = model$cvres$rmse %>% data.frame()
dfrmse = sapply(dfrmse, mean) %>% data.frame()
colnames(dfrmse) = 'Mean'
plotRMSE(model)
model = selectCompNum(model, 3)
par(mfrow = c(2,2))
plotPredictions(model, nc = 1)
plotPredictions(model, nc = 2)
plotPredictions(model, nc = 3)
plot(model)
plotRegcoeffs(model, show.labels = T)
pred = predict(model, df1TS[-(1:2)], df1TS$type)
plot(pred)
\(R^2\) of the prediction is 0.8761831