Dataset

Data on 178 wine samples to be explored belonging to three different types.

Loads the dataset, making sure that the samples observed are on rows and variables on columns, otherwise transpose the entire matrix before making the PCA.

Source: “Multivariate data analysis as discriminating method of the origin of wines” (Forina 1986)

df = data.frame(read.csv('wine.csv'))
df = relocate(df, type, .before = attrib.Alcohol )
df = column_to_rownames(df , var = 'X')
colnames(df) = str_remove(colnames(df),'attrib.')

kable(df)  %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
  scroll_box( height = "500px")
type Alcohol Sugar.free.extract Fixed.acidity Tartaric.acid Malic.acid Uronic.acids pH Ash Alcalinity.of.ash Potassium Calcium Magnesium Phosphate Chloride Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity Hue OD280.OD315.of.diluted.wines OD280.OD315.of.flavonoids Glycerol 2.3.butanediol Total.nitrogen Proline Methanol
Barolo 14.23 24.82 73.1 1.21 1.71 0.72 3.38 2.43 15.6 950 62 127 320 82 2.80 3.06 0.28 2.29 5.64 1.04 3.92 4.77 9.29 757 153 1065 113
Barolo 13.20 26.30 72.8 1.84 1.78 0.71 3.30 2.14 11.2 765 75 100 395 90 2.65 2.76 0.26 1.28 4.38 1.05 3.40 3.80 8.93 881 194 1050 94
Barolo 13.16 26.30 68.5 1.94 2.36 0.84 3.48 2.67 18.6 936 70 101 497 67 2.80 3.24 0.30 2.81 5.68 1.03 3.17 3.46 11.74 900 206 1185 125
Barolo 14.37 25.85 74.9 1.59 1.95 0.72 3.43 2.50 16.8 985 47 113 580 49 3.85 3.49 0.24 2.18 7.80 0.86 3.45 3.54 10.13 1119 292 1480 80
Barolo 13.24 26.05 83.5 1.30 2.59 1.10 3.42 2.87 21.0 1088 70 118 408 65 2.80 2.69 0.39 1.82 4.32 1.04 2.93 3.22 10.27 799 215 735 73
Barolo 14.20 28.40 79.9 2.14 1.76 0.96 3.39 2.45 15.2 868 71 112 418 58 3.27 3.39 0.34 1.97 6.75 1.05 2.85 3.16 10.85 865 364 1450 68
Barolo 14.39 27.02 64.3 1.64 1.87 0.95 3.42 2.45 14.6 889 67 96 306 52 2.50 2.52 0.30 1.98 5.25 1.02 3.58 3.94 9.05 931 378 1290 80
Barolo 14.06 26.40 73.5 1.33 2.15 1.14 3.54 2.61 17.6 894 50 121 502 64 2.60 2.51 0.31 1.25 5.05 1.06 3.58 3.94 10.13 865 358 1295 100
Barolo 14.83 26.80 69.5 1.82 1.64 0.67 3.30 2.17 14.0 765 49 97 440 58 2.80 2.98 0.29 1.98 5.20 1.08 2.85 3.03 9.89 825 438 1045 141
Barolo 13.86 27.00 68.5 1.92 1.35 0.67 3.27 2.27 16.0 794 51 98 391 64 2.98 3.15 0.22 1.85 7.22 1.01 3.55 3.75 12.65 788 350 1045 121
Barolo 14.10 26.08 72.5 1.64 2.16 0.62 3.31 2.30 18.0 838 61 105 399 61 2.95 3.32 0.22 2.38 5.75 1.25 3.17 3.27 8.59 964 378 1510 123
Barolo 14.12 28.35 72.9 1.51 1.48 0.96 3.20 2.32 16.8 827 60 95 424 79 2.20 2.43 0.26 1.57 5.00 1.17 2.82 3.04 11.52 894 294 1280 134
Barolo 13.75 30.25 75.1 1.92 1.73 0.64 3.18 2.41 16.0 752 65 89 453 257 2.60 2.76 0.29 1.81 5.60 1.15 2.90 2.92 12.24 784 289 1320 164
Barolo 14.75 30.40 98.9 2.08 1.73 0.72 3.01 2.39 11.4 910 46 91 510 50 3.10 3.69 0.43 2.81 5.40 1.25 2.73 2.82 12.29 766 224 1150 105
Barolo 14.38 27.10 72.3 1.95 1.87 0.67 3.20 2.38 12.0 927 29 102 523 55 3.30 3.64 0.29 2.96 7.50 1.20 3.00 3.32 9.53 1041 324 1547 114
Barolo 13.63 27.15 69.6 1.48 1.81 0.67 3.47 2.70 17.2 905 28 112 385 50 2.85 2.91 0.30 1.46 7.30 1.28 2.88 3.12 7.92 812 229 1310 97
Barolo 14.30 27.90 74.9 1.41 1.92 0.82 3.40 2.72 20.0 860 108 120 513 62 2.80 3.14 0.33 1.97 6.20 1.07 2.65 3.10 9.24 836 308 1280 113
Barolo 13.83 26.30 64.9 1.93 1.57 0.68 3.43 2.62 20.0 905 68 115 419 58 2.95 3.40 0.40 1.72 6.60 1.13 2.57 2.66 9.41 722 274 1130 99
Barolo 14.19 26.40 72.0 1.85 1.59 0.82 3.38 2.48 16.5 964 86 108 488 28 3.30 3.93 0.32 1.86 8.70 1.23 2.82 3.17 9.85 808 230 1680 135
Barolo 13.64 27.72 91.5 1.35 3.10 0.82 3.30 2.56 15.2 1038 111 116 402 67 2.70 3.03 0.17 1.66 5.10 0.96 3.36 4.00 10.39 726 227 845 119
Barolo 14.06 25.32 71.1 1.34 1.63 1.00 3.47 2.28 16.0 905 79 126 323 73 3.00 3.17 0.24 2.10 5.65 1.09 3.71 3.75 10.30 828 225 780 145
Barolo 12.93 28.80 102.1 1.05 3.80 0.89 3.26 2.65 18.6 915 79 102 294 62 2.41 2.41 0.25 1.98 4.50 1.03 3.52 3.66 11.88 589 237 770 123
Barolo 13.71 27.63 80.0 2.23 1.86 1.21 3.33 2.36 16.6 815 89 101 476 134 2.61 2.88 0.27 1.69 3.80 1.11 4.00 4.31 8.81 715 270 1035 109
Barolo 12.85 25.80 69.6 1.54 1.60 0.79 3.45 2.52 17.8 958 101 95 415 73 2.48 2.37 0.26 1.46 3.93 1.09 3.63 3.82 9.14 568 248 1015 102
Barolo 13.50 25.00 81.6 1.55 1.81 0.95 3.42 2.61 20.0 992 62 96 476 47 2.53 2.61 0.28 1.66 3.52 1.12 3.82 4.00 9.45 667 210 845 86
Barolo 13.05 25.72 78.3 1.15 2.05 1.08 3.57 3.22 25.0 1095 63 124 536 82 2.63 2.68 0.47 1.92 3.58 1.13 3.20 3.63 10.34 753 238 830 124
Barolo 13.39 27.10 72.3 1.52 1.77 1.05 3.46 2.62 16.1 936 68 93 395 52 2.85 2.94 0.34 1.45 4.80 0.92 3.22 4.44 9.96 854 285 1195 85
Barolo 13.30 22.70 68.3 1.74 1.72 1.06 3.44 2.14 17.0 882 52 94 434 46 2.40 2.19 0.27 1.35 3.95 1.02 2.77 3.10 9.70 757 350 1285 84
Barolo 13.87 29.30 68.3 1.38 1.90 0.75 3.42 2.80 19.4 1085 68 107 396 76 2.95 2.97 0.37 1.76 4.50 1.25 3.40 3.72 9.53 702 280 915 99
Barolo 14.02 25.20 69.6 1.71 1.68 0.79 3.26 2.21 16.0 780 62 96 510 53 2.65 2.33 0.26 1.98 4.70 1.04 3.59 3.77 9.94 689 293 1035 100
Barolo 13.73 26.75 75.2 1.53 1.50 0.66 3.30 2.70 22.5 1067 76 101 436 53 3.00 3.25 0.29 2.38 5.70 1.19 2.71 3.00 10.44 792 332 1285 120
Barolo 13.58 28.35 62.0 1.14 1.66 0.72 3.28 2.36 19.1 805 58 106 485 498 2.86 3.19 0.22 1.95 6.90 1.09 2.88 3.06 10.73 700 296 1515 108
Barolo 13.68 26.98 64.8 1.60 1.83 0.62 3.40 2.36 17.2 1068 32 104 398 76 2.42 2.69 0.42 1.97 3.84 1.23 2.87 3.04 13.00 733 252 990 141
Barolo 13.76 26.80 77.1 1.81 1.53 0.84 3.40 2.70 19.5 974 39 132 394 128 2.95 2.74 0.50 1.35 5.40 1.25 3.00 3.31 8.33 740 296 1235 109
Barolo 13.51 26.22 65.3 1.28 1.80 0.70 3.36 2.65 19.0 856 53 110 464 53 2.35 2.53 0.29 1.54 4.20 1.10 2.87 2.91 10.10 700 258 1095 86
Barolo 13.48 26.10 70.9 1.44 1.81 0.69 3.45 2.41 20.5 789 49 100 416 35 2.70 2.98 0.26 1.86 5.10 1.04 3.47 4.04 8.21 534 258 920 75
Barolo 13.28 29.70 78.9 1.50 1.64 0.80 3.30 2.84 15.5 964 98 110 431 38 2.60 2.68 0.34 1.36 4.60 1.09 2.78 3.17 13.70 570 224 880 105
Barolo 13.05 25.00 70.9 1.18 1.65 0.89 3.34 2.55 18.0 1025 85 98 382 23 2.45 2.43 0.29 1.44 4.25 1.12 2.51 2.87 8.88 627 220 1105 134
Barolo 13.07 24.30 73.9 1.16 1.50 1.00 3.41 2.10 15.5 930 75 98 386 18 2.40 2.64 0.28 1.37 3.70 1.18 2.69 3.04 9.50 658 212 1020 145
Barolo 14.22 30.20 114.8 1.85 3.99 0.64 3.11 2.51 13.2 895 88 128 280 76 3.00 3.04 0.20 2.08 5.10 0.89 3.53 3.66 12.34 1048 215 760 101
Barolo 13.56 26.60 80.3 1.57 1.71 0.91 3.32 2.31 16.2 890 75 117 316 70 3.15 3.29 0.34 2.34 6.13 0.95 3.38 3.53 9.77 733 246 795 118
Barolo 13.41 27.50 102.7 1.79 3.84 0.92 3.19 2.12 18.8 815 78 90 385 70 2.45 2.68 0.27 1.48 4.28 0.91 3.00 3.36 9.21 565 231 1035 106
Barolo 13.88 27.80 78.9 2.39 1.89 0.65 3.33 2.59 15.0 980 71 101 502 67 3.25 3.56 0.17 1.70 5.43 0.88 3.56 4.00 8.61 665 289 1095 121
Barolo 13.24 25.60 101.3 1.83 3.98 0.62 3.18 2.29 17.5 920 63 103 389 53 2.64 2.63 0.32 1.66 4.36 0.82 3.00 3.15 8.61 576 248 680 105
Barolo 13.05 23.70 80.0 1.22 1.77 0.82 3.33 2.10 17.0 901 49 107 408 50 3.00 3.00 0.28 2.03 5.04 0.88 3.35 3.78 9.96 1044 218 885 155
Barolo 14.21 29.65 104.9 1.74 4.04 0.86 3.35 2.44 18.9 930 63 111 324 46 2.85 2.65 0.30 1.25 5.24 0.87 3.33 3.78 10.08 700 264 1080 90
Barolo 14.38 30.70 90.3 1.24 3.59 0.99 3.16 2.28 16.0 788 71 102 408 70 3.25 3.17 0.27 2.19 4.90 1.04 3.44 3.56 9.48 766 218 1065 91
Barolo 13.90 25.30 75.2 1.93 1.68 0.63 3.16 2.12 16.0 762 81 101 484 56 3.10 3.39 0.21 2.14 6.10 0.91 3.33 3.51 8.78 570 281 985 77
Barolo 14.10 25.98 70.0 1.87 2.02 0.83 3.20 2.40 18.8 880 75 103 480 64 2.75 2.92 0.32 2.38 6.20 1.07 2.75 2.89 10.42 669 249 1060 78
Barolo 13.94 26.80 72.7 2.35 1.73 0.60 3.23 2.27 17.4 868 40 108 420 96 2.88 3.54 0.32 2.08 8.90 1.12 3.10 3.30 13.44 749 383 1260 155
Barolo 13.05 24.30 76.0 2.08 1.73 0.63 3.06 2.04 12.4 792 35 92 638 50 2.72 3.27 0.17 2.91 7.20 1.12 2.91 3.20 9.17 590 224 1150 124
Barolo 13.83 27.60 63.3 1.82 1.65 0.77 3.32 2.60 17.2 968 28 94 411 53 2.45 2.99 0.22 2.29 5.60 1.24 3.37 3.69 9.77 777 330 1265 110
Barolo 13.82 26.25 74.5 1.83 1.75 0.77 3.33 2.42 14.0 785 29 111 472 47 3.88 3.74 0.32 1.87 7.05 1.01 3.26 3.53 7.63 704 360 1190 88
Barolo 13.77 25.20 64.8 1.29 1.90 0.84 3.56 2.68 17.1 927 33 115 405 59 3.00 2.79 0.39 1.68 6.30 1.13 2.93 3.21 7.73 795 313 1375 109
Barolo 13.74 24.80 65.2 1.88 1.67 0.66 3.43 2.25 16.4 784 76 118 502 37 2.60 2.90 0.21 1.62 5.85 0.92 3.20 3.36 7.97 733 292 1060 87
Barolo 13.56 25.00 78.0 1.49 1.73 0.69 3.31 2.46 20.5 808 91 116 411 38 2.96 2.78 0.20 2.45 6.25 0.98 3.03 3.16 7.92 550 266 1120 86
Barolo 14.22 26.60 87.1 1.98 1.70 0.74 3.20 2.30 16.3 768 73 118 465 136 3.20 3.00 0.26 2.03 6.38 0.94 3.31 3.81 13.00 770 248 970 124
Barolo 13.29 26.80 80.0 1.63 1.97 0.96 3.24 2.68 16.8 905 76 102 360 24 3.00 3.23 0.31 1.66 6.00 1.07 2.84 3.21 9.30 676 258 1270 116
Barolo 13.72 27.10 73.3 1.34 1.43 0.93 3.38 2.50 16.7 906 71 108 403 33 3.40 3.67 0.19 2.04 6.80 0.89 2.87 3.10 9.94 755 232 1285 131
Grignolino 12.37 18.30 90.1 2.80 0.94 0.73 3.11 1.36 10.6 580 77 88 296 52 1.98 0.57 0.28 0.42 1.95 1.05 1.82 2.12 5.40 736 287 520 98
Grignolino 12.33 22.90 72.2 2.25 1.10 0.69 3.26 2.28 16.0 715 85 101 365 108 2.05 1.09 0.63 0.41 3.27 1.25 1.67 1.42 6.90 658 345 680 127
Grignolino 12.64 23.90 95.7 1.93 1.36 1.06 3.19 2.02 16.8 688 83 100 395 53 2.02 1.41 0.53 0.62 5.75 0.98 1.59 1.86 8.20 691 321 450 60
Grignolino 13.67 22.20 64.8 2.20 1.25 0.74 3.40 1.92 18.0 725 51 94 301 47 2.10 1.79 0.32 0.73 3.80 1.23 2.46 1.73 8.60 797 262 630 87
Grignolino 12.37 23.50 70.0 2.06 1.13 0.72 3.30 2.16 19.0 785 73 87 422 306 3.50 3.10 0.19 1.87 4.45 1.22 2.87 3.07 7.20 748 141 420 157
Grignolino 12.17 23.03 65.7 1.84 1.45 0.72 3.35 2.53 19.0 790 62 104 411 116 1.89 1.75 0.45 1.03 2.95 1.45 2.23 2.73 7.50 627 219 355 58
Grignolino 12.37 26.80 62.7 1.70 1.21 0.88 3.40 2.56 18.1 978 55 98 310 69 2.42 2.65 0.37 2.08 4.60 1.19 2.30 2.60 7.96 680 259 678 118
Grignolino 13.11 23.70 80.0 1.40 1.01 0.77 3.10 1.70 15.0 730 80 78 297 148 2.98 3.18 0.26 2.28 5.30 1.12 3.18 3.33 8.20 604 100 502 114
Grignolino 12.37 20.90 63.7 1.94 1.17 0.67 3.40 1.92 19.6 785 40 78 212 54 2.11 2.00 0.27 1.04 4.68 1.12 3.48 4.07 7.10 554 425 510 98
Grignolino 13.34 23.72 70.0 2.02 0.94 1.09 3.26 2.36 17.0 760 64 110 451 111 2.53 1.30 0.55 0.42 3.17 1.02 1.93 1.92 8.10 704 363 750 137
Grignolino 12.21 22.70 90.7 3.62 1.19 0.94 3.14 1.75 16.8 795 134 151 448 88 1.85 1.28 0.14 2.50 2.85 1.28 3.07 3.23 6.81 714 195 718 116
Grignolino 12.29 21.40 55.6 1.43 1.61 0.87 3.54 2.21 20.4 682 102 103 324 50 1.10 1.02 0.37 1.46 3.05 0.91 1.82 2.00 6.38 661 301 870 78
Grignolino 13.86 25.25 59.5 1.27 1.51 1.09 3.63 2.67 25.0 785 63 86 383 59 2.95 2.86 0.21 1.87 3.38 1.36 3.16 3.52 7.62 748 170 410 99
Grignolino 13.49 22.30 60.9 1.74 1.66 0.67 3.44 2.24 24.0 680 60 87 300 43 1.88 1.84 0.27 1.03 3.74 0.98 2.78 3.50 8.04 614 160 472 64
Grignolino 12.99 26.10 50.5 1.42 1.67 1.24 3.52 2.60 30.0 974 55 139 473 35 3.30 2.89 0.21 1.96 3.35 1.31 3.50 3.60 8.00 731 293 985 113
Grignolino 11.96 24.50 65.7 2.18 1.09 0.73 3.40 2.30 21.0 681 98 101 366 48 3.38 2.14 0.13 1.65 3.21 0.99 3.13 3.15 7.70 563 183 886 57
Grignolino 11.66 20.30 61.7 1.70 1.88 0.60 3.30 1.92 16.0 785 52 97 312 59 1.61 1.57 0.34 1.15 3.80 1.23 2.14 2.35 6.14 596 109 428 129
Grignolino 13.03 23.50 78.6 1.90 0.90 0.76 3.30 1.71 16.0 790 57 86 396 122 1.95 2.03 0.24 1.46 4.60 1.19 2.48 2.85 8.40 756 167 392 145
Grignolino 11.84 26.40 108.7 1.70 2.89 0.91 3.11 2.23 18.0 790 71 112 350 58 1.72 1.32 0.43 0.95 2.65 0.96 2.52 3.25 5.22 514 246 500 122
Grignolino 12.33 20.60 58.7 2.41 0.99 0.84 3.32 1.95 14.8 680 124 136 438 99 1.90 1.85 0.35 2.76 3.40 1.06 2.31 2.70 7.96 654 259 750 59
Grignolino 12.70 27.15 93.3 1.46 3.87 1.11 3.19 2.40 23.0 890 110 101 321 52 2.83 2.55 0.43 1.95 2.57 1.19 3.13 3.82 8.66 700 227 463 101
Grignolino 12.00 23.20 58.4 1.88 0.92 0.82 3.30 2.00 19.0 680 63 86 408 27 2.42 2.26 0.30 1.43 2.50 1.38 3.12 3.52 5.80 645 199 278 95
Grignolino 12.72 22.90 58.4 1.40 1.81 0.81 3.50 2.20 18.8 890 83 86 418 64 2.20 2.53 0.26 1.77 3.90 1.16 3.14 3.33 7.38 664 199 714 111
Grignolino 12.08 23.50 56.9 1.33 1.13 0.71 3.65 2.51 24.0 980 85 78 215 53 2.00 1.58 0.40 1.40 2.20 1.31 2.72 3.50 8.11 548 203 630 115
Grignolino 13.05 25.50 104.8 1.64 3.86 0.73 3.19 2.32 22.5 938 98 85 195 48 1.65 1.59 0.61 1.62 4.80 0.84 2.01 2.07 8.64 649 207 515 114
Grignolino 11.84 23.40 70.8 1.80 0.89 1.00 3.40 2.58 18.0 922 80 94 378 95 2.20 2.21 0.22 2.35 3.05 0.79 3.08 3.81 6.36 586 138 520 141
Grignolino 12.67 24.30 74.1 1.70 0.98 0.88 3.35 2.24 18.0 840 81 99 336 70 2.20 1.94 0.30 1.46 2.62 1.23 3.16 3.60 7.90 600 217 450 121
Grignolino 12.16 25.80 78.9 1.84 1.61 0.78 3.37 2.31 22.8 845 98 90 285 54 1.78 1.69 0.43 1.56 2.45 1.33 2.26 2.92 8.04 643 195 495 116
Grignolino 11.65 22.90 62.9 1.80 1.67 0.64 3.55 2.62 26.0 1045 125 88 281 36 1.92 1.61 0.40 1.34 2.60 1.36 3.21 3.27 9.54 608 262 562 120
Grignolino 11.64 24.20 72.4 1.84 2.06 0.89 3.40 2.46 21.6 962 79 84 304 70 1.95 1.69 0.48 1.35 2.80 1.00 2.75 3.60 7.97 523 223 680 120
Grignolino 12.08 24.00 67.6 1.93 1.33 1.05 3.50 2.30 23.6 932 65 70 278 27 2.20 1.59 0.42 1.38 1.74 1.07 3.21 3.77 8.47 557 200 625 163
Grignolino 12.08 25.50 78.9 1.93 1.83 0.77 3.25 2.32 18.5 960 128 81 329 48 1.60 1.50 0.52 1.64 2.40 1.08 2.27 2.28 8.33 563 314 480 105
Grignolino 12.00 25.30 75.6 1.80 1.51 0.74 3.27 2.42 22.0 915 102 86 342 110 1.45 1.25 0.50 1.63 3.60 1.05 2.65 2.75 8.21 495 170 450 152
Grignolino 12.69 25.00 70.9 1.47 1.53 0.82 3.43 2.26 20.7 845 92 80 214 73 1.38 1.46 0.58 1.62 3.05 0.96 2.06 2.28 8.88 792 198 495 101
Grignolino 12.29 25.00 86.0 1.84 2.83 0.71 3.24 2.22 18.0 915 94 88 329 84 2.45 2.25 0.25 1.99 2.15 1.15 3.30 3.75 5.64 594 190 290 117
Grignolino 11.62 28.40 92.8 1.35 1.99 0.84 3.22 2.28 18.0 794 88 98 372 76 3.02 2.26 0.17 1.35 3.25 1.16 2.96 2.97 13.60 930 200 345 120
Grignolino 12.47 24.95 72.0 1.93 1.52 1.02 3.32 2.20 19.0 790 188 162 464 84 2.50 2.27 0.32 3.28 2.60 1.16 2.63 2.99 6.21 683 268 937 79
Grignolino 11.81 27.50 75.3 1.75 2.12 0.91 3.29 2.74 21.5 942 125 134 375 83 1.60 0.99 0.14 1.56 2.50 0.95 2.26 2.88 7.56 687 179 625 84
Grignolino 12.29 25.30 68.5 1.80 1.41 0.57 3.30 1.98 16.0 890 82 85 440 40 2.55 2.50 0.29 1.77 2.90 1.23 2.74 3.14 8.44 696 335 428 117
Grignolino 12.37 24.80 61.2 1.60 1.07 1.01 3.40 2.10 18.5 845 84 88 385 80 3.52 3.75 0.24 1.95 4.50 1.04 2.77 3.05 7.23 655 180 660 127
Grignolino 12.29 26.50 112.4 2.61 3.17 1.09 2.95 2.21 18.0 845 122 88 438 35 2.85 2.99 0.45 2.81 2.30 1.42 2.83 3.90 8.45 759 159 406 146
Grignolino 12.08 22.90 75.2 2.20 2.08 0.67 3.15 1.70 17.5 805 62 97 212 42 2.23 2.17 0.26 1.40 3.30 1.27 2.96 3.41 7.08 591 399 710 105
Grignolino 12.60 21.90 63.7 2.00 1.34 0.64 3.15 1.90 18.5 870 135 88 224 80 1.45 1.36 0.29 1.35 2.45 1.04 2.77 3.75 8.56 610 195 562 130
Grignolino 12.34 25.80 78.0 2.50 2.45 0.57 3.42 2.46 21.0 915 144 98 146 82 2.56 2.11 0.34 1.31 2.80 0.80 3.38 4.19 8.36 536 306 438 98
Grignolino 11.82 22.70 67.2 2.17 1.72 0.80 3.40 1.88 19.5 874 64 86 442 85 2.50 1.64 0.37 1.42 2.06 0.94 2.44 3.80 7.36 653 194 415 103
Grignolino 12.51 24.50 63.2 1.34 1.73 0.67 3.50 1.98 20.5 905 74 85 254 50 2.20 1.92 0.32 1.48 2.94 1.04 3.57 4.50 10.44 882 158 672 99
Grignolino 12.42 23.50 78.7 1.92 2.55 0.92 3.30 2.27 22.0 980 93 90 342 92 1.68 1.84 0.66 1.42 2.70 0.86 3.30 3.50 7.92 680 219 315 89
Grignolino 12.25 25.00 75.2 1.40 1.73 0.64 3.45 2.12 19.0 890 102 80 265 53 1.65 2.03 0.37 1.63 3.40 1.00 3.17 4.16 10.13 790 207 510 126
Grignolino 12.72 24.10 85.6 2.34 1.75 0.71 3.33 2.28 22.5 910 58 84 159 67 1.38 1.76 0.48 1.63 3.30 0.88 2.42 2.54 7.61 855 194 488 81
Grignolino 12.22 24.50 70.1 1.42 1.29 0.60 3.36 1.94 19.0 897 103 92 157 65 2.36 2.04 0.39 2.08 2.70 0.86 3.02 3.64 7.24 780 132 312 97
Grignolino 11.61 27.60 84.0 1.85 1.35 0.87 3.46 2.70 20.0 950 98 94 408 58 2.74 2.92 0.29 2.49 2.65 0.96 3.26 3.85 6.42 592 386 680 110
Grignolino 11.46 24.84 104.4 2.20 3.74 0.78 3.07 1.82 19.5 685 143 107 322 70 3.18 2.58 0.24 3.58 2.90 0.75 2.81 3.60 7.87 684 196 562 91
Grignolino 12.52 26.35 100.4 1.45 2.43 0.97 3.21 2.17 21.0 680 112 88 339 48 2.55 2.27 0.26 1.22 2.00 0.90 2.78 3.10 8.50 730 171 325 60
Grignolino 11.76 29.60 90.3 2.10 2.68 1.04 3.30 2.92 20.0 1100 115 103 370 38 1.75 2.03 0.60 1.05 3.80 1.23 2.50 2.25 9.94 732 454 607 103
Grignolino 11.41 21.70 100.0 2.04 0.74 0.87 3.50 2.50 21.0 1085 105 88 315 56 2.48 2.01 0.42 1.44 3.08 1.10 2.31 4.16 6.56 638 228 434 81
Grignolino 12.08 23.50 95.7 2.31 1.39 0.66 3.30 2.50 22.5 1025 83 84 235 42 2.56 2.29 0.43 1.04 2.90 0.93 3.19 4.38 7.36 632 247 385 105
Grignolino 11.03 23.30 92.0 3.02 1.51 0.97 3.12 2.20 21.5 835 136 85 358 30 2.46 2.17 0.52 2.01 1.90 1.71 2.87 3.46 6.28 630 175 407 96
Grignolino 11.82 22.90 75.2 2.10 1.47 0.89 3.13 1.99 20.8 754 115 86 264 80 1.98 1.60 0.30 1.53 1.95 0.95 3.33 3.81 7.75 644 386 495 112
Grignolino 12.42 25.30 94.7 1.86 1.61 0.83 3.38 2.19 22.5 964 96 108 268 128 2.00 2.09 0.34 1.61 2.06 1.06 2.96 3.73 9.02 989 227 345 108
Grignolino 12.77 25.50 101.3 2.10 3.43 0.54 3.10 1.98 16.0 720 65 80 224 80 1.63 1.25 0.43 0.83 3.40 0.70 2.12 2.75 6.80 590 251 372 121
Grignolino 12.00 24.20 89.7 1.11 3.43 0.72 3.25 2.00 19.0 865 104 87 107 48 2.00 1.64 0.37 1.87 1.28 0.93 3.05 4.22 7.56 612 182 564 114
Grignolino 11.45 24.30 123.6 1.50 2.40 0.96 3.18 2.42 20.0 915 138 96 262 58 2.90 2.79 0.32 1.83 3.25 0.80 3.39 4.27 9.54 710 311 625 109
Grignolino 11.56 26.60 84.7 1.64 2.05 1.02 3.40 3.23 28.5 1160 92 119 490 94 3.18 5.08 0.47 1.87 6.00 0.93 3.69 4.37 7.68 687 538 465 183
Grignolino 12.42 25.00 110.0 2.13 4.43 0.93 3.23 2.73 26.5 1050 84 102 524 88 2.20 2.13 0.43 1.71 2.08 0.92 3.12 4.33 8.73 560 366 365 118
Grignolino 13.05 24.00 115.0 1.64 5.80 0.85 3.12 2.13 21.5 815 102 86 326 73 2.62 2.65 0.30 2.01 2.60 0.73 3.10 4.29 7.24 610 216 380 114
Grignolino 11.87 27.35 116.7 2.43 4.31 0.81 3.14 2.39 21.0 935 103 82 300 58 2.86 3.03 0.21 2.91 2.80 0.75 3.64 4.50 8.04 635 193 380 66
Grignolino 12.07 24.75 95.3 2.11 2.16 0.89 3.24 2.17 21.0 815 94 85 358 85 2.60 2.65 0.37 1.35 2.76 0.86 3.28 4.29 7.77 558 295 378 86
Grignolino 12.43 23.80 94.1 1.61 1.53 0.65 3.26 2.29 21.5 895 94 86 298 116 2.74 3.15 0.39 1.77 3.94 0.69 2.84 3.40 7.00 628 209 352 79
Grignolino 11.79 21.30 97.2 2.30 2.13 0.81 3.40 2.78 28.5 1075 105 92 345 70 2.13 2.24 0.58 1.76 3.00 0.97 2.44 4.00 7.17 634 173 466 56
Grignolino 12.37 23.30 102.6 1.91 1.63 0.96 3.21 2.30 24.5 925 120 88 302 79 2.22 2.45 0.40 1.90 2.12 0.89 2.78 3.70 8.85 530 166 342 108
Grignolino 12.04 22.80 111.8 1.40 4.30 0.74 3.20 2.38 22.0 930 98 80 138 41 2.10 1.75 0.42 1.35 2.60 0.79 2.57 4.40 6.57 585 144 580 115
Barbera 12.86 26.80 87.3 0.99 1.35 0.92 3.22 2.32 18.0 830 52 122 266 46 1.51 1.25 0.21 0.94 4.10 0.76 1.29 1.26 6.43 673 252 630 122
Barbera 12.88 23.95 78.9 1.85 2.99 0.98 3.50 2.40 20.0 795 55 104 269 72 1.30 1.22 0.24 0.83 5.40 0.74 1.42 1.34 10.10 918 319 530 102
Barbera 12.81 24.45 76.2 2.93 2.31 0.87 3.64 2.40 24.0 785 49 98 266 67 1.15 1.09 0.27 0.83 5.70 0.66 1.36 1.24 10.02 1095 258 560 132
Barbera 12.70 24.75 91.0 1.91 3.55 1.80 3.26 2.36 21.5 805 47 106 356 118 1.70 1.20 0.17 0.84 5.00 0.78 1.29 1.23 8.52 1020 238 600 121
Barbera 12.51 23.50 104.7 1.34 1.24 0.98 3.50 2.25 17.5 975 60 85 273 29 2.00 0.58 0.60 1.25 5.45 0.75 1.51 1.40 8.32 764 178 650 79
Barbera 12.60 23.60 80.6 2.26 2.46 0.97 3.31 2.20 18.5 760 103 94 275 77 1.62 0.66 0.63 0.94 7.10 0.73 1.58 1.37 6.47 573 174 695 100
Barbera 12.25 25.30 91.4 1.42 4.72 1.25 3.40 2.54 21.0 995 105 89 262 144 1.38 0.47 0.53 0.80 3.85 0.75 1.27 1.12 8.25 680 217 720 107
Barbera 12.53 27.10 99.8 1.88 5.51 1.19 3.30 2.64 25.0 930 100 96 360 6 1.79 0.60 0.63 1.10 5.00 0.82 1.69 1.80 8.35 821 230 515 139
Barbera 13.49 25.70 115.5 2.17 3.59 1.47 3.24 2.19 19.5 825 111 88 315 56 1.62 0.48 0.58 0.88 5.70 0.81 1.82 2.23 10.40 700 245 580 150
Barbera 12.84 26.20 82.0 1.79 2.96 1.26 3.50 2.61 24.0 925 48 101 398 15 2.32 0.60 0.53 0.81 4.92 0.89 2.15 2.25 10.60 940 269 590 132
Barbera 12.93 26.78 80.0 1.69 2.81 1.15 3.31 2.70 21.0 965 40 96 351 25 1.54 0.50 0.53 0.75 4.60 0.77 2.31 2.34 10.62 955 260 600 82
Barbera 13.36 24.12 97.8 2.83 2.56 0.77 3.35 2.35 20.0 880 47 89 235 71 1.40 0.50 0.37 0.64 5.60 0.70 2.47 2.60 10.41 814 216 780 106
Barbera 13.52 27.90 85.0 1.46 3.17 1.23 3.28 2.72 23.5 880 38 97 325 21 1.55 0.52 0.50 0.55 4.35 0.89 2.06 2.21 10.20 976 201 520 118
Barbera 13.62 25.52 93.7 2.70 4.95 1.56 3.41 2.35 20.0 805 57 92 191 16 2.00 0.80 0.47 1.02 4.40 0.91 2.05 2.55 8.90 899 205 550 140
Barbera 12.25 23.40 113.5 3.54 3.88 1.04 3.01 2.20 18.5 785 77 112 358 14 1.38 0.78 0.29 1.14 8.21 0.65 2.00 2.23 8.16 521 218 855 97
Barbera 13.16 22.90 117.9 3.15 3.57 1.18 3.14 2.15 21.0 805 88 102 456 17 1.50 0.55 0.43 1.30 4.00 0.60 1.68 2.24 5.61 696 252 830 63
Barbera 13.88 21.40 99.3 2.81 5.04 1.29 3.28 2.23 20.0 750 43 80 171 10 0.98 0.34 0.40 0.68 4.90 0.58 1.33 1.81 7.94 670 156 415 154
Barbera 12.87 24.35 98.9 2.51 4.61 1.25 3.18 2.48 21.5 830 63 86 366 50 1.70 0.65 0.47 0.86 7.65 0.54 1.86 2.10 8.52 806 213 625 122
Barbera 13.32 21.46 96.9 2.85 3.24 1.75 3.30 2.38 21.5 790 42 92 306 21 1.93 0.76 0.45 1.25 8.42 0.55 1.62 2.19 6.12 604 219 650 106
Barbera 13.08 26.80 120.6 2.90 3.90 1.11 3.16 2.36 21.5 790 73 113 303 50 1.41 1.39 0.34 1.14 9.40 0.57 1.33 1.26 7.36 733 164 550 114
Barbera 13.50 26.50 105.5 2.31 3.12 1.31 3.23 2.62 24.0 980 67 123 338 106 1.40 1.57 0.22 1.25 8.60 0.59 1.30 1.29 6.28 568 129 500 107
Barbera 12.79 23.40 117.8 3.12 2.67 0.82 3.21 2.48 22.0 890 53 112 407 127 1.48 1.36 0.24 1.26 10.80 0.48 1.47 1.40 7.00 898 154 480 91
Barbera 13.11 25.20 95.4 2.26 1.90 0.86 3.49 2.75 25.5 1140 74 116 289 55 2.20 1.28 0.26 1.56 7.10 0.61 1.33 1.25 8.57 905 249 425 125
Barbera 13.23 23.85 120.6 2.80 3.30 0.80 3.20 2.28 18.5 915 68 98 351 35 1.80 0.83 0.61 1.87 10.52 0.56 1.51 1.42 10.80 915 154 675 84
Barbera 12.58 21.75 102.7 2.92 1.29 0.79 3.21 2.10 20.0 875 107 103 368 100 1.48 0.58 0.53 1.40 7.60 0.58 1.55 1.34 7.52 924 142 640 100
Barbera 13.17 23.20 129.3 2.28 5.19 1.49 3.58 2.32 22.0 1045 102 93 241 84 1.74 0.63 0.61 1.55 7.90 0.60 1.48 1.31 9.50 969 207 725 84
Barbera 13.84 24.70 122.9 2.76 4.12 1.07 3.19 2.38 19.5 840 108 89 402 6 1.80 0.83 0.48 1.56 9.01 0.57 1.64 1.92 9.29 902 159 480 132
Barbera 12.45 25.35 105.9 2.23 3.03 1.24 3.62 2.64 27.0 1050 118 97 393 53 1.90 0.58 0.63 1.14 7.50 0.67 1.73 2.18 10.20 865 252 880 118
Barbera 14.34 29.10 97.5 2.73 1.68 1.60 3.42 2.70 25.0 1095 78 98 462 49 2.80 1.31 0.53 2.70 13.00 0.57 1.96 2.25 10.82 764 223 660 182
Barbera 13.48 26.95 102.5 3.75 1.67 1.37 3.41 2.64 22.5 1055 79 89 480 35 2.60 1.10 0.52 2.29 11.75 0.57 1.78 2.09 11.09 1080 250 620 160
Barbera 12.36 34.60 116.5 2.25 3.83 0.99 3.32 2.38 21.0 1035 112 88 394 28 2.30 0.92 0.50 1.04 7.65 0.56 1.58 2.00 9.29 636 154 520 127
Barbera 13.69 24.80 74.9 1.04 3.26 0.75 3.36 2.54 20.0 1010 54 107 394 21 1.83 0.56 0.50 0.80 5.88 0.96 1.82 2.61 9.31 653 275 680 130
Barbera 12.85 25.70 86.9 1.79 3.27 0.92 3.33 2.58 22.0 935 46 106 318 48 1.65 0.60 0.60 0.96 5.58 0.87 2.11 2.77 9.77 814 224 570 102
Barbera 12.96 23.30 97.9 2.66 3.45 1.31 3.11 2.35 18.5 795 35 106 257 11 1.39 0.70 0.40 0.94 5.28 0.68 1.75 2.00 10.13 667 212 675 123
Barbera 13.78 25.10 103.5 3.80 2.76 1.23 3.13 2.30 22.0 803 88 90 417 19 1.35 0.68 0.41 1.03 9.58 0.70 1.68 2.05 8.93 677 198 615 109
Barbera 13.73 24.65 92.6 2.91 4.36 1.10 3.31 2.26 22.5 785 96 88 360 34 1.28 0.47 0.52 1.15 6.62 0.78 1.75 2.15 9.67 670 275 520 131
Barbera 13.45 24.90 82.9 1.91 3.70 1.13 3.28 2.60 23.0 890 56 111 386 8 1.70 0.92 0.43 1.46 10.68 0.85 1.56 1.60 10.37 733 196 695 107
Barbera 12.82 22.40 119.9 3.86 3.37 0.96 2.98 2.30 19.5 810 81 88 308 14 1.48 0.66 0.40 0.97 10.26 0.72 1.75 1.90 8.45 589 158 685 132
Barbera 13.58 27.20 119.9 3.04 2.58 0.98 2.98 2.69 24.5 930 80 105 369 38 1.55 0.84 0.39 1.54 8.66 0.74 1.80 1.96 8.90 847 215 750 129
Barbera 13.40 28.15 137.8 3.48 4.60 1.34 3.06 2.86 25.0 1085 92 112 387 27 1.98 0.96 0.27 1.11 8.50 0.67 1.92 2.15 7.80 700 218 630 117
Barbera 12.20 23.70 107.3 3.23 3.03 0.74 3.08 2.32 19.0 845 87 96 265 56 1.25 0.49 0.40 0.73 5.50 0.66 1.83 2.80 7.90 854 224 510 77
Barbera 12.77 23.70 111.5 3.34 2.39 0.79 2.99 2.28 19.5 850 69 86 394 13 1.39 0.51 0.48 0.64 9.90 0.57 1.63 1.69 6.07 579 156 470 152
Barbera 14.16 23.82 118.2 3.63 2.51 1.12 3.10 2.48 20.0 840 73 91 319 15 1.68 0.70 0.44 1.24 9.70 0.62 1.71 1.90 8.93 953 196 660 135
Barbera 13.71 24.95 113.9 2.88 5.65 1.75 3.15 2.45 20.5 1035 72 95 298 12 1.68 0.61 0.52 1.06 7.70 0.64 1.74 1.94 9.90 1120 238 740 120
Barbera 13.40 24.60 126.2 2.94 3.91 1.25 3.12 2.48 23.0 860 84 102 490 15 1.80 0.75 0.43 1.41 7.30 0.70 1.56 1.93 7.58 855 226 750 96
Barbera 13.27 22.75 103.9 2.84 4.28 1.62 3.16 2.26 20.0 760 61 120 526 6 1.59 0.69 0.43 1.35 10.20 0.59 1.56 1.94 7.27 749 157 835 126
Barbera 13.17 23.45 113.9 3.87 2.59 1.59 3.17 2.37 20.0 785 62 120 534 6 1.65 0.68 0.53 1.46 9.30 0.60 1.62 2.05 11.16 1110 160 840 52
Barbera 14.13 27.20 125.9 3.18 4.10 1.43 3.21 2.74 24.5 930 53 96 315 35 2.05 0.76 0.56 1.35 9.20 0.61 1.60 1.87 11.28 857 198 560 112


Observed variables are:

colnames(df)
##  [1] "type"                         "Alcohol"                     
##  [3] "Sugar.free.extract"           "Fixed.acidity"               
##  [5] "Tartaric.acid"                "Malic.acid"                  
##  [7] "Uronic.acids"                 "pH"                          
##  [9] "Ash"                          "Alcalinity.of.ash"           
## [11] "Potassium"                    "Calcium"                     
## [13] "Magnesium"                    "Phosphate"                   
## [15] "Chloride"                     "Total.phenols"               
## [17] "Flavanoids"                   "Nonflavanoid.phenols"        
## [19] "Proanthocyanins"              "Color.intensity"             
## [21] "Hue"                          "OD280.OD315.of.diluted.wines"
## [23] "OD280.OD315.of.flavonoids"    "Glycerol"                    
## [25] "2.3.butanediol"               "Total.nitrogen"              
## [27] "Proline"                      "Methanol"


We can also divide the samples in three classes:


df %>% group_by(type) %>% summarise(count = n()) %>% kable() %>% kable_minimal(full_width = F)
type count
Barbera 48
Barolo 59
Grignolino 71


#PCA


Preprocessing


Befor performing PCA you need to autoscale in order to have a dataset where all the columns have mean = 0 and standard deviation = 1


\[ X^*_{i,j} = \frac{X_{i,j} - \overline{X_i}}{S_{X_i}} \]

For all values within each column subtract their mean and then divide by their standard deviation


dfa = df[,-1]

dfa = data.frame(scale(dfa))
kable(dfa)  %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
  scroll_box( height = "600px", width = '910px')
Alcohol Sugar.free.extract Fixed.acidity Tartaric.acid Malic.acid Uronic.acids pH Ash Alcalinity.of.ash Potassium Calcium Magnesium Phosphate Chloride Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity Hue OD280.OD315.of.diluted.wines OD280.OD315.of.flavonoids Glycerol X2.3.butanediol Total.nitrogen Proline Methanol
1.5143408 -0.2053617 -0.6700454 -1.2514422 -0.5606682 -0.7715621 0.5368170 0.2313998 -1.1663032 0.6446457 -0.5940655 1.9085215 -0.4861718 0.3696880 0.8067217 1.0319081 -0.6577078 1.2214385 0.2510088 0.3610679 1.8427215 2.0160386 0.2856855 0.1788922 -1.2542737 1.0101594 0.1257762
0.2455968 0.4558517 -0.6860711 -0.2528886 -0.4980086 -0.8111865 -0.0240248 -0.8256672 -2.4838405 -1.0830488 -0.1100276 0.0180940 0.3253303 0.5295045 0.5670481 0.7315653 -0.8184106 -0.5431887 -0.2924962 0.4048188 1.1103172 0.9232054 0.0712206 1.0708073 -0.6715702 0.9625263 -0.6420487
0.1963252 0.4558517 -0.9157718 -0.0943880 0.0211715 -0.2960697 1.2378692 1.1062139 -0.2679823 0.5139012 -0.2961961 0.0881098 1.4289731 0.0700320 0.8067217 1.2121137 -0.4970050 2.1299594 0.2682629 0.3173170 0.7863692 0.5401505 1.7452386 1.2074717 -0.5010228 1.3912237 0.6107181
1.6867914 0.2548071 -0.5738916 -0.6491400 -0.3458351 -0.7715621 0.8873431 0.4865539 -0.8069748 0.9715068 -1.1525708 0.9282998 2.3270354 -0.2895553 2.4844372 1.4623994 -0.9791134 1.0292513 1.1827317 -0.4264485 1.1807407 0.6302811 0.7861037 2.7827089 0.7212333 2.3280068 -1.2078143
0.2948684 0.3441603 -0.1144902 -1.1087916 0.2270533 0.7341638 0.8172379 1.8352256 0.4506745 1.9334124 -0.2961961 1.2783790 0.4659906 0.0300778 0.8067217 0.6614853 0.2261576 0.4002753 -0.3183774 0.3610679 0.4483365 0.2697588 0.8695068 0.4809925 -0.3731123 -0.0377675 -1.4906972
1.4773871 1.3940599 -0.3067978 0.2226132 -0.5159113 0.1794227 0.6069222 0.3043010 -1.2860793 -0.1211432 -0.2589624 0.8582840 0.5741909 -0.1097616 1.5576991 1.3622851 -0.1755994 0.6623487 0.7298108 0.4048188 0.3356589 0.2021608 1.2150336 0.9557215 1.7445176 2.2327407 -1.6927563
1.7114272 0.7775231 -1.1401306 -0.5698897 -0.4174461 0.1397983 0.8172379 0.3043010 -1.4657435 0.0749734 -0.4078971 -0.2619694 -0.6376522 -0.2296240 0.3273744 0.4912911 -0.4970050 0.6798202 0.0827810 0.2735661 1.3638418 1.0809339 0.1427089 1.4304505 1.9434895 1.7246550 -1.2078143
1.3049364 0.5005283 -0.6486779 -1.0612415 -0.1668075 0.8926613 1.6585005 0.8875103 -0.5674226 0.1216679 -1.0408697 1.4884265 1.4830732 0.0101008 0.4871569 0.4812796 -0.4166536 -0.5956034 -0.0034896 0.4485697 1.3638418 1.0809339 0.7861037 0.9557215 1.6592439 1.7405327 -0.3995777
2.2534149 0.6792346 -0.8623530 -0.2845887 -0.6233279 -0.9696839 -0.0240248 -0.7163155 -1.6454077 -1.0830488 -1.0781034 -0.1919535 0.8122315 -0.1097616 0.8067217 0.9518167 -0.5773564 0.6798202 0.0612134 0.5360715 0.3356589 0.0556987 0.6431271 0.6680069 2.7962264 0.9466487 1.2573075
1.0585784 0.7685878 -0.9157718 -0.1260881 -0.8829179 -0.9696839 -0.2343405 -0.3518096 -1.0465271 -0.8122210 -1.0036361 -0.1219377 0.2820502 0.0101008 1.0943301 1.1220109 -1.1398162 0.4526900 0.9325468 0.2298152 1.3215877 0.8668738 2.2873583 0.4018710 1.5455457 0.9466487 0.4490708
1.3542080 0.3575632 -0.7020967 -0.5698897 -0.1578561 -1.1678058 0.0460804 -0.2424578 -0.4476464 -0.4013099 -0.6312992 0.3681732 0.3686104 -0.0498304 1.0463954 1.2922052 -1.1398162 1.3786825 0.2984576 1.2798370 0.7863692 0.3260904 -0.1313297 1.6678150 1.9434895 2.4232729 0.5298945
1.3788438 1.3717216 -0.6807292 -0.7759404 -0.7665500 0.1794227 -0.7250771 -0.1695567 -0.8069748 -0.5040377 -0.6685329 -0.3319852 0.6391111 0.3097568 -0.1519728 0.4011882 -0.8184106 -0.0365136 -0.0250573 0.9298297 0.2934048 0.0669650 1.6141767 1.1643145 0.7496579 1.6928996 0.9744246
0.9230815 2.2205766 -0.5632079 -0.1260881 -0.5427655 -1.0885570 -0.8652875 0.1584986 -1.0465271 -1.2044544 -0.4823645 -0.7520802 0.9528919 3.8656749 0.4871569 0.7315653 -0.5773564 0.3828038 0.2337547 0.8423279 0.4060824 -0.0682309 2.0431066 0.3730995 0.6785965 1.8199211 2.1867796
2.1548717 2.2875915 0.7081588 0.1275128 -0.5427655 -0.7715621 -2.0570763 0.0855974 -2.4239525 0.2710901 -1.1898045 -0.6120485 1.5696335 -0.2695782 1.2860690 1.6626279 0.5475632 2.1299594 0.1474840 1.2798370 0.1666425 -0.1808941 2.0728934 0.2436280 -0.2452018 1.2800799 -0.1975185
1.6991093 0.8132643 -0.7127804 -0.0785379 -0.4174461 -0.9696839 -0.7250771 0.0491469 -2.2442883 0.4298512 -1.8227771 0.1581256 1.7102938 -0.1696928 1.6056339 1.6125708 -0.5773564 2.3920327 1.0533257 1.0610825 0.5469294 0.3824220 0.4286621 2.2216655 1.1760263 2.5407677 0.1661880
0.7752666 0.8356026 -0.8570111 -0.8234906 -0.4711544 -0.9696839 1.1677640 1.2155656 -0.6871987 0.2243957 -1.8600108 0.8582840 0.2171300 -0.2695782 0.8866129 0.8817367 -0.4970050 -0.2287007 0.9670551 1.4110897 0.3779130 0.1570956 -0.5304728 0.5744997 -0.1741404 1.7881657 -0.5208132
1.6005661 1.1706770 -0.5738916 -0.9344410 -0.3726892 -0.3753184 0.6770274 1.2884668 0.1512342 -0.1958543 1.1186840 1.4184107 1.6020936 -0.0298534 0.8067217 1.1119995 -0.2559508 0.6623487 0.4925666 0.4923206 0.0539650 0.1345629 0.2558987 0.7471284 0.9486298 1.6928996 0.1257762
1.0216247 0.4558517 -1.1080793 -0.1102380 -0.6859876 -0.9300596 0.8873431 0.9239609 0.1512342 0.2243957 -0.3706634 1.0683315 0.5850109 -0.1097616 1.0463954 1.3722966 0.3065090 0.2255598 0.6651078 0.7548261 -0.0587126 -0.3611552 0.3571738 -0.0728581 0.4654123 1.2165692 -0.4399895
1.4650692 0.5005283 -0.7288061 -0.2370385 -0.6680848 -0.3753184 0.5368170 0.4136527 -0.8968069 0.7753901 0.2995429 0.5782207 1.3315929 -0.7090737 1.6056339 1.9029021 -0.3363022 0.4701615 1.5709495 1.1923352 0.2934048 0.2134272 0.6192977 0.5457282 -0.1599281 2.9631140 1.0148365
0.7875845 1.0902591 0.3128599 -1.0295414 0.6835737 -0.3753184 -0.0240248 0.7052574 -1.2860793 1.4664679 1.2303850 1.1383473 0.4010705 0.0700320 0.6469393 1.0018738 -1.5415732 0.1207304 0.0180781 0.0110606 1.0539784 1.1485318 0.9409951 -0.0440866 -0.2025649 0.3115415 0.3682472
1.3049364 0.0180212 -0.7768830 -1.0453914 -0.6322793 0.3379202 1.1677640 -0.3153590 -1.0465271 0.2243957 0.0389071 1.8385057 -0.4537117 0.1898944 1.1262866 1.1420338 -0.9791134 0.8894789 0.2553223 0.5798225 1.5469428 0.8668738 0.8873788 0.6895855 -0.2309895 0.1051316 1.4189548
-0.0869865 1.5727662 0.8790989 -1.5050431 1.3101703 -0.0979479 -0.3044457 1.0333127 -0.2679823 0.3177846 0.0389071 0.1581256 -0.7674925 -0.0298534 0.1835703 0.3811654 -0.8987620 0.6798202 -0.2407339 0.3173170 1.2793336 0.7654769 1.8286416 -1.0295090 -0.0604421 0.0733763 0.5298945
0.8738098 1.0500502 -0.3014559 0.3652637 -0.4263975 1.1700319 0.1862908 -0.0237543 -0.8668629 -0.6161044 0.4112440 0.0881098 1.2017525 1.4084955 0.5031351 0.8517024 -0.7380592 0.1731451 -0.5426811 0.6673243 1.9553990 1.4977878 -0.0002677 -0.1232081 0.4085632 0.9148933 -0.0358712
-0.1855298 0.2324688 -0.8570111 -0.7283903 -0.6591334 -0.4941915 1.0275535 0.5594551 -0.5075345 0.7193568 0.8580482 -0.3319852 0.5417308 0.1898944 0.2954180 0.3411197 -0.8184106 -0.2287007 -0.4866052 0.5798225 1.4342653 0.9457381 0.1963251 -1.1805591 0.0958930 0.8513826 -0.3187540
0.6151339 -0.1249438 -0.2159859 -0.7125402 -0.4711544 0.1397983 0.8172379 0.8875103 0.1512342 1.0368790 -0.5940655 -0.2619694 1.2017525 -0.3295094 0.3753092 0.5813939 -0.6577078 0.1207304 -0.6634600 0.7110752 1.7018745 1.1485318 0.3810033 -0.4684656 -0.4441737 0.3115415 -0.9653433
0.0608283 0.1967275 -0.3922678 -1.3465425 -0.2563213 0.6549151 1.8688162 3.1109961 1.6484357 1.9987846 -0.5568318 1.6984740 1.8509542 0.3696880 0.5350916 0.6514739 0.8689688 0.5749909 -0.6375788 0.7548261 0.8286233 0.7316779 0.9112083 0.1501207 -0.0462298 0.2639084 0.5703063
0.4796370 0.8132643 -0.7127804 -0.7600904 -0.5069599 0.5360420 1.0976587 0.9239609 -1.0165830 0.5139012 -0.3706634 -0.4720169 0.3253303 -0.2296240 0.8866129 0.9117710 -0.1755994 -0.2461723 -0.1113279 -0.1639430 0.8567927 1.6442500 0.6848286 0.8766000 0.6217474 1.4229791 -1.0057552
0.3687759 -1.1525052 -0.9264555 -0.4113891 -0.5517168 0.5756664 0.9574483 -0.8256672 -0.7470867 0.0096012 -0.9664024 -0.4020010 0.7473114 -0.3494865 0.1675920 0.1609140 -0.7380592 -0.4208878 -0.4779781 0.2735661 0.2229813 0.1345629 0.5299373 0.1788922 1.5455457 1.7087773 -1.0461670
1.0708963 1.7961491 -0.9264555 -0.9819912 -0.3905920 -0.6526890 0.8172379 1.5800715 -0.0284300 1.9053957 -0.3706634 0.5082048 0.3361503 0.2498256 1.0463954 0.9418052 0.0654548 0.2954460 -0.2407339 1.2798370 1.1103172 0.8330748 0.4286621 -0.2167153 0.5506860 0.5338290 -0.4399895
1.2556648 -0.0355907 -0.8570111 -0.4589393 -0.5875224 -0.4941915 -0.3044457 -0.5705131 -1.0465271 -0.9429655 -0.5940655 -0.2619694 1.5696335 -0.2096470 0.5670481 0.3010740 -0.8184106 0.6798202 -0.1544632 0.3610679 1.3779265 0.8894064 0.6729139 -0.3102226 0.7354456 0.9148933 -0.3995777
0.8984457 0.6568963 -0.5578660 -0.7442403 -0.7486472 -1.0093083 -0.0240248 1.2155656 0.8998349 1.7372957 -0.0727939 0.0881098 0.7689514 -0.2096470 1.1262866 1.2221252 -0.5773564 1.3786825 0.2768900 1.0173315 0.1384731 0.0218997 0.9707819 0.4306424 1.2897246 1.7087773 0.4086590
0.7136771 1.3717216 -1.2629938 -1.3623926 -0.6054251 -0.7715621 -0.1642353 -0.0237543 -0.1182621 -0.7094933 -0.7430003 0.4381890 1.2991328 8.6801482 0.9025912 1.1620566 -1.1398162 0.6274055 0.7945138 0.5798225 0.3779130 0.0894976 1.1435453 -0.2311011 0.7780825 2.4391506 -0.0762830
0.8368561 0.7596525 -1.1134212 -0.6332899 -0.4532517 -1.1678058 0.6770274 -0.0237543 -0.6871987 1.7466346 -1.7110761 0.2981573 0.3577904 0.2498256 0.1995485 0.6614853 0.4672118 0.6623487 -0.5254270 1.1923352 0.3638283 0.0669650 2.4958659 0.0062634 0.1527421 0.7719942 1.2573075
0.9353994 0.6792346 -0.4563703 -0.3004387 -0.7217931 -0.2960697 0.6770274 1.2155656 0.0015140 0.8687790 -1.4504403 2.2586007 0.3145102 1.2886331 1.0463954 0.7115424 1.1100230 -0.4208878 0.1474840 1.2798370 0.5469294 0.3711557 -0.2862210 0.0566135 0.7780825 1.5500005 -0.0358712
0.6274518 0.4201104 -1.0867118 -1.1404918 -0.4801058 -0.8508108 0.3966065 1.0333127 -0.1482061 -0.2332099 -0.9291687 0.7182523 1.0719122 -0.2096470 0.0877008 0.5013025 -0.5773564 -0.0889283 -0.3701398 0.6235734 0.3638283 -0.0794972 0.7682316 -0.2311011 0.2380158 1.1054255 -0.9653433
0.5904981 0.3664985 -0.7875667 -0.8868908 -0.4711544 -0.8904352 1.0275535 0.1584986 0.3009543 -0.8589155 -1.0781034 0.0180940 0.5525509 -0.5692342 0.6469393 0.9518167 -0.8184106 0.4701615 0.0180781 0.3610679 1.2089101 1.1935971 -0.3577093 -1.4251165 0.2380158 0.5497067 -1.4098735
0.3441400 1.9748554 -0.3602166 -0.7917905 -0.6233279 -0.4545672 -0.0240248 1.7258738 -1.1962472 0.7753901 0.7463471 0.7182523 0.7148513 -0.5093030 0.4871569 0.6514739 -0.1755994 -0.4034163 -0.1975985 0.5798225 0.2370660 0.2134272 2.9128811 -1.1661734 -0.2452018 0.4226852 -0.1975185
0.0608283 -0.1249438 -0.7875667 -1.2989923 -0.6143765 -0.0979479 0.2563961 0.6688068 -0.4476464 1.3450624 0.2623092 -0.1219377 0.1846699 -0.8089590 0.2474832 0.4011882 -0.5773564 -0.2636438 -0.3485721 0.7110752 -0.1432208 -0.1245625 0.0414338 -0.7561801 -0.3020509 1.1371808 0.9744246
0.0854641 -0.4376799 -0.6273104 -1.3306924 -0.7486472 0.3379202 0.7471326 -0.9714696 -1.1962472 0.4578679 -0.1100276 -0.1219377 0.2279500 -0.9088444 0.1675920 0.6114282 -0.6577078 -0.3859447 -0.5858164 0.9735806 0.1103037 0.0669650 0.4107901 -0.5332013 -0.4157491 0.8672603 1.4189548
1.5020229 2.1982383 1.5575172 -0.2370385 1.4802466 -1.0885570 -1.3560241 0.5230045 -1.8849599 0.1310068 0.3740103 1.9785373 -0.9189729 0.2498256 1.1262866 1.0118852 -1.3005190 0.8545358 0.0180781 -0.2951957 1.2934183 0.7654769 2.1026802 2.2720156 -0.3731123 0.0416209 -0.3591658
0.6890413 0.5898814 -0.2854303 -0.6808401 -0.5606682 -0.0186991 0.1161856 -0.2060072 -0.9866390 0.0843123 -0.1100276 1.2083632 -0.5294519 0.1299632 1.3659602 1.2621709 -0.1755994 1.3087962 0.4623718 -0.0326903 1.0821478 0.6190147 0.5716388 0.0062634 0.0674684 0.1527647 0.3278353
0.5042728 0.9919707 0.9111501 -0.3321388 1.3459759 0.0209252 -0.7951823 -0.8985684 -0.2080942 -0.6161044 0.0016734 -0.6820644 0.2171300 0.1299632 0.2474832 0.6514739 -0.7380592 -0.1937576 -0.3356316 -0.2076939 0.5469294 0.4274873 0.2380266 -1.2021377 -0.1457158 0.9148933 -0.1571067
1.0832142 1.1260004 -0.3602166 0.6188646 -0.3995434 -1.0489327 0.1862908 0.8146092 -1.3459674 0.9248124 -0.2589624 0.0881098 1.4830732 0.0700320 1.5257427 1.5324794 -1.5415732 0.1906166 0.1604246 -0.3389467 1.3356724 1.1485318 -0.1194149 -0.4828513 0.6785965 1.1054255 0.4490708
0.2948684 0.1431157 0.8363639 -0.2687386 1.4712952 -1.1678058 -0.8652875 -0.2789084 -0.5973666 0.3644790 -0.5568318 0.2281415 0.2604101 -0.2096470 0.5510698 0.6014167 -0.3363022 0.1207304 -0.3011233 -0.6014521 0.5469294 0.1908945 -0.1194149 -1.1230162 0.0958930 -0.2124219 -0.1975185
0.0608283 -0.7057394 -0.3014559 -1.2355921 -0.5069599 -0.3753184 0.1862908 -0.9714696 -0.7470867 0.1870401 -1.0781034 0.5082048 0.4659906 -0.2695782 1.1262866 0.9718395 -0.6577078 0.7671780 -0.0078031 -0.3389467 1.0398937 0.9006728 0.6848286 2.2432441 -0.3304755 0.4385629 1.8230731
1.4897050 1.9525171 1.0286714 -0.4113891 1.5250035 -0.2168210 0.3265013 0.2678504 -0.1781502 0.4578679 -0.5568318 0.7882682 -0.4428917 -0.3494865 0.8866129 0.6214396 -0.4970050 -0.5956034 0.0784675 -0.3826976 1.0117244 0.9006728 0.7563169 -0.2311011 0.3232895 1.0577924 -0.8036960
1.6991093 2.4216212 0.2487574 -1.2038920 1.1221913 0.2982958 -1.0054980 -0.3153590 -1.0465271 -0.8682544 -0.2589624 0.1581256 0.4659906 0.1299632 1.5257427 1.1420338 -0.7380592 1.0467229 -0.0681926 0.3610679 1.1666560 0.6528137 0.3988753 0.2436280 -0.3304755 1.0101594 -0.7632842
1.1078500 0.0090859 -0.5578660 -0.1102380 -0.5875224 -1.1281814 -1.0054980 -0.8985684 -1.0465271 -1.1110655 0.1133745 0.0881098 1.2883127 -0.1497158 1.2860690 1.3622851 -1.2201676 0.9593651 0.4494312 -0.2076939 1.0117244 0.5964821 -0.0181398 -1.1661734 0.5648983 0.7561165 -1.3290498
1.3542080 0.3128867 -0.8356436 -0.2053384 -0.2831754 -0.3356941 -0.7250771 0.1220480 -0.2080942 -0.0090766 -0.1100276 0.2281415 1.2450326 0.0101008 0.7268305 0.8917481 -0.3363022 1.3786825 0.4925666 0.4923206 0.1948119 -0.1020298 0.9588671 -0.4540798 0.1101053 0.9942817 -1.2886380
1.1571216 0.6792346 -0.6914129 0.5554644 -0.5427655 -1.2470545 -0.5147614 -0.3518096 -0.6273106 -0.1211432 -1.4132066 0.5782207 0.5958310 0.6493669 0.9345477 1.5124565 -0.3363022 0.8545358 1.6572202 0.7110752 0.6877763 0.3598893 2.7579897 0.1213493 2.0145509 1.6293889 1.8230731
0.0608283 -0.4376799 -0.5151310 0.1275128 -0.5427655 -1.1281814 -1.7065502 -1.1901731 -2.1245122 -0.8308988 -1.5993750 -0.5420327 2.9545970 -0.2695782 0.6788958 1.2421480 -1.5415732 2.3046749 0.9239197 0.7110752 0.4201671 0.2472261 0.2141972 -1.0223161 -0.2452018 1.2800799 0.5703063
1.0216247 1.0366472 -1.1935494 -0.2845887 -0.6143765 -0.5734403 0.1161856 0.8510598 -0.6871987 0.8127457 -1.8600108 -0.4020010 0.4984507 -0.2096470 0.2474832 0.9618281 -1.1398162 1.2214385 0.2337547 1.2360861 1.0680631 0.7992759 0.5716388 0.3227495 1.2613000 1.6452666 0.0045407
1.0093068 0.4335134 -0.5952591 -0.2687386 -0.5248627 -0.5734403 0.1862908 0.1949492 -1.6454077 -0.8962710 -1.8227771 0.7882682 1.1584724 -0.3295094 2.5323719 1.7126851 -0.3363022 0.4876331 0.8592168 0.2298152 0.9131315 0.6190147 -0.7032362 -0.2023296 1.6876685 1.4071014 -0.8845197
0.9477173 -0.0355907 -1.1134212 -1.1246417 -0.3905920 -0.2960697 1.7987110 1.1426644 -0.7171427 0.4298512 -1.6738424 1.0683315 0.4335306 -0.0897846 1.1262866 0.7615996 0.2261576 0.1556735 0.5357019 0.7548261 0.4483365 0.2584925 -0.6436626 0.4522210 1.0196912 1.9945755 -0.0358712
0.9107636 -0.2142970 -1.0920537 -0.1894883 -0.5964737 -1.0093083 0.8873431 -0.4247108 -0.9267509 -0.9056099 -0.0727939 1.2783790 1.4830732 -0.5292801 0.4871569 0.8717253 -1.2201676 0.0508442 0.3415929 -0.1639430 0.8286233 0.4274873 -0.5006860 0.0062634 0.7212333 0.9942817 -0.9249315
0.6890413 -0.1249438 -0.4082935 -0.8076406 -0.5427655 -0.8904352 0.0460804 0.3407515 0.3009543 -0.6814766 0.4857113 1.1383473 0.4984507 -0.5093030 1.0623736 0.7515881 -1.3005190 1.5009834 0.5141342 0.0985624 0.5891834 0.2021608 -0.5304728 -1.3100306 0.3517140 1.1848139 -0.9653433
1.5020229 0.5898814 0.0778173 -0.0309878 -0.5696196 -0.6923134 -0.7250771 -0.2424578 -0.9566950 -1.0550322 -0.1844950 1.2783790 1.0827322 1.4484497 1.4458514 0.9718395 -0.8184106 0.7671780 0.5702101 -0.0764412 0.9835550 0.9344717 2.4958659 0.2723994 0.0958930 0.7084835 0.5703063
0.3564579 0.6792346 -0.3014559 -0.5857398 -0.3279323 0.1794227 -0.4446562 1.1426644 -0.8069748 0.2243957 -0.0727939 0.1581256 -0.0533707 -0.7889820 1.1262866 1.2021023 -0.4166536 0.1207304 0.4062959 0.4923206 0.3215742 0.2584925 0.2916429 -0.4037298 0.2380158 1.6611443 0.2470117
0.8861277 0.8132643 -0.6593617 -1.0453914 -0.8113069 0.0605496 0.5368170 0.4865539 -0.8369188 0.2337346 -0.2589624 0.5782207 0.4118905 -0.6091883 1.7654163 1.6426051 -1.3808704 0.7846495 0.7513785 -0.2951957 0.3638283 0.1345629 0.6729139 0.1645065 -0.1315035 1.7087773 0.8531891
-0.7767891 -3.1182747 0.2380736 1.2687169 -1.2499245 -0.7319377 -1.3560241 -3.6688130 -2.6635047 -2.8107433 -0.0355603 -0.8220960 -0.7458525 -0.2296240 -0.5034942 -1.4609371 -0.6577078 -2.0457425 -1.3406845 0.4048188 -1.1150649 -0.9695366 -2.0317274 0.0278420 0.6501719 -0.7205077 -0.4804013
-0.8260607 -1.0631520 -0.7181223 0.3969638 -1.1067024 -0.8904352 -0.3044457 -0.3153590 -1.0465271 -1.5499933 0.2623092 0.0881098 0.0007294 0.8890918 -0.3916465 -0.9403429 2.1545912 -2.0632141 -0.7712983 1.2798370 -1.3263353 -1.7581791 -1.1381234 -0.5332013 1.4744842 -0.2124219 0.6915418
-0.4442057 -0.6163862 0.5372188 -0.1102380 -0.8739665 0.5756664 -0.7951823 -1.2630743 -0.8069748 -1.8021433 0.1878418 0.0180940 0.3253303 -0.2096470 -0.4395812 -0.6199773 1.3510772 -1.6963114 0.2984576 0.0985624 -1.4390129 -1.2624609 -0.3636667 -0.2958368 1.1333895 -0.9427952 -2.0160510
0.8245382 -1.3758881 -1.1134212 0.3177135 -0.9724317 -0.6923134 0.6770274 -1.6275801 -0.4476464 -1.4566044 -1.0036361 -0.4020010 -0.6917523 -0.3295094 -0.3117553 -0.2395431 -0.3363022 -1.5041243 -0.5426811 1.1923352 -0.2136443 -1.4089231 -0.1253723 0.4666067 0.2948649 -0.3711987 -0.9249315
-0.7767891 -0.7950925 -0.8356436 0.0958127 -1.0798483 -0.7715621 -0.0240248 -0.7527660 -0.1482061 -0.8962710 -0.1844950 -0.8921119 0.6174710 4.8445512 1.9251987 1.0719538 -1.3808704 0.4876331 -0.2623015 1.1485843 0.3638283 0.1007640 -0.9594026 0.1141564 -1.4248211 -1.0380613 1.9038968
-1.0231471 -1.0050724 -1.0653443 -0.2528886 -0.7934041 -0.7715621 0.3265013 0.5959057 -0.1482061 -0.8495766 -0.5940655 0.2981573 0.4984507 1.0489083 -0.6472984 -0.2795888 0.7082660 -0.9799776 -0.9093313 2.1548552 -0.5375923 -0.2822910 -0.7806819 -0.7561801 -0.3162632 -1.2444711 -2.0968747
-0.7767891 0.6792346 -1.2256006 -0.4747894 -1.0082373 -0.1375722 0.6770274 0.7052574 -0.4177024 0.9061346 -0.8547013 -0.1219377 -0.5943721 0.1099861 0.1995485 0.6214396 0.0654548 0.8545358 -0.1975985 1.0173315 -0.4389994 -0.4287531 -0.5066433 -0.3749583 0.2522281 -0.2187730 0.3278353
0.1347357 -0.7057394 -0.3014559 -0.9502911 -1.1872649 -0.5734403 -1.4261293 -2.4294930 -1.3459674 -1.4099099 0.0761408 -1.5222544 -0.7350324 1.6881745 1.0943301 1.1520452 -0.8184106 1.2039669 0.1043487 0.7110752 0.8004539 0.3936883 -0.3636667 -0.9216160 -2.0075246 -0.7776673 0.1661880
-0.7767891 -1.9566836 -1.1721819 -0.0943880 -1.0440428 -0.9696839 0.6770274 -1.6275801 0.0314581 -0.8962710 -1.4132066 -1.5222544 -1.6547348 -0.1896699 -0.2957770 -0.0293031 -0.7380592 -0.9625061 -0.1630903 0.7110752 1.2229948 1.2273961 -1.0189762 -1.2812592 2.6114667 -0.7522631 -0.4804013
0.4180475 -0.6968040 -0.8356436 0.0324125 -1.2499245 0.6945395 -0.3044457 -0.0237543 -0.7470867 -1.1297433 -0.5195982 0.7182523 0.9312518 0.9490230 0.3753092 -0.7301029 1.5117800 -2.0457425 -0.8144336 0.2735661 -0.9601332 -1.1948630 -0.4232403 -0.2023296 1.7303053 0.0098656 1.0956601
-0.9738755 -1.1525052 0.2701249 2.5684216 -1.0261400 0.1001740 -1.1457084 -2.2472401 -0.8069748 -0.8028821 2.0867597 3.5889015 0.8987917 0.4895504 -0.7112113 -0.7501258 -1.7826274 1.5883411 -0.9524666 1.4110897 0.6455222 0.2810251 -1.1917397 -0.1304010 -0.6573579 -0.0917516 0.2470117
-0.8753323 -1.7333007 -1.6048739 -0.9027409 -0.6501820 -0.1771966 1.6585005 -0.5705131 0.2710103 -1.8581766 0.8952818 0.2281415 -0.4428917 -0.2695782 -1.9095795 -1.0104229 0.0654548 -0.2287007 -0.8661960 -0.2076939 -1.1150649 -1.1047324 -1.4479061 -0.5116228 0.8491439 0.3909299 -1.2886380
1.0585784 -0.0132524 -1.3965407 -1.1563418 -0.7396958 0.6945395 2.2894475 1.1062139 1.6484357 -0.8962710 -0.5568318 -0.9621277 0.1954899 -0.0897846 1.0463954 0.8316795 -1.2201676 0.4876331 -0.7238494 1.7610970 0.7722845 0.6077484 -0.7091935 0.1141564 -1.0126650 -1.0698166 -0.4399895
0.6028160 -1.3312115 -1.3217544 -0.4113891 -0.6054251 -0.9696839 0.9574483 -0.4611614 1.3489954 -1.8768544 -0.6685329 -0.8921119 -0.7025724 -0.4094177 -0.6632766 -0.1894859 -0.7380592 -0.9799776 -0.5685623 0.0985624 0.2370660 0.5852158 -0.4589844 -0.8496874 -1.1547878 -0.8729334 -1.8544037
-0.0130791 0.3664985 -1.8773096 -0.9185910 -0.5964737 1.2889050 1.5182901 0.8510598 3.1456372 0.8687790 -0.8547013 2.7487115 1.1692924 -0.5692342 1.6056339 0.8617138 -1.2201676 0.6448771 -0.7367900 1.5423425 1.2511642 0.6978790 -0.4828139 -0.0081223 0.7354456 0.7561165 0.1257762
-1.2818231 -0.3483267 -1.0653443 0.2860134 -1.1156538 -0.7319377 0.6770274 -0.2424578 0.4506745 -1.8675155 0.7463471 0.0881098 0.0115495 -0.3095323 1.7334598 0.1108569 -1.8629788 0.1032589 -0.7971795 0.1423134 0.7300304 0.1908945 -0.6615347 -1.2165234 -0.8279053 0.4417385 -2.1372865
-1.6513601 -2.2247431 -1.2790194 -0.4747894 -0.4084947 -1.2470545 -0.0240248 -1.6275801 -1.0465271 -0.8962710 -0.9664024 -0.1919535 -0.5727320 -0.0897846 -1.0946892 -0.4597944 -0.1755994 -0.7703189 -0.5426811 1.1923352 -0.6643546 -0.7104112 -1.5908828 -0.9791589 -1.8796141 -1.0126570 0.7723655
0.0361925 -0.7950925 -0.3762422 -0.1577882 -1.2857301 -0.6130646 -0.0240248 -2.3930424 -1.0465271 -0.8495766 -0.7802339 -0.9621277 0.3361503 1.1687707 -0.5514289 0.0007312 -0.9791134 -0.2287007 -0.1975985 1.0173315 -0.1854749 -0.1470951 -0.2445195 0.1716993 -1.0553018 -1.1269763 1.4189548
-1.4296379 0.5005283 1.2316628 -0.4747894 0.4955947 -0.0186991 -1.3560241 -0.4976119 -0.4476464 -0.8495766 -0.2589624 0.8582840 -0.1615710 -0.1097616 -0.9189285 -0.7100801 0.5475632 -1.1197501 -1.0387372 0.0110606 -0.1291361 0.3035577 -2.1389598 -1.5689737 0.0674684 -0.7840184 0.4894826
-0.8260607 -2.0907133 -1.4392757 0.6505647 -1.2051676 -0.2960697 0.1161856 -1.5182284 -1.4058554 -1.8768544 1.7144229 2.5386640 0.7905915 0.7092981 -0.6313201 -0.1794745 -0.0952480 2.0426016 -0.7152224 0.4485697 -0.4249147 -0.3160899 -0.5066433 -0.5619728 0.2522281 0.0098656 -2.0564628
-0.3702983 0.8356026 0.4090137 -0.8551907 1.3728300 0.7737882 -0.7951823 0.1220480 1.0495551 0.0843123 1.1931513 0.0881098 -0.4753518 -0.2296240 0.8546565 0.5213253 0.5475632 0.6274055 -1.0732455 1.0173315 0.7300304 0.9457381 -0.0896281 -0.2311011 -0.2025649 -0.9015132 -0.3591658
-1.2325515 -0.9291223 -1.4553013 -0.1894883 -1.2678273 -0.3753184 -0.0240248 -1.3359754 -0.1482061 -1.8768544 -0.5568318 -0.9621277 0.4659906 -0.7290507 0.1995485 0.2309940 -0.4970050 -0.2811154 -1.1034402 1.8485988 0.7159457 0.6077484 -1.7934330 -0.6267086 -0.6005088 -1.4889874 -0.6016368
-0.3456625 -1.0631520 -1.4553013 -0.9502911 -0.4711544 -0.4149428 1.3780796 -0.6069637 -0.2080942 0.0843123 0.1878418 -0.9621277 0.5741909 0.0101008 -0.1519728 0.5013025 -0.8184106 0.3129175 -0.4995458 0.8860788 0.7441151 0.3936883 -0.8521702 -0.4900442 -0.6005088 -0.1044537 0.0449525
-1.1340082 -0.7950925 -1.5354295 -1.0612415 -1.0798483 -0.8111865 2.4296580 0.5230045 1.3489954 0.9248124 0.2623092 -1.5222544 -1.6222747 -0.2096470 -0.4715377 -0.4497830 0.3065090 -0.3335300 -1.2328462 1.5423425 0.1525578 0.5852158 -0.4172829 -1.3244164 -0.5436597 -0.3711987 0.2065998
0.0608283 0.0984391 1.0233296 -0.5698897 1.3638786 -0.7319377 -0.7951823 -0.1695567 0.8998349 0.5325790 0.7463471 -1.0321435 -1.8386753 -0.3095323 -1.0307762 -0.4397716 1.9938884 0.0508442 -0.1113279 -0.5139503 -0.8474556 -1.0258682 -0.1015429 -0.5979371 -0.4868106 -0.7363854 0.1661880
-1.4296379 -0.8397691 -0.7929086 -0.3162888 -1.2946814 0.3379202 0.6770274 0.7781586 -0.4476464 0.3831568 0.0761408 -0.4020010 0.1413898 0.6293899 -0.1519728 0.1809368 -1.1398162 1.3262678 -0.8661960 -0.7327048 0.6596069 0.9344717 -1.4598208 -1.0510875 -1.4674579 -0.7205077 1.2573075
-0.4072520 -0.4376799 -0.6166267 -0.4747894 -1.2141190 -0.1375722 0.3265013 -0.4611614 -0.4476464 -0.3826321 0.1133745 -0.0519219 -0.3130514 0.1299632 -0.1519728 -0.0893717 -0.4970050 -0.2287007 -1.0516778 1.1923352 0.7722845 0.6978790 -0.5423875 -0.9503874 -0.3446877 -0.9427952 0.4490708
-1.0354650 0.2324688 -0.3602166 -0.2528886 -0.6501820 -0.5338159 0.4667117 -0.2060072 0.9896670 -0.3359377 0.7463471 -0.6820644 -0.8648728 -0.1896699 -0.8230590 -0.3396573 0.5475632 -0.0539851 -1.1250079 1.6298443 -0.4953382 -0.0682309 -0.4589844 -0.6410943 -0.6573579 -0.7998961 0.2470117
-1.6636780 -1.0631520 -1.2149169 -0.3162888 -0.5964737 -1.0885570 1.7286058 0.9239609 1.9478760 1.5318402 1.7516566 -0.8220960 -0.9081529 -0.5492571 -0.5993636 -0.4197487 0.3065090 -0.4383594 -1.0603049 1.7610970 0.8427080 0.3260904 0.4346195 -0.8928445 0.2948649 -0.5871352 0.4086590
-1.6759959 -0.4823565 -0.7074386 -0.2528886 -0.2473699 -0.0979479 0.6770274 0.3407515 0.6303387 0.7567124 0.0389071 -1.1021594 -0.6592923 0.1299632 -0.5514289 -0.3396573 0.9493202 -0.4208878 -0.9740343 0.1860643 0.1948119 0.6978790 -0.5006860 -1.5042380 -0.2594141 -0.2124219 0.4086590
-1.1340082 -0.5717096 -0.9638487 -0.1102380 -0.9008207 0.5360420 1.3780796 -0.2424578 1.2292193 0.4765457 -0.4823645 -2.0823811 -0.9406130 -0.7290507 -0.1519728 -0.4397716 0.4672118 -0.3684732 -1.4312686 0.4923206 0.8427080 0.8894064 -0.2028180 -1.2596806 -0.5862965 -0.3870764 2.1463678
-1.1340082 0.0984391 -0.3602166 -0.1102380 -0.4532517 -0.5734403 -0.3745509 -0.1695567 -0.2979263 0.7380346 1.8633576 -1.3122069 -0.3887916 -0.3095323 -1.1106674 -0.5298744 1.2707258 0.0857873 -1.1465755 0.5360715 -0.4812535 -0.7892754 -0.2862210 -1.2165234 1.0339035 -0.8475291 -0.1975185
-1.2325515 0.0090859 -0.5364985 -0.3162888 -0.7396958 -0.6923134 -0.2343405 0.1949492 0.7501148 0.3177846 0.8952818 -0.9621277 -0.2481312 0.9290459 -1.3503410 -0.7801601 1.1100230 0.0683157 -0.6289517 0.4048188 0.0539650 -0.2597583 -0.3577093 -1.7056382 -1.0126650 -0.9427952 1.7018376
-0.3826162 -0.1249438 -0.7875667 -0.8393407 -0.7217931 -0.3753184 0.8873431 -0.3882602 0.3608424 -0.3359377 0.5229450 -1.3822227 -1.6330948 0.1898944 -1.4621887 -0.5699201 1.7528342 0.0508442 -0.8661960 0.0110606 -0.7770322 -0.7892754 0.0414338 0.4306424 -0.6147211 -0.7998961 -0.3591658
-0.8753323 -0.1249438 0.0190567 -0.2528886 0.4418864 -0.8111865 -0.4446562 -0.5340625 -0.4476464 0.3177846 0.5974124 -0.8220960 -0.3887916 0.4096421 0.2474832 0.2209825 -0.8987620 0.6972918 -1.2544138 0.8423279 0.9694703 0.8668738 -1.8887507 -0.9935446 -0.7284193 -1.4508810 0.2874235
-1.7006317 1.3940599 0.3823043 -1.0295414 -0.3100296 -0.2960697 -0.5848666 -0.3153590 -0.4476464 -0.8122210 0.3740103 -0.1219377 0.0764696 0.2498256 1.1582431 0.2309940 -1.5415732 -0.4208878 -0.7799253 0.8860788 0.4905906 -0.0118993 2.8533075 1.4232576 -0.5862965 -1.2762265 0.4086590
-0.6536100 -0.1472821 -0.7288061 -0.1102380 -0.7307445 0.4171689 0.1161856 -0.6069637 -0.1482061 -0.8495766 4.0973787 4.3590757 1.0719122 0.4096421 0.3273744 0.2410054 -0.3363022 2.9511225 -1.0603049 0.8860788 0.0257956 0.0106334 -1.5491812 -0.3533797 0.3801386 0.6036908 -1.2482262
-1.4665916 0.9919707 -0.5525241 -0.3955391 -0.1936616 -0.0186991 -0.0941300 1.3613680 0.6003946 0.5699346 1.7516566 2.3986323 0.1089297 0.3896651 -1.1106674 -1.0404572 -1.7826274 -0.0539851 -1.1034402 -0.0326903 -0.4953382 -0.1132962 -0.7449377 -0.3246083 -0.8847544 -0.3870764 -1.0461670
-0.8753323 0.0090859 -0.9157718 -0.3162888 -0.8292096 -1.3659276 -0.0240248 -1.4088766 -1.0465271 0.0843123 0.1506082 -1.0321435 0.8122315 -0.4693489 0.4072657 0.4712682 -0.5773564 0.3129175 -0.9308989 1.1923352 0.1807272 0.1796282 -0.2206901 -0.2598725 1.3323614 -1.0126570 0.2874235
-0.7767891 -0.2142970 -1.3057288 -0.6332899 -1.1335566 0.3775445 0.6770274 -0.9714696 -0.2979263 -0.3359377 0.2250755 -0.8220960 0.2171300 0.3297339 1.9571552 1.7226965 -0.9791134 0.6274055 -0.2407339 0.3610679 0.2229813 0.0782313 -0.9415306 -0.5547799 -0.8705421 -0.2759327 0.6915418
-0.8753323 0.5452049 1.4293122 0.9675659 0.7462334 0.6945395 -2.4777076 -0.5705131 -0.4476464 -0.3359377 1.6399555 -0.8220960 0.7905915 -0.5692342 0.8866129 0.9618281 0.7082660 2.1299594 -1.1897109 2.0236025 0.3074895 1.0358686 -0.2147327 0.1932779 -1.1690000 -1.0825188 1.4593666
-1.1340082 -1.0631520 -0.5578660 0.3177135 -0.2294671 -0.9696839 -1.0756032 -2.4294930 -0.5973666 -0.7094933 -0.5940655 -0.1919535 -1.6547348 -0.4293947 -0.1040381 0.1408911 -0.8184106 -0.3335300 -0.7583577 1.3673388 0.4905906 0.4838189 -1.0308910 -1.0151232 2.2419474 -0.1171559 -0.1975185
-0.4934773 -1.5099178 -1.1721819 0.0007124 -0.8918693 -1.0885570 -1.0756032 -1.7004813 -0.2979263 -0.1024655 2.1239934 -0.8220960 -1.5248945 0.3297339 -1.3503410 -0.6700344 -0.5773564 -0.4208878 -1.1250079 0.3610679 0.2229813 0.8668738 -0.1492017 -0.8784588 -0.6573579 -0.5871352 0.8127773
-0.8137428 0.2324688 -0.4082935 0.7932152 0.1017340 -1.3659276 0.8172379 0.3407515 0.4506745 0.3177846 2.4590966 -0.1219377 -2.3688566 0.3696880 0.4232439 0.0808226 -0.1755994 -0.4907740 -0.9740343 -0.6889539 1.0821478 1.3625919 -0.2683489 -1.4107307 0.9202053 -0.9809016 -0.4804013
-1.4542737 -1.1525052 -0.9852162 0.2701633 -0.5517168 -0.4545672 0.6770274 -1.7733825 0.0015140 -0.0651099 -0.5195982 -0.9621277 0.8338716 0.4296192 0.3273744 -0.3897144 0.0654548 -0.2985869 -1.2932356 -0.0764412 -0.2418137 0.9232054 -0.8640849 -0.5691657 -0.6715702 -1.0539390 -0.2783422
-0.6043384 -0.3483267 -1.1988912 -1.0453914 -0.5427655 -0.9696839 1.3780796 -1.4088766 0.3009543 0.2243957 -0.1472613 -1.0321435 -1.2002936 -0.2695782 -0.1519728 -0.1093945 -0.3363022 -0.1937576 -0.9136448 0.3610679 1.3497571 1.7118479 0.9707819 1.0780002 -1.1832123 -0.2378262 -0.4399895
-0.7151996 -0.7950925 -0.3709003 -0.1260881 0.1912478 0.0209252 -0.0240248 -0.3518096 0.7501148 0.9248124 0.5601787 -0.6820644 -0.2481312 0.5694587 -0.9828415 -0.1894859 2.3956454 -0.2985869 -1.0171696 -0.4264485 0.9694703 0.5852158 -0.5304728 -0.3749583 -0.3162632 -1.3714926 -0.8441078
-0.9246039 -0.1249438 -0.5578660 -0.9502911 -0.5427655 -1.0885570 1.0275535 -0.8985684 -0.1482061 0.0843123 0.8952818 -1.3822227 -1.0812733 -0.2096470 -1.0307762 0.0007312 0.0654548 0.0683157 -0.7152224 0.1860643 0.7863692 1.3287930 0.7861037 0.4162567 -0.4868106 -0.7522631 0.6511300
-0.3456625 -0.5270330 -0.0023108 0.5396143 -0.5248627 -0.8111865 0.1862908 -0.3153590 0.8998349 0.2710901 -0.7430003 -1.1021594 -2.2281963 0.0700320 -1.4621887 -0.2695773 0.9493202 0.0683157 -0.7583577 -0.3389467 -0.2699831 -0.4963511 -0.7151509 0.8837928 -0.6715702 -0.8221248 -1.1674025
-0.9615576 -0.3483267 -0.8303017 -0.9185910 -0.9366262 -1.2470545 0.3966065 -1.5546789 -0.1482061 0.1496846 0.9325155 -0.5420327 -2.2498363 0.0300778 0.1036790 0.0107426 0.2261576 0.8545358 -1.0171696 -0.4264485 0.5750987 0.7429443 -0.9355732 0.3443281 -1.5527316 -1.3810192 -0.5208132
-1.7129496 1.0366472 -0.0877808 -0.2370385 -0.8829179 -0.1771966 1.0976587 1.2155656 0.1512342 0.6446457 0.7463471 -0.4020010 0.4659906 -0.1097616 0.7108523 0.8917481 -0.5773564 1.5708696 -1.0387372 0.0110606 0.9131315 0.9795370 -1.4240767 -1.0079304 2.0571878 -0.2124219 0.0045407
-1.8977182 -0.1964264 1.0019620 0.3177135 1.2564621 -0.5338159 -1.6364450 -1.9920860 0.0015140 -1.8301600 2.4218629 0.5082048 -0.4645318 0.1299632 1.4138950 0.5513596 -0.9791134 3.4752692 -0.9308989 -0.9077085 0.2793201 0.6978790 -0.5602595 -0.3461869 -0.6431456 -0.5871352 -0.7632842
-0.5920205 0.4781900 0.7882870 -0.8710408 0.0838312 0.2190471 -0.6549718 -0.7163155 0.4506745 -1.8768544 1.2676187 -0.8220960 -0.2805913 -0.3095323 0.4072657 0.2410054 -0.8184106 -0.6480181 -1.3191168 -0.2514448 0.2370660 0.1345629 -0.1849459 -0.0153151 -0.9984527 -1.3397372 -2.0160510
-1.5281811 1.9301788 0.2487574 0.1592129 0.3076157 0.4964176 -0.0240248 2.0174785 0.1512342 2.0454791 1.3793197 0.2281415 0.0548296 -0.5093030 -0.8709938 0.0007312 1.9135370 -0.9450345 -0.5426811 1.1923352 -0.1573055 -0.8230744 0.6729139 -0.0009294 3.0236229 -0.4442361 -0.2783422
-1.9593077 -1.5992710 0.7669195 0.0641126 -1.4289521 -0.1771966 1.3780796 0.4865539 0.4506745 1.9053957 1.0069829 -0.8220960 -0.5402719 -0.1497158 0.2954180 -0.0192917 0.4672118 -0.2636438 -0.8532554 0.6235734 -0.4249147 1.3287930 -1.3406737 -0.6770586 -0.1883526 -0.9936038 -1.1674025
-1.1340082 -0.7950925 0.5372188 0.4920641 -0.8471124 -1.0093083 -0.0240248 0.4865539 0.8998349 1.3450624 0.1878418 -1.1021594 -1.4058742 -0.4293947 0.4232439 0.2610283 0.5475632 -0.9625061 -0.9308989 -0.1201921 0.8145386 1.5766520 -0.8640849 -0.7202158 0.0816807 -1.1492050 -0.1975185
-2.4273880 -0.8844457 0.3395693 1.6174182 -0.7396958 0.2190471 -1.2859188 -0.6069637 0.6003946 -0.4293266 2.1612271 -1.0321435 -0.0750108 -0.6691195 0.2634615 0.1408911 1.2707258 0.7322349 -1.3622521 3.2923789 0.3638283 0.5401505 -1.5074797 -0.7346015 -0.9416035 -1.0793433 -0.5612250
-1.4542737 -1.0631520 -0.5578660 0.1592129 -0.7755014 -0.0979479 -1.2158136 -1.3724260 0.3907864 -1.1857766 1.3793197 -0.9621277 -1.0920934 0.3297339 -0.5034942 -0.4297602 -0.4970050 -0.1063998 -1.3406845 -0.0326903 1.0117244 0.9344717 -0.6317479 -0.6339014 2.0571878 -0.7998961 0.0853643
-0.7151996 0.0090859 0.4838000 -0.2211884 -0.6501820 -0.3356941 0.5368170 -0.6434143 0.8998349 0.7753901 0.6718797 0.5782207 -1.0488133 1.2886331 -0.4715377 0.0607997 -0.1755994 0.0333726 -1.2932356 0.4485697 0.4905906 0.8443412 0.1248368 1.8476366 -0.2025649 -1.2762265 -0.0762830
-0.2840730 0.0984391 0.8363639 0.1592129 0.9789693 -1.4848007 -1.4261293 -1.4088766 -1.0465271 -1.5032988 -0.4823645 -1.3822227 -1.5248945 0.3297339 -1.0627327 -0.7801601 0.5475632 -1.3294087 -0.7152224 -1.1264630 -0.6925240 -0.2597583 -1.1976970 -1.0223161 0.1385298 -1.1904870 0.4490708
-1.2325515 -0.4823565 0.2167061 -1.4099427 0.9789693 -0.7715621 -0.3745509 -1.3359754 -0.1482061 -0.1491599 0.9697492 -0.8921119 -2.7908377 -0.3095323 -0.4715377 -0.3897144 0.0654548 0.4876331 -1.6296911 -0.1201921 0.6173528 1.3963909 -0.7449377 -0.8640731 -0.8421176 -0.5807841 0.1661880
-1.9100361 -0.4376799 2.0276024 -0.7917905 0.0569770 0.1794227 -0.8652875 0.1949492 0.1512342 0.3177846 2.2356945 -0.2619694 -1.1137334 -0.1097616 0.9665042 0.7615996 -0.3363022 0.4177469 -0.7799253 -0.6889539 1.0962325 1.4527225 0.4346195 -0.1591724 0.9912667 -0.3870764 -0.0358712
-1.7745392 0.5898814 -0.0503877 -0.5698897 -0.2563213 0.4171689 0.6770274 3.1474467 2.6964768 2.6058124 0.5229450 1.3483948 1.3532329 0.6094128 1.4138950 3.0542162 0.8689688 0.4876331 0.4062959 -0.1201921 1.5187734 1.5653857 -0.6734494 -0.3246083 4.2174545 -0.8951622 2.9546045
-0.7151996 -0.1249438 1.3011071 0.2067631 1.8741073 0.0605496 -0.5147614 1.3249174 2.0975962 1.5785346 0.2250755 0.1581256 1.7211139 0.4895504 -0.1519728 0.1008454 0.5475632 0.2080882 -1.2846086 -0.1639430 0.7159457 1.5203204 -0.0479266 -1.2381020 1.7729421 -1.2127158 0.3278353
0.0608283 -0.5717096 1.5682010 -0.5698897 3.1004465 -0.2564453 -1.2859188 -0.8621178 0.6003946 -0.6161044 0.8952818 -0.9621277 -0.4212516 0.1898944 0.5191134 0.6214396 -0.4970050 0.7322349 -1.0603049 -0.9952103 0.6877763 1.4752552 -0.9355732 -0.8784588 -0.3589000 -1.1650827 0.1661880
-1.3926842 0.9249558 1.6590129 0.6822648 1.7666908 -0.4149428 -1.1457084 0.0855974 0.4506745 0.5045623 0.9325155 -1.2421910 -0.7025724 -0.1097616 0.9025912 1.0018738 -1.2201676 2.3046749 -0.9740343 -0.9077085 1.4483500 1.7118479 -0.4589844 -0.6986372 -0.6857825 -1.1650827 -1.7735800
-1.1463261 -0.2366353 0.5158512 0.1750630 -0.1578561 -0.0979479 -0.4446562 -0.7163155 0.4506745 -0.6161044 0.5974124 -1.0321435 -0.0750108 0.4296192 0.4871569 0.6214396 0.0654548 -0.4208878 -0.9912884 -0.4264485 0.9413009 1.4752552 -0.6198331 -1.2524877 0.7638702 -1.1714338 -0.9653433
-0.7028817 -0.6610628 0.4517487 -0.6174399 -0.7217931 -1.0489327 -0.3044457 -0.2789084 0.6003946 0.1310068 0.5974124 -0.9621277 -0.7242124 1.0489083 0.7108523 1.1220109 0.2261576 0.3129175 -0.4822916 -1.1702139 0.3215742 0.4725526 -1.0785498 -0.7489873 -0.4583860 -1.2539977 -1.2482262
-1.4912274 -1.7779773 0.6173469 0.4762141 -0.1847102 -0.4149428 0.6770274 1.5071703 2.6964768 1.8120068 1.0069829 -0.5420327 -0.2156711 0.1299632 -0.2638205 0.2109711 1.7528342 0.2954460 -0.8877636 0.0548115 -0.2418137 1.1485318 -0.9772747 -0.7058301 -0.9700281 -0.8919866 -2.1776983
-0.7767891 -0.8844457 0.9058083 -0.1419382 -0.6322793 0.1794227 -0.6549718 -0.2424578 1.4987156 0.4111735 1.5654882 -0.8220960 -0.6809323 0.3097568 -0.1200164 0.4212111 0.3065090 0.5400478 -1.2673544 -0.2951957 0.2370660 0.8105422 0.0235617 -1.4538879 -1.0695141 -1.2857531 -0.0762830
-1.1832798 -1.1078286 1.3972609 -0.9502911 1.7577394 -0.6923134 -0.7250771 0.0491469 0.7501148 0.4578679 0.7463471 -1.3822227 -2.4554169 -0.4493718 -0.3117553 -0.2795888 0.4672118 -0.4208878 -1.0603049 -0.7327048 -0.0587126 1.5991847 -1.3347163 -1.0582804 -1.3821843 -0.5299755 0.2065998
-0.1732119 0.6792346 0.0885011 -1.6001434 -0.8829179 0.0209252 -0.5848666 -0.1695567 -0.4476464 -0.4760210 -0.9664024 1.5584423 -1.0704533 -0.3494865 -1.2544716 -0.7801601 -1.2201676 -1.1372216 -0.4132751 -0.8639576 -1.8615538 -1.9384402 -1.4181193 -0.4253084 0.1527421 -0.3711987 0.4894826
-0.1485760 -0.5940479 -0.3602166 -0.2370385 0.5851085 0.2586714 1.3780796 0.1220480 0.1512342 -0.8028821 -0.8547013 0.2981573 -1.0379932 0.1699173 -1.5900147 -0.8101943 -0.9791134 -1.3294087 0.1474840 -0.9514594 -1.6784528 -1.8483096 0.7682316 1.3369433 1.1049649 -0.6887523 -0.3187540
-0.2348014 -0.3706650 -0.5044472 1.4747677 -0.0235854 -0.1771966 2.3595528 0.1220480 1.3489954 -0.8962710 -1.0781034 -0.1219377 -1.0704533 0.0700320 -1.8296883 -0.9403429 -0.7380592 -1.3294087 0.2768900 -1.3014667 -1.7629609 -1.9609728 0.7205728 2.6100802 0.2380158 -0.5934863 0.8936010
-0.3702983 -0.2366353 0.2861505 -0.1419382 1.0863858 3.5078695 -0.3044457 -0.0237543 0.6003946 -0.7094933 -1.1525708 0.4381890 -0.0966508 1.0888624 -0.9508850 -0.8302172 -1.5415732 -1.3119372 -0.0250573 -0.7764558 -1.8615538 -1.9722392 -0.1730312 2.0706154 -0.0462298 -0.4664648 0.4490708
-0.6043384 -0.7950925 1.0179877 -1.0453914 -0.9813831 0.2586714 1.3780796 -0.4247108 -0.5973666 0.8781179 -0.6685329 -1.0321435 -0.9947131 -0.6890966 -0.4715377 -1.4509256 1.9135370 -0.5956034 0.1690517 -0.9077085 -1.5516905 -1.7807117 -0.2921784 0.2292422 -0.8989667 -0.3076880 -1.2482262
-0.4934773 -0.7504159 -0.2694047 0.4128138 0.1106853 0.2190471 0.0460804 -0.6069637 -0.2979263 -1.1297433 0.9325155 -0.4020010 -0.9730731 0.2698026 -1.0787109 -1.3708342 2.1545912 -1.1372216 0.8807844 -0.9952103 -1.4530976 -1.8145107 -1.3942899 -1.1445948 -0.9558158 -0.1647889 -0.3995777
-0.9246039 0.0090859 0.3075180 -0.9185910 2.1336974 1.3285293 0.6770274 0.6323562 0.4506745 1.0648957 1.0069829 -0.7520802 -1.1137334 1.6082662 -1.4621887 -1.5610513 1.3510772 -1.3818234 -0.5211134 -0.9077085 -1.8897232 -2.0961687 -0.3338799 -0.3749583 -0.3446877 -0.0854005 -0.1166948
-0.5797026 0.8132643 0.7562357 -0.1894883 2.8408564 1.0907831 -0.0240248 0.9968621 1.6484357 0.4578679 0.8208145 -0.2619694 -0.0533707 -1.1485692 -0.8070808 -1.4309028 2.1545912 -0.8576767 -0.0250573 -0.6014521 -1.2981659 -1.3300589 -0.2743063 0.6392355 -0.1599281 -0.7363854 1.1764838
0.6028160 0.1877922 1.5949104 0.2701633 1.1221913 2.2002654 -0.4446562 -0.6434143 0.0015140 -0.5227155 1.2303850 -0.8220960 -0.5402719 -0.1497158 -1.0787109 -1.5510399 1.7528342 -1.2420510 0.2768900 -0.6452030 -1.1150649 -0.8456070 0.9469524 -0.2311011 0.0532561 -0.5299755 1.6210140
-0.1978477 0.4111751 -0.1946184 -0.3321388 0.5582544 1.3681537 1.3780796 0.8875103 1.3489954 0.4111735 -1.1153371 0.0881098 0.3577904 -0.9687756 0.0397661 -1.4309028 1.3510772 -1.3643519 -0.0595655 -0.2951957 -0.6502699 -0.8230744 1.0660996 1.4951863 0.3943509 -0.4982202 0.8936010
-0.0869865 0.6702993 -0.3014559 -0.4906394 0.4239837 0.9322857 0.0460804 1.2155656 0.4506745 0.7847290 -1.4132066 -0.2619694 -0.1507509 -0.7690049 -1.2065369 -1.5310170 1.3510772 -1.4691812 -0.1975985 -0.8202067 -0.4249147 -0.7216775 1.0780143 1.6030792 0.2664403 -0.4664648 -1.1269907
0.4426833 -0.5180977 0.6493982 1.3162671 0.2001991 -0.5734403 0.3265013 -0.0602049 0.1512342 -0.0090766 -1.1525708 -0.7520802 -1.4058742 0.1499402 -1.4302323 -1.5310170 0.0654548 -1.6613683 0.2337547 -1.1264630 -0.1995596 -0.4287531 0.9529098 0.5888854 -0.3589000 0.1051316 -0.1571067
0.6397697 1.1706770 -0.0343621 -0.8551907 0.7462334 1.2492806 -0.1642353 1.2884668 1.1992753 -0.0090766 -1.4876739 -0.1919535 -0.4320717 -0.8489132 -1.1905586 -1.5109942 1.1100230 -1.8186123 -0.3054368 -0.2951957 -0.7770322 -0.8681397 0.8278052 1.7541294 -0.5720842 -0.7205077 0.3278353
0.7629487 0.1073744 0.4303812 1.1102164 2.3395791 2.5568847 0.7471326 -0.0602049 0.1512342 -0.7094933 -0.7802339 -0.5420327 -1.8819554 -0.9487985 -0.4715377 -1.2306742 0.8689688 -0.9974492 -0.2838692 -0.2076939 -0.7911169 -0.4850848 0.0533485 1.2002789 -0.5152351 -0.6252416 1.2168956
-0.9246039 -0.8397691 1.4880728 2.4416212 1.3817814 0.4964176 -2.0570763 -0.6069637 -0.2979263 -0.8962710 -0.0355603 0.8582840 -0.0750108 -0.9887526 -1.4621887 -1.2506971 -0.5773564 -0.7877905 1.3595865 -1.3452176 -0.8615403 -0.8456070 -0.3874961 -1.5186237 -0.3304755 0.3432968 -0.5208132
0.1963252 -1.0631520 1.7231154 1.8234689 1.1042886 1.0511588 -1.1457084 -0.7892166 0.4506745 -0.7094933 0.3740103 0.1581256 0.9853520 -0.9288214 -1.2704498 -1.4809599 0.5475632 -0.5082456 -0.4564104 -1.5639721 -1.3122506 -0.8343407 -1.9066228 -0.2598725 0.1527421 0.2639084 -1.8948155
1.0832142 -1.7333007 0.7295263 1.2845670 2.4201415 1.4870268 -0.1642353 -0.4976119 0.1512342 -1.2231322 -1.3015055 -1.3822227 -2.0983559 -1.0686609 -2.1013185 -1.6911999 0.3065090 -1.5914821 -0.0681926 -1.6514739 -1.8052150 -1.3187925 -0.5185580 -0.4468870 -1.2116369 -1.0539390 1.7826613
-0.1608939 -0.4153416 0.7081588 0.8090653 2.0352322 1.3285293 -0.8652875 0.4136527 0.6003946 -0.4760210 -0.5568318 -0.9621277 0.0115495 -0.2695782 -0.9508850 -1.3808456 0.8689688 -1.2769941 1.1180287 -1.8264776 -1.0587261 -0.9920692 -0.1730312 0.5313425 -0.4015369 -0.3870764 0.4894826
0.3934117 -1.7064947 0.6013213 1.3479672 0.8088930 3.3097477 -0.0240248 0.0491469 0.6003946 -0.8495766 -1.3387392 -0.5420327 -0.6376522 -0.8489132 -0.5833854 -1.2707200 0.7082660 -0.5956034 1.4501706 -1.7827267 -1.3967588 -0.8906723 -1.6027975 -0.9216160 -0.3162632 -0.3076880 -0.1571067
0.0977820 0.6792346 1.8673461 1.4272175 1.3996841 0.7737882 -1.0054980 -0.0237543 0.6003946 -0.8495766 -0.1844950 0.9282998 -0.6701123 -0.2695782 -1.4142540 -0.6400001 -0.1755994 -0.7877905 1.8728968 -1.6952249 -1.8052150 -1.9384402 -0.8640849 0.0062634 -1.0979386 -0.6252416 0.1661880
0.6151339 0.5452049 1.0607227 0.4920641 0.7014765 1.5662755 -0.5147614 0.9239609 1.3489954 0.9248124 -0.4078971 1.6284582 -0.2914113 0.8491376 -1.4302323 -0.4597944 -1.1398162 -0.5956034 1.5278142 -1.6077230 -1.8474691 -1.9046412 -1.5074797 -1.1805591 -1.5953685 -0.7840184 -0.1166948
-0.2594372 -0.8397691 1.7177735 1.7759188 0.2986643 -0.3753184 -0.6549718 0.4136527 0.7501148 0.0843123 -0.9291687 0.8582840 0.4551706 1.2686560 -1.3024063 -0.6700344 -0.9791134 -0.5781318 2.4767912 -2.0889830 -1.6080293 -1.7807117 -1.0785498 1.1930860 -1.2400615 -0.8475291 -0.7632842
0.1347357 -0.0355907 0.5211931 0.4128138 -0.3905920 -0.2168210 1.3079744 1.3978186 1.7981559 2.4190346 -0.1472613 1.1383473 -0.8215927 -0.1696928 -0.1519728 -0.7501258 -0.8184106 -0.0539851 0.8807844 -1.5202212 -1.8052150 -1.9497065 -0.1432444 1.2434360 0.1101053 -1.0221836 0.6107181
0.2825505 -0.6387245 1.8673461 1.2687169 0.8626013 -0.4545672 -0.7250771 -0.3153590 -0.2979263 0.3177846 -0.3706634 -0.1219377 -0.1507509 -0.5692342 -0.7911025 -1.2006400 1.9938884 0.4876331 2.3560123 -1.7389758 -1.5516905 -1.7581791 1.1852468 1.3153647 -1.2400615 -0.2282996 -1.0461670
-0.5181131 -1.5769327 0.9111501 1.4589176 -0.9366262 -0.4941915 -0.6549718 -0.9714696 0.1512342 -0.0557710 1.0814503 0.2281415 0.0331895 0.7292752 -1.3024063 -1.4509256 1.3510772 -0.3335300 1.0964610 -1.6514739 -1.4953517 -1.8483096 -0.7687671 1.3801005 -1.4106088 -0.3394434 -0.3995777
0.2086431 -0.9291223 2.3320894 0.4445140 2.5544123 2.2795141 1.9389214 -0.1695567 0.7501148 1.5318402 0.8952818 -0.4720169 -1.3409540 0.4096421 -0.8869720 -1.4008685 1.9938884 -0.0714567 1.2258670 -1.5639721 -1.5939446 -1.8821086 0.4107901 1.7037793 -0.4868106 -0.0695228 -1.0461670
1.0339426 -0.2589736 1.9902093 1.2053167 1.5966145 0.6152907 -0.7951823 0.0491469 0.0015140 -0.3826321 1.1186840 -0.7520802 0.4010705 -1.1485692 -0.7911025 -1.2006400 0.9493202 -0.0539851 1.7046690 -1.6952249 -1.3685894 -1.1948630 0.2856855 1.2218574 -1.1690000 -0.8475291 0.8936010
-0.6782458 0.0314242 1.0820902 0.3652637 0.6209140 1.2889050 2.2193423 0.9968621 2.2473163 1.5785346 1.4910208 -0.1919535 0.3036902 -0.2096470 -0.6313201 -1.4509256 2.1545912 -0.7877905 1.0533257 -1.2577158 -1.2418272 -0.9019386 0.8278052 0.9557215 0.1527421 0.4226852 0.3278353
1.6498377 1.7067959 0.6333725 1.1577665 -0.5875224 2.7153822 0.8172379 1.2155656 1.6484357 1.9987846 0.0016734 -0.1219377 1.0502721 -0.2895553 0.8067217 -0.7200915 1.3510772 1.9377723 3.4257682 -1.6952249 -0.9178791 -0.8230744 1.1971615 0.2292422 -0.2594141 -0.2759327 2.9141926
0.5904981 0.7462495 0.9004664 2.7744724 -0.5964737 1.8040217 0.7471326 0.9968621 0.8998349 1.6252291 0.0389071 -0.7520802 1.2450326 -0.5692342 0.4871569 -0.9303315 1.2707258 1.2214385 2.8865767 -1.6952249 -1.1714037 -1.0033355 1.3580102 2.5021872 0.1243175 -0.4029541 2.0251323
-0.7891070 4.1640078 1.6483291 0.3969638 1.3370245 0.2982958 0.1161856 0.0491469 0.4506745 1.4384513 1.2676187 -0.8220960 0.3145102 -0.7090737 0.0078096 -1.1105371 1.1100230 -0.9625061 1.1180287 -1.7389758 -1.4530976 -1.1047324 0.2856855 -0.6914443 -1.2400615 -0.7205077 0.6915418
0.8491740 -0.2142970 -0.5738916 -1.5208931 0.8267958 -0.6526890 0.3966065 0.6323562 0.1512342 1.2049790 -0.8919350 0.5082048 0.3145102 -0.8489132 -0.7431678 -1.4709485 1.1100230 -1.3818234 0.3545335 0.0110606 -1.1150649 -0.4174868 0.2976002 -0.5691657 0.4796246 -0.2124219 0.8127773
-0.1855298 0.1877922 0.0671336 -0.3321388 0.8357472 0.0209252 0.1862908 0.7781586 0.7501148 0.5045623 -1.1898045 0.4381890 -0.5078119 -0.3095323 -1.0307762 -1.4309028 1.9135370 -1.1022785 0.2251276 -0.3826976 -0.7066087 -0.2372257 0.5716388 0.5888854 -0.2452018 -0.5617309 -0.3187540
-0.0500328 -0.8844457 0.6547400 1.0468161 0.9968720 1.5662755 -1.3560241 -0.0602049 -0.2979263 -0.8028821 -1.5993750 0.4381890 -1.1678336 -1.0486838 -1.4462105 -1.3307885 0.3065090 -1.1372216 0.0957216 -1.2139649 -1.2136578 -1.1047324 0.7861037 -0.4684656 -0.4157491 -0.2282996 0.5298945
0.9600352 -0.0802672 0.9538852 2.8537227 0.3792268 1.2492806 -1.2158136 -0.2424578 0.7501148 -0.7281710 0.3740103 -0.6820644 0.5633709 -0.8888673 -1.5101235 -1.3508114 0.3868604 -0.9799776 1.9505403 -1.1264630 -1.3122506 -1.0484008 0.0712206 -0.3965369 -0.6147211 -0.4188318 -0.0358712
0.8984457 -0.2813119 0.3716206 1.4430676 1.8114477 0.7341638 0.0460804 -0.3882602 0.8998349 -0.8962710 0.6718797 -0.8220960 -0.0533707 -0.5892113 -1.6219712 -1.5610513 1.2707258 -0.7703189 0.6737349 -0.7764558 -1.2136578 -0.9357376 0.5120652 -0.4468870 0.4796246 -0.7205077 0.8531891
0.5535444 -0.1696204 -0.1465415 -0.1419382 1.2206565 0.8530369 -0.1642353 0.8510598 1.0495551 0.0843123 -0.8174676 0.7882682 0.2279500 -1.1086150 -0.9508850 -1.1105371 0.5475632 -0.2287007 2.4250288 -0.4701994 -1.4812670 -1.5553853 0.9290803 0.0062634 -0.6431456 -0.1647889 -0.1166948
-0.2224835 -1.2865349 1.8299530 2.9488230 0.9252610 0.1794227 -2.2673920 -0.2424578 0.0015140 -0.6627988 0.1133745 -0.8220960 -0.6160121 -0.9887526 -1.3024063 -1.3708342 0.3065090 -1.0848070 2.2438605 -1.0389612 -1.2136578 -1.2173956 -0.2147327 -1.0295090 -1.1832123 -0.1965443 0.8936010
0.7136771 0.8579409 1.8299530 1.6491183 0.2181019 0.2586714 -2.2673920 1.1791150 1.4987156 0.4578679 0.0761408 0.3681732 0.0440096 -0.5093030 -1.1905586 -1.1906285 0.2261576 -0.0889283 1.5536954 -0.9514594 -1.1432343 -1.1497977 0.0533485 0.8262499 -0.3731123 0.0098656 0.7723655
0.4919549 1.2823684 2.7861489 2.3465208 2.0262808 1.6851486 -1.7065502 1.7987750 1.6484357 1.9053957 0.5229450 0.8582840 0.2387701 -0.7290507 -0.5034942 -1.0704914 -0.7380592 -0.8402052 1.4846789 -1.2577158 -0.9742179 -0.9357376 -0.6019611 -0.2311011 -0.3304755 -0.3711987 0.2874235
-0.9861934 -0.7057394 1.1568765 1.9502694 0.6209140 -0.6923134 -1.5663397 -0.1695567 -0.1482061 -0.3359377 0.3367766 -0.2619694 -1.0812733 -0.1497158 -1.6699059 -1.5410285 0.3065090 -1.5041243 0.1906193 -1.3014667 -1.1009802 -0.2034267 -0.5423875 0.8766000 -0.2452018 -0.7522631 -1.3290498
-0.2840730 -0.7057394 1.3812353 2.1246200 0.0480257 -0.4941915 -2.1972867 -0.3153590 0.0015140 -0.2892432 -0.3334297 -0.9621277 0.3145102 -1.0087297 -1.4462105 -1.5210056 0.9493202 -1.6613683 2.0885733 -1.6952249 -1.3826741 -1.4539884 -1.6325843 -1.1014376 -1.2116369 -0.8792845 1.7018376
1.4281155 -0.6521275 1.7391411 2.5842717 0.1554422 0.8134126 -1.4261293 0.4136527 0.1512342 -0.3826321 -0.1844950 -0.6120485 -0.4969918 -0.9687756 -0.9828415 -1.3307885 0.6279146 -0.6130749 2.0023027 -1.4764703 -1.2699965 -1.2173956 0.0712206 1.5886935 -0.6431456 -0.2759327 1.0148365
0.8738098 -0.1472821 1.5094403 1.3955174 2.9661758 3.3097477 -1.0756032 0.3043010 0.3009543 1.4384513 -0.2217287 -0.3319852 -0.7242124 -1.0287068 -0.9828415 -1.4208913 1.2707258 -0.9275630 1.1395963 -1.3889685 -1.2277425 -1.1723304 0.6490844 2.7899018 -0.0462298 -0.0218898 0.4086590
0.4919549 -0.3036501 2.1664912 1.4906177 1.4086355 1.3285293 -1.2859188 0.4136527 1.0495551 -0.1958543 0.2250755 0.1581256 1.3532329 -0.9687756 -0.7911025 -1.2807314 0.5475632 -0.3160585 0.9670551 -1.1264630 -1.4812670 -1.1835967 -0.7330230 0.8837928 -0.2167772 0.0098656 -0.5612250
0.3318221 -1.1301669 0.9752527 1.3321172 1.7398366 2.7946309 -1.0054980 -0.3882602 0.1512342 -1.1297433 -0.6312992 1.4184107 1.7427539 -1.1485692 -1.1266456 -1.3407999 0.5475632 -0.4208878 2.2179793 -1.6077230 -1.4812670 -1.1723304 -0.9177011 0.1213493 -1.1974246 0.2797861 0.6511300
0.2086431 -0.8174308 1.5094403 2.9646731 0.2270533 2.6757578 -0.9353927 0.0126963 0.1512342 -0.8962710 -0.5940655 1.4184107 1.8293141 -1.1485692 -1.0307762 -1.3508114 1.3510772 -0.2287007 1.8297614 -1.5639721 -1.3967588 -1.0484008 1.3997118 2.7179731 -1.1547878 0.2956638 -2.3393456
1.3911617 0.8579409 2.1504656 1.8710191 1.5787118 2.0417679 -0.6549718 1.3613680 1.4987156 0.4578679 -0.9291687 -0.2619694 -0.5402719 -0.5692342 -0.3916465 -1.2707200 1.5921314 -0.4208878 1.7866261 -1.5202212 -1.4249282 -1.2511946 1.4712001 0.8981786 -0.6147211 -0.5934863 0.0853643


Correlation matrix


Let’s generate the correlation matrix (27 rows and 27 columns)

dfa_cor = data.frame(cor(dfa))
#datatable(dfa_cor,extensions = 'FixedColumns',options = list( scrollX = TRUE, pageLength= 10)) %>%
 # formatStyle(1:27,backgroundColor = styleEqual(c(1:20), 'yellow'))

kable(dfa_cor)  %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
  scroll_box( height = "600px", width = '910px')
Alcohol Sugar.free.extract Fixed.acidity Tartaric.acid Malic.acid Uronic.acids pH Ash Alcalinity.of.ash Potassium Calcium Magnesium Phosphate Chloride Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity Hue OD280.OD315.of.diluted.wines OD280.OD315.of.flavonoids Glycerol X2.3.butanediol Total.nitrogen Proline Methanol
Alcohol 1.0000000 0.4124031 -0.0400770 -0.0195719 0.0943969 0.1072329 0.0080560 0.2115446 -0.3102351 0.0005526 -0.5035553 0.2707982 0.3788148 -0.0421810 0.2891011 0.2368149 -0.1559295 0.1366979 0.5463642 -0.0718353 0.0723432 -0.0878576 0.5074500 0.4074027 0.1607410 0.6437200 0.0898249
Sugar.free.extract 0.4124031 1.0000000 0.0719314 -0.2400749 0.1484639 0.0187298 -0.0202150 0.4945495 -0.0897664 0.3384123 -0.0706575 0.2209219 0.2889401 0.0870562 0.4061156 0.3680170 -0.1184863 0.2523949 0.1906822 0.0693538 0.2403449 0.1216317 0.5405946 0.1888727 0.2040697 0.3786292 0.1605151
Fixed.acidity -0.0400770 0.0719314 1.0000000 0.5675909 0.6877515 0.4355117 -0.5569699 0.0779802 0.2523674 0.1202581 0.2198174 -0.0732503 -0.1621801 -0.2209237 -0.3272809 -0.4425712 0.3384899 -0.1769754 0.3688295 -0.6675706 -0.4667117 -0.3368467 -0.0257136 0.1332041 -0.2860797 -0.3335044 0.0187283
Tartaric.acid -0.0195719 -0.2400749 0.5675909 1.0000000 0.2839947 0.3666198 -0.4543328 -0.1131098 0.1612928 -0.1506238 0.0854281 -0.0509865 0.0129849 -0.2071491 -0.4184790 -0.5143300 0.2504155 -0.1916546 0.4793438 -0.4826248 -0.5115558 -0.4453052 -0.1356825 0.1464582 -0.1675758 -0.2295639 0.0373755
Malic.acid 0.0943969 0.1484639 0.6877515 0.2839947 1.0000000 0.4819607 -0.3267622 0.1640455 0.2885004 0.0997244 0.0551196 -0.0545751 -0.1990815 -0.2423567 -0.3351670 -0.4110066 0.2929771 -0.2207462 0.2489853 -0.5613720 -0.3687104 -0.2767655 0.0558314 0.1251496 -0.1843969 -0.1920106 0.0548492
Uronic.acids 0.1072329 0.0187298 0.4355117 0.3666198 0.4819607 1.0000000 -0.0298627 0.2534374 0.3697245 0.1008272 -0.0258082 0.0991191 0.0568225 -0.2387192 -0.2908666 -0.4634240 0.3367068 -0.2397020 0.3564417 -0.4395001 -0.4785483 -0.4327349 0.0304916 0.2835991 -0.1350174 -0.1226900 0.1326399
pH 0.0080560 -0.0202150 -0.5569699 -0.4543328 -0.3267622 -0.0298627 1.0000000 0.3211003 0.2346881 0.3369130 -0.1353547 0.0502152 -0.0238014 0.0298760 0.1543275 0.1472205 0.0091876 -0.0260850 -0.1669499 0.2250022 0.1862118 0.1432470 0.0893005 0.1274578 0.1633942 0.1562395 -0.0497973
Ash 0.2115446 0.4945495 0.0779802 -0.1131098 0.1640455 0.2534374 0.3211003 1.0000000 0.4433672 0.6807299 -0.1149148 0.2865867 0.2491846 -0.0836635 0.1289795 0.1150773 0.1862304 0.0096519 0.2588873 -0.0747249 0.0039112 -0.0147851 0.3044197 0.1605515 0.1822634 0.2236263 0.0781793
Alcalinity.of.ash -0.3102351 -0.0897664 0.2523674 0.1612928 0.2885004 0.3697245 0.2346881 0.4433672 1.0000000 0.3954162 0.2064289 -0.0833331 -0.2031736 -0.1061559 -0.3211133 -0.3513699 0.3619217 -0.1973268 0.0187320 -0.2739343 -0.2767685 -0.1535432 -0.1513507 -0.0471761 -0.1320424 -0.4405969 0.0444520
Potassium 0.0005526 0.3384123 0.1202581 -0.1506238 0.0997244 0.1008272 0.3369130 0.6807299 0.3954162 1.0000000 0.0514741 0.0774548 0.0431303 -0.0995655 0.1106805 0.1118491 0.2501900 0.1206613 0.1028338 -0.0404874 0.0851523 0.1286263 0.2419732 0.1162352 0.0782048 0.0587181 0.1894566
Calcium -0.5035553 -0.0706575 0.2198174 0.0854281 0.0551196 -0.0258082 -0.1353547 -0.1149148 0.2064289 0.0514741 1.0000000 -0.0070412 -0.1917079 0.0288365 -0.0889970 -0.0821943 0.1154874 0.1967054 -0.3327608 -0.0083293 0.0297866 0.1370642 -0.2333020 -0.2853701 -0.1399953 -0.3463332 -0.1056329
Magnesium 0.2707982 0.2209219 -0.0732503 -0.0509865 -0.0545751 0.0991191 0.0502152 0.2865867 -0.0833331 0.0774548 -0.0070412 1.0000000 0.4132108 0.0627266 0.2144012 0.1957838 -0.2562940 0.2364406 0.1999500 0.0554219 0.0660039 -0.0430884 0.1096198 0.2021825 0.1842797 0.3933508 -0.1282879
Phosphate 0.3788148 0.2889401 -0.1621801 0.0129849 -0.1990815 0.0568225 -0.0238014 0.2491846 -0.2031736 0.0431303 -0.1917079 0.4132108 1.0000000 0.0970560 0.4530556 0.3952801 -0.2074820 0.3673048 0.3063964 0.2002422 0.1915034 0.0774151 0.2403397 0.1419035 0.2482478 0.5253342 0.0163679
Chloride -0.0421810 0.0870562 -0.2209237 -0.2071491 -0.2423567 -0.2387192 0.0298760 -0.0836635 -0.1061559 -0.0995655 0.0288365 0.0627266 0.0970560 1.0000000 0.1883902 0.2641855 -0.2071262 0.1478057 -0.1303209 0.1869861 0.1832014 0.1221586 0.0399425 -0.0464040 0.0453626 0.0882419 0.0727942
Total.phenols 0.2891011 0.4061156 -0.3272809 -0.4184790 -0.3351670 -0.2908666 0.1543275 0.1289795 -0.3211133 0.1106805 -0.0889970 0.2144012 0.4530556 0.1883902 1.0000000 0.8645635 -0.4499353 0.6124131 -0.0551364 0.4335018 0.6999494 0.5966330 0.2499350 0.0310428 0.2813534 0.4981149 -0.0060915
Flavanoids 0.2368149 0.3680170 -0.4425712 -0.5143300 -0.4110066 -0.4634240 0.1472205 0.1150773 -0.3513699 0.1118491 -0.0821943 0.1957838 0.3952801 0.2641855 0.8645635 1.0000000 -0.5378996 0.6526918 -0.1723794 0.5433903 0.7871939 0.6785504 0.2113079 -0.0784984 0.3346486 0.4941931 -0.0108081
Nonflavanoid.phenols -0.1559295 -0.1184863 0.3384899 0.2504155 0.2929771 0.3367068 0.0091876 0.1862304 0.3619217 0.2501900 0.1154874 -0.2562940 -0.2074820 -0.2071262 -0.4499353 -0.5378996 1.0000000 -0.3658451 0.1390570 -0.2626388 -0.5032696 -0.3991033 -0.0204900 0.0649589 -0.0695854 -0.3113852 0.0529947
Proanthocyanins 0.1366979 0.2523949 -0.1769754 -0.1916546 -0.2207462 -0.2397020 -0.0260850 0.0096519 -0.1973268 0.1206613 0.1967054 0.2364406 0.3673048 0.1478057 0.6124131 0.6526918 -0.3658451 1.0000000 -0.0252499 0.2955280 0.5190671 0.4673242 0.1559191 0.0110107 0.0385652 0.3304167 -0.0114812
Color.intensity 0.5463642 0.1906822 0.3688295 0.4793438 0.2489853 0.3564417 -0.1669499 0.2588873 0.0187320 0.1028338 -0.3327608 0.1999500 0.3063964 -0.1303209 -0.0551364 -0.1723794 0.1390570 -0.0252499 1.0000000 -0.5219100 -0.4288149 -0.5067624 0.2945091 0.3831965 -0.0622228 0.3161001 0.1906663
Hue -0.0718353 0.0693538 -0.6675706 -0.4826248 -0.5613720 -0.4395001 0.2250022 -0.0747249 -0.2739343 -0.0404874 -0.0083293 0.0554219 0.2002422 0.1869861 0.4335018 0.5433903 -0.2626388 0.2955280 -0.5219100 1.0000000 0.5653701 0.4711945 0.0339406 -0.2026795 0.2473513 0.2362272 -0.0037564
OD280.OD315.of.diluted.wines 0.0723432 0.2403449 -0.4667117 -0.5115558 -0.3687104 -0.4785483 0.1862118 0.0039112 -0.2767685 0.0851523 0.0297866 0.0660039 0.1915034 0.1832014 0.6999494 0.7871939 -0.5032696 0.5190671 -0.4288149 0.5653701 1.0000000 0.9138155 0.1725603 -0.1817294 0.2778624 0.3127611 -0.0660986
OD280.OD315.of.flavonoids -0.0878576 0.1216317 -0.3368467 -0.4453052 -0.2767655 -0.4327349 0.1432470 -0.0147851 -0.1535432 0.1286263 0.1370642 -0.0430884 0.0774151 0.1221586 0.5966330 0.6785504 -0.3991033 0.4673242 -0.5067624 0.4711945 0.9138155 1.0000000 0.0451278 -0.2645117 0.1834899 0.1494997 -0.0827086
Glycerol 0.5074500 0.5405946 -0.0257136 -0.1356825 0.0558314 0.0304916 0.0893005 0.3044197 -0.1513507 0.2419732 -0.2333020 0.1096198 0.2403397 0.0399425 0.2499350 0.2113079 -0.0204900 0.1559191 0.2945091 0.0339406 0.1725603 0.0451278 1.0000000 0.4489515 0.1633914 0.4150893 0.1868202
X2.3.butanediol 0.4074027 0.1888727 0.1332041 0.1464582 0.1251496 0.2835991 0.1274578 0.1605515 -0.0471761 0.1162352 -0.2853701 0.2021825 0.1419035 -0.0464040 0.0310428 -0.0784984 0.0649589 0.0110107 0.3831965 -0.2026795 -0.1817294 -0.2645117 0.4489515 1.0000000 0.0507209 0.2425320 0.0424956
Total.nitrogen 0.1607410 0.2040697 -0.2860797 -0.1675758 -0.1843969 -0.1350174 0.1633942 0.1822634 -0.1320424 0.0782048 -0.1399953 0.1842797 0.2482478 0.0453626 0.2813534 0.3346486 -0.0695854 0.0385652 -0.0622228 0.2473513 0.2778624 0.1834899 0.1633914 0.0507209 1.0000000 0.3847329 0.0248949
Proline 0.6437200 0.3786292 -0.3335044 -0.2295639 -0.1920106 -0.1226900 0.1562395 0.2236263 -0.4405969 0.0587181 -0.3463332 0.3933508 0.5253342 0.0882419 0.4981149 0.4941931 -0.3113852 0.3304167 0.3161001 0.2362272 0.3127611 0.1494997 0.4150893 0.2425320 0.3847329 1.0000000 -0.0282840
Methanol 0.0898249 0.1605151 0.0187283 0.0373755 0.0548492 0.1326399 -0.0497973 0.0781793 0.0444520 0.1894566 -0.1056329 -0.1282879 0.0163679 0.0727942 -0.0060915 -0.0108081 0.0529947 -0.0114812 0.1906663 -0.0037564 -0.0660986 -0.0827086 0.1868202 0.0424956 0.0248949 -0.0282840 1.0000000

Eigenvalues


Find eigenvalues of the correlation matrix,i.e., given the matrix \({\bf C}\) finding all the scalars \(\lambda\) and vectors \({\bf v}\) for which

\[ {\bf Cv} = {\bf \lambda v} \]


\({\bf C}\) is a simmetric matrix, so his eigenvalues will belong to \(\mathbb{R}\)


autovalori = eigen(dfa_cor)
autovalori_df = data.frame('PC'= c(1:length(autovalori$values)), 'Eigenvalues' = autovalori$values )

kable(autovalori_df)  %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
 scroll_box( height = "600px")
PC Eigenvalues
1 6.8317794
2 4.2515407
3 2.5280146
4 1.9778221
5 1.3932847
6 1.1251778
7 1.0024894
8 0.9500365
9 0.8529229
10 0.7537384
11 0.7253604
12 0.6385046
13 0.5406406
14 0.4784583
15 0.4391382
16 0.3789690
17 0.3399381
18 0.3200851
19 0.2755318
20 0.2431034
21 0.2144411
22 0.2000665
23 0.1654097
24 0.1323651
25 0.1093742
26 0.0813498
27 0.0504575


Scree plot


You can repesent eigenvalues in relative terms as well


pca = prcomp(dfa)
var = pca$sdev^2
pca_var = round(var/sum(var)*100, 2)

pc = pca(dfa, scale = F)

a = c(1:length(autovalori$values))
pc_names = c()

for (i in a) {
  pc_names = append(pc_names, paste('PC',i,sep ='' ))
}


autovalori_df = data.frame('PC' = c(1:length(autovalori$values)),'Eigenvalues' = pca_var )
autovalori_df1 = autovalori_df

rownames(autovalori_df) = pc_names
autovalori_df1[2] = lapply(autovalori_df1[2], paste0, '%')

kable(autovalori_df1)  %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
  scroll_box( height = "600px")
PC Eigenvalues
1 25.3%
2 15.75%
3 9.36%
4 7.33%
5 5.16%
6 4.17%
7 3.71%
8 3.52%
9 3.16%
10 2.79%
11 2.69%
12 2.36%
13 2%
14 1.77%
15 1.63%
16 1.4%
17 1.26%
18 1.19%
19 1.02%
20 0.9%
21 0.79%
22 0.74%
23 0.61%
24 0.49%
25 0.41%
26 0.3%
27 0.19%


autovalori_df2 = autovalori_df[1:9,]

p = ggplot(autovalori_df, aes(y=Eigenvalues,x = reorder(PC, -Eigenvalues)))+ 
  geom_col(width = 0.8, fill = 'cornflowerblue')+ 
  geom_line(aes(x=PC))+
  geom_point()+
  theme_classic()+
  geom_text(label = autovalori_df1$Eigenvalues, size = 3, nudge_y = 1.5, nudge_x = 0.6, angle = 30)+
  ylim(0,27)+
  labs(x='PC',y='Explained variance (%)')+
  theme(axis.text.x = element_text(size = 9, angle = 0))+
  ggtitle('Scree Plot')

ggplotly(p)


Loadings

We talk before about eigenvectors, in PCA they’re called loadings. For the first two principal components loading vectors are

loadingdf = data.frame(autovalori$vectors[,1:2])

colnames(loadingdf) = c('V1', 'V2')
loadingdf$Variable = colnames(df[-1])

kable(loadingdf)  %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
 scroll_box( height = "500px")
V1 V2 Variable
0.0947178 -0.3605457 Alcohol
0.1305410 -0.2789443 Sugar.free.extract
-0.2572863 -0.1233457 Fixed.acidity
-0.2410748 -0.0847243 Tartaric.acid
-0.2178324 -0.1480722 Malic.acid
-0.2101676 -0.2022898 Uronic.acids
0.1112612 -0.0026499 pH
0.0224119 -0.2757054 Ash
-0.1699383 0.0046834 Alcalinity.of.ash
0.0206117 -0.1636632 Potassium
-0.0491952 0.1995560 Calcium
0.0940340 -0.1974412 Magnesium
0.1588299 -0.2366248 Phosphate
0.1153329 0.0555492 Chloride
0.3126062 -0.0906483 Total.phenols
0.3462961 -0.0310953 Flavanoids
-0.2233480 -0.0340345 Nonflavanoid.phenols
0.2278198 -0.0454079 Proanthocyanins
-0.1133362 -0.3693302 Color.intensity
0.2662477 0.1508639 Hue
0.3246313 0.0866188 OD280.OD315.of.diluted.wines
0.2716018 0.1477125 OD280.OD315.of.flavonoids
0.1008240 -0.2996720 Glycerol
-0.0285027 -0.2892599 2.3.butanediol
0.1510805 -0.0892620 Total.nitrogen
0.2228657 -0.2727261 Proline
-0.0169842 -0.0976458 Methanol
loadings = as.matrix(loadingdf[,1:2])


Scores


Dot product between each loading vector \({\bf v}\) and each row \(\bf{x}\) of the dataset gives the so-called score vectors \(\bf{t}\). For the first PC score vector will be


\[ {\bf t_1} = PC1 = { \bf v1 \cdot X} \] For \(m\) variables  


\[ PC_{1,m} = v_{1,1}x_1+v_{1,2}x_2+...+v_{1,m}x_m \]


Or, in scalar notation


\[ {\bf PC1_i} = || {\bf v1} ||*|| {\bf x_i} ||*\cos\theta \qquad \qquad \textrm{con} \quad \theta \in [0,\pi] \]




For \(PC1\) and \(PC2\) score vectors are


scoredf = as.matrix(dfa) %*% loadings

pca_df = data.frame(scoredf)
colnames(pca_df) = c('PC1','PC2')
pca_df$Type = df$type


kable(pca_df)  %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
 scroll_box( height = "600px")
PC1 PC2 Type
3.6308600 -0.6292087 Barolo
2.4400531 0.3574711 Barolo
2.9604247 -2.1851389 Barolo
4.1730598 -3.8371757 Barolo
1.3808962 -1.5983210 Barolo
3.1071849 -2.8943718 Barolo
2.9821856 -1.3610763 Barolo
3.0215099 -2.4866169 Barolo
3.1054514 -1.6262975 Barolo
3.4380875 -1.5870281 Barolo
3.7167079 -1.6407545 Barolo
2.2156140 -1.9559817 Barolo
3.1093151 -1.8686257 Barolo
3.1033252 -3.0104960 Barolo
4.3312544 -3.3834754 Barolo
2.7461945 -1.6536923 Barolo
2.7388679 -2.4480227 Barolo
2.2908597 -1.5470332 Barolo
3.3815226 -2.8328371 Barolo
2.3994991 -1.2343417 Barolo
3.1369044 -0.9624110 Barolo
1.4898105 -0.7279734 Barolo
2.7595049 -0.4237672 Barolo
2.4550198 0.8141001 Barolo
2.2989926 -0.1393205 Barolo
2.1381058 -2.0901235 Barolo
2.5831589 -1.2601220 Barolo
1.6179669 -0.2181538 Barolo
3.2716582 -1.3456544 Barolo
2.8389313 -0.3431892 Barolo
3.0493534 -2.0541357 Barolo
4.5437015 -1.3312017 Barolo
2.6637058 -1.5407107 Barolo
2.4543365 -1.8096604 Barolo
2.2961557 -0.8516623 Barolo
2.7553028 0.5545296 Barolo
2.1705141 -1.6150722 Barolo
1.3692965 -0.0587028 Barolo
1.5903138 0.4884558 Barolo
2.0673947 -2.7657933 Barolo
2.4894792 -0.7831143 Barolo
0.5674966 -0.0561462 Barolo
3.4274759 -1.4377863 Barolo
0.4706982 0.0417069 Barolo
2.2770015 -0.8318321 Barolo
1.3278129 -2.0080217 Barolo
2.7108450 -1.6829857 Barolo
2.9112307 0.1441564 Barolo
2.1546086 -1.2992650 Barolo
3.2743058 -2.8366165 Barolo
3.0882041 -0.4708518 Barolo
3.5516567 -1.6564722 Barolo
3.7187677 -1.5063930 Barolo
2.8659766 -1.7443776 Barolo
2.5899480 -0.3590137 Barolo
2.4616163 -0.0495328 Barolo
3.0401335 -1.9680481 Barolo
2.0032499 -1.2597682 Barolo
3.0641206 -2.0006794 Barolo
-2.0884339 4.4367256 Grignolino
-1.3118828 1.9565697 Grignolino
-2.0524475 1.1059742 Grignolino
-0.1551462 1.5256468 Grignolino
2.2757136 2.1411336 Grignolino
0.1549999 2.4972307 Grignolino
1.2584024 0.4249755 Grignolino
1.7766068 2.8242968 Grignolino
1.0332506 3.5687698 Grignolino
-0.5003386 -0.0020774 Grignolino
0.4549277 2.0188020 Grignolino
-1.0632387 2.6541637 Grignolino
2.1970273 0.9252274 Grignolino
-0.0876740 2.6350332 Grignolino
3.2407141 -0.9291790 Grignolino
1.7422561 2.4818928 Grignolino
-0.9264655 3.7936989 Grignolino
0.4068257 1.9654843 Grignolino
-1.5180199 2.0946467 Grignolino
0.9719135 2.3654701 Grignolino
0.4253382 0.8473329 Grignolino
1.0466202 3.8455100 Grignolino
1.6257835 2.0034056 Grignolino
0.6179027 3.1502434 Grignolino
-2.7661843 0.7623246 Grignolino
0.8984946 2.1500607 Grignolino
1.0797038 2.3574108 Grignolino
-0.4853396 2.4245825 Grignolino
0.4198705 2.6541453 Grignolino
-0.3943813 2.2573790 Grignolino
-0.0561648 2.4184422 Grignolino
-0.9645965 2.2614618 Grignolino
-0.9821298 2.3090858 Grignolino
-1.4558716 1.8565688 Grignolino
0.7607398 3.0168495 Grignolino
1.3367742 0.1995947 Grignolino
2.0049181 1.2904155 Grignolino
-0.2593154 0.9354176 Grignolino
1.7906397 2.0275219 Grignolino
2.1392142 1.6159967 Grignolino
0.2836264 1.1006212 Grignolino
0.7908182 3.1525499 Grignolino
-0.3382040 3.7858558 Grignolino
0.3722644 2.6817709 Grignolino
0.0476232 2.9021583 Grignolino
1.4347165 2.0307499 Grignolino
-1.1586059 2.0504316 Grignolino
0.6078082 2.2181697 Grignolino
-1.8286098 1.7093764 Grignolino
0.2843367 3.4061021 Grignolino
2.2556971 1.2524388 Grignolino
0.4295913 2.4880918 Grignolino
-0.4663111 2.1866433 Grignolino
-0.5838877 -0.8999848 Grignolino
-0.3006135 2.8731598 Grignolino
-0.2337933 2.4665992 Grignolino
-0.4619611 3.9714932 Grignolino
0.0589802 3.5258207 Grignolino
0.2074522 1.3310928 Grignolino
-2.4080265 2.3841260 Grignolino
-0.3702052 3.6531893 Grignolino
0.4498231 1.5467709 Grignolino
2.7407280 -1.4536995 Grignolino
-0.2252235 0.0779608 Grignolino
-0.6646233 1.7130359 Grignolino
0.4922118 1.6112849 Grignolino
0.3029392 2.5584966 Grignolino
0.1965154 2.3740318 Grignolino
-1.3228126 2.1620338 Grignolino
-0.7170673 2.5394542 Grignolino
-1.9196053 2.9246339 Grignolino
-1.5573691 0.3752379 Barbera
-2.2055050 -0.5847499 Barbera
-2.9884890 -1.0340765 Barbera
-3.1004210 -1.5971030 Barbera
-2.7300472 0.4903295 Barbera
-3.5971717 1.3538013 Barbera
-3.8366155 0.1940621 Barbera
-4.0212313 -1.2236204 Barbera
-3.7957193 -0.8228648 Barbera
-1.8872972 -1.9205438 Barbera
-2.1643027 -1.6168873 Barbera
-2.4710001 -0.3665622 Barbera
-2.6102608 -1.8628066 Barbera
-3.3918646 -1.0758938 Barbera
-3.7504996 -0.1591000 Barbera
-3.8912280 0.1874222 Barbera
-5.6010922 0.2597836 Barbera
-4.1348640 -1.2994407 Barbera
-4.3420472 -0.6589090 Barbera
-4.4426665 -1.5560849 Barbera
-3.5038037 -1.5298532 Barbera
-3.7355479 -1.5568556 Barbera
-2.2378501 -1.9207520 Barbera
-3.8957122 -2.2757988 Barbera
-3.8346097 0.2765473 Barbera
-4.8687403 -2.0711920 Barbera
-4.1931138 -2.0368152 Barbera
-3.2751077 -1.9981468 Barbera
-1.7592127 -5.1243595 Barbera
-2.5974194 -4.6675257 Barbera
-3.1312710 -1.8884911 Barbera
-1.1345177 -0.9471860 Barbera
-2.2456814 -0.8584042 Barbera
-3.6906983 -0.7321010 Barbera
-4.2252261 -1.4553541 Barbera
-3.7821678 -0.6720054 Barbera
-2.6940927 -2.5314831 Barbera
-4.8594426 -0.3894455 Barbera
-3.3361836 -2.5746286 Barbera
-4.0655334 -3.1446850 Barbera
-3.8424993 0.8950589 Barbera
-4.9337046 0.0243347 Barbera
-4.2722408 -2.4156104 Barbera
-4.9345429 -3.6757807 Barbera
-3.9221483 -2.0850240 Barbera
-4.2542812 -2.4593670 Barbera
-4.1401235 -3.6508823 Barbera
-4.4790529 -3.9402470 Barbera


Plots

scoreplot = ggplot(pca_df, aes(PC1,PC2*-1, color=Type))+geom_point(size = 0.8)+
  xlab(paste('PC1 - ', pca_var[1], '%'))+
  ylab(paste('PC2 - ', pca_var[2], '%'))+
  theme_bw()+
  theme(plot.title = element_text(hjust = 0.5))+
  geom_hline(yintercept = 0, alpha= 0.2, linetype = 'dashed')+
  geom_vline(xintercept = 0, alpha= 0.2, linetype = 'dashed')+
  stat_ellipse()

ggplotly(scoreplot)


From the graph you can appreciate how the three types of wine are arranged in 3 main clusters

However, there is no further information concerning the original variables and their influence onto the data variability along major components

Then a loading plot will be useful


nomi = colnames(df[2:28])

loadingplot = ggplot(loadingdf, aes(V1,V2*-1))+geom_point(color= 'white')+
  xlab(paste('PC1 - ', pca_var[1], '%'))+
  ylab(paste('PC2 - ', pca_var[2], '%'))+
  geom_text(label=nomi, color='black', size=3)+
  #geom_label(label=nomi,size= 3, fill= 'cornflowerblue', color= 'white', fontface= 'bold')+
  geom_segment(aes(xend=0, yend=0), color="orange", alpha= 0.3) +
  ggtitle('Loading plot')+theme_bw()+
  theme(plot.title = element_text(hjust = 0.5))+
  geom_hline(yintercept = 0, alpha= 0.2, linetype = 'dashed')+
  geom_vline(xintercept = 0, alpha= 0.2, linetype = 'dashed')

ggplotly(loadingplot)


biplot = ggplot()+geom_point(data=pca_df, aes(PC1,PC2*-1, color=Type))+
  xlab(paste('PC1 - ', pca_var[1], '%'))+
  ylab(paste('PC2 - ', pca_var[2], '%'))+
  ggtitle('Biplot')+theme_bw()+
  geom_text(data = loadingdf,aes(V1*12,V2*-12), label = nomi, size=2.5)+
  theme(plot.title = element_text(hjust = 0.5))+
  geom_hline(yintercept = 0, alpha= 0.2, linetype = 'dashed')+
  geom_vline(xintercept = 0, alpha= 0.2, linetype = 'dashed')  

ggplotly(biplot)



Classification


We’re going to use PLS Discriminant Analysis method (PLS-DA)

Start by splitting the dataset in train and test set

set.seed(100)

trts = sample(c('TR', 'TS'), nrow(df), replace = T, prob = c(0.7,0.3))
df1 = cbind('TR/TS' = trts, df)

df1TR = df1[df1$`TR/TS` == 'TR',]
df1TS = df1[df1$`TR/TS` == 'TS',]

kable(df1)  %>% kable_styling(fixed_thead = T, full_width = FALSE) %>%
  scroll_box( height = "500px")
TR/TS type Alcohol Sugar.free.extract Fixed.acidity Tartaric.acid Malic.acid Uronic.acids pH Ash Alcalinity.of.ash Potassium Calcium Magnesium Phosphate Chloride Total.phenols Flavanoids Nonflavanoid.phenols Proanthocyanins Color.intensity Hue OD280.OD315.of.diluted.wines OD280.OD315.of.flavonoids Glycerol 2.3.butanediol Total.nitrogen Proline Methanol
TR Barolo 14.23 24.82 73.1 1.21 1.71 0.72 3.38 2.43 15.6 950 62 127 320 82 2.80 3.06 0.28 2.29 5.64 1.04 3.92 4.77 9.29 757 153 1065 113
TR Barolo 13.20 26.30 72.8 1.84 1.78 0.71 3.30 2.14 11.2 765 75 100 395 90 2.65 2.76 0.26 1.28 4.38 1.05 3.40 3.80 8.93 881 194 1050 94
TR Barolo 13.16 26.30 68.5 1.94 2.36 0.84 3.48 2.67 18.6 936 70 101 497 67 2.80 3.24 0.30 2.81 5.68 1.03 3.17 3.46 11.74 900 206 1185 125
TR Barolo 14.37 25.85 74.9 1.59 1.95 0.72 3.43 2.50 16.8 985 47 113 580 49 3.85 3.49 0.24 2.18 7.80 0.86 3.45 3.54 10.13 1119 292 1480 80
TR Barolo 13.24 26.05 83.5 1.30 2.59 1.10 3.42 2.87 21.0 1088 70 118 408 65 2.80 2.69 0.39 1.82 4.32 1.04 2.93 3.22 10.27 799 215 735 73
TR Barolo 14.20 28.40 79.9 2.14 1.76 0.96 3.39 2.45 15.2 868 71 112 418 58 3.27 3.39 0.34 1.97 6.75 1.05 2.85 3.16 10.85 865 364 1450 68
TS Barolo 14.39 27.02 64.3 1.64 1.87 0.95 3.42 2.45 14.6 889 67 96 306 52 2.50 2.52 0.30 1.98 5.25 1.02 3.58 3.94 9.05 931 378 1290 80
TR Barolo 14.06 26.40 73.5 1.33 2.15 1.14 3.54 2.61 17.6 894 50 121 502 64 2.60 2.51 0.31 1.25 5.05 1.06 3.58 3.94 10.13 865 358 1295 100
TR Barolo 14.83 26.80 69.5 1.82 1.64 0.67 3.30 2.17 14.0 765 49 97 440 58 2.80 2.98 0.29 1.98 5.20 1.08 2.85 3.03 9.89 825 438 1045 141
TR Barolo 13.86 27.00 68.5 1.92 1.35 0.67 3.27 2.27 16.0 794 51 98 391 64 2.98 3.15 0.22 1.85 7.22 1.01 3.55 3.75 12.65 788 350 1045 121
TR Barolo 14.10 26.08 72.5 1.64 2.16 0.62 3.31 2.30 18.0 838 61 105 399 61 2.95 3.32 0.22 2.38 5.75 1.25 3.17 3.27 8.59 964 378 1510 123
TS Barolo 14.12 28.35 72.9 1.51 1.48 0.96 3.20 2.32 16.8 827 60 95 424 79 2.20 2.43 0.26 1.57 5.00 1.17 2.82 3.04 11.52 894 294 1280 134
TR Barolo 13.75 30.25 75.1 1.92 1.73 0.64 3.18 2.41 16.0 752 65 89 453 257 2.60 2.76 0.29 1.81 5.60 1.15 2.90 2.92 12.24 784 289 1320 164
TR Barolo 14.75 30.40 98.9 2.08 1.73 0.72 3.01 2.39 11.4 910 46 91 510 50 3.10 3.69 0.43 2.81 5.40 1.25 2.73 2.82 12.29 766 224 1150 105
TS Barolo 14.38 27.10 72.3 1.95 1.87 0.67 3.20 2.38 12.0 927 29 102 523 55 3.30 3.64 0.29 2.96 7.50 1.20 3.00 3.32 9.53 1041 324 1547 114
TR Barolo 13.63 27.15 69.6 1.48 1.81 0.67 3.47 2.70 17.2 905 28 112 385 50 2.85 2.91 0.30 1.46 7.30 1.28 2.88 3.12 7.92 812 229 1310 97
TR Barolo 14.30 27.90 74.9 1.41 1.92 0.82 3.40 2.72 20.0 860 108 120 513 62 2.80 3.14 0.33 1.97 6.20 1.07 2.65 3.10 9.24 836 308 1280 113
TR Barolo 13.83 26.30 64.9 1.93 1.57 0.68 3.43 2.62 20.0 905 68 115 419 58 2.95 3.40 0.40 1.72 6.60 1.13 2.57 2.66 9.41 722 274 1130 99
TR Barolo 14.19 26.40 72.0 1.85 1.59 0.82 3.38 2.48 16.5 964 86 108 488 28 3.30 3.93 0.32 1.86 8.70 1.23 2.82 3.17 9.85 808 230 1680 135
TR Barolo 13.64 27.72 91.5 1.35 3.10 0.82 3.30 2.56 15.2 1038 111 116 402 67 2.70 3.03 0.17 1.66 5.10 0.96 3.36 4.00 10.39 726 227 845 119
TR Barolo 14.06 25.32 71.1 1.34 1.63 1.00 3.47 2.28 16.0 905 79 126 323 73 3.00 3.17 0.24 2.10 5.65 1.09 3.71 3.75 10.30 828 225 780 145
TS Barolo 12.93 28.80 102.1 1.05 3.80 0.89 3.26 2.65 18.6 915 79 102 294 62 2.41 2.41 0.25 1.98 4.50 1.03 3.52 3.66 11.88 589 237 770 123
TR Barolo 13.71 27.63 80.0 2.23 1.86 1.21 3.33 2.36 16.6 815 89 101 476 134 2.61 2.88 0.27 1.69 3.80 1.11 4.00 4.31 8.81 715 270 1035 109
TS Barolo 12.85 25.80 69.6 1.54 1.60 0.79 3.45 2.52 17.8 958 101 95 415 73 2.48 2.37 0.26 1.46 3.93 1.09 3.63 3.82 9.14 568 248 1015 102
TR Barolo 13.50 25.00 81.6 1.55 1.81 0.95 3.42 2.61 20.0 992 62 96 476 47 2.53 2.61 0.28 1.66 3.52 1.12 3.82 4.00 9.45 667 210 845 86
TR Barolo 13.05 25.72 78.3 1.15 2.05 1.08 3.57 3.22 25.0 1095 63 124 536 82 2.63 2.68 0.47 1.92 3.58 1.13 3.20 3.63 10.34 753 238 830 124
TS Barolo 13.39 27.10 72.3 1.52 1.77 1.05 3.46 2.62 16.1 936 68 93 395 52 2.85 2.94 0.34 1.45 4.80 0.92 3.22 4.44 9.96 854 285 1195 85
TS Barolo 13.30 22.70 68.3 1.74 1.72 1.06 3.44 2.14 17.0 882 52 94 434 46 2.40 2.19 0.27 1.35 3.95 1.02 2.77 3.10 9.70 757 350 1285 84
TR Barolo 13.87 29.30 68.3 1.38 1.90 0.75 3.42 2.80 19.4 1085 68 107 396 76 2.95 2.97 0.37 1.76 4.50 1.25 3.40 3.72 9.53 702 280 915 99
TR Barolo 14.02 25.20 69.6 1.71 1.68 0.79 3.26 2.21 16.0 780 62 96 510 53 2.65 2.33 0.26 1.98 4.70 1.04 3.59 3.77 9.94 689 293 1035 100
TR Barolo 13.73 26.75 75.2 1.53 1.50 0.66 3.30 2.70 22.5 1067 76 101 436 53 3.00 3.25 0.29 2.38 5.70 1.19 2.71 3.00 10.44 792 332 1285 120
TS Barolo 13.58 28.35 62.0 1.14 1.66 0.72 3.28 2.36 19.1 805 58 106 485 498 2.86 3.19 0.22 1.95 6.90 1.09 2.88 3.06 10.73 700 296 1515 108
TR Barolo 13.68 26.98 64.8 1.60 1.83 0.62 3.40 2.36 17.2 1068 32 104 398 76 2.42 2.69 0.42 1.97 3.84 1.23 2.87 3.04 13.00 733 252 990 141
TS Barolo 13.76 26.80 77.1 1.81 1.53 0.84 3.40 2.70 19.5 974 39 132 394 128 2.95 2.74 0.50 1.35 5.40 1.25 3.00 3.31 8.33 740 296 1235 109
TR Barolo 13.51 26.22 65.3 1.28 1.80 0.70 3.36 2.65 19.0 856 53 110 464 53 2.35 2.53 0.29 1.54 4.20 1.10 2.87 2.91 10.10 700 258 1095 86
TS Barolo 13.48 26.10 70.9 1.44 1.81 0.69 3.45 2.41 20.5 789 49 100 416 35 2.70 2.98 0.26 1.86 5.10 1.04 3.47 4.04 8.21 534 258 920 75
TR Barolo 13.28 29.70 78.9 1.50 1.64 0.80 3.30 2.84 15.5 964 98 110 431 38 2.60 2.68 0.34 1.36 4.60 1.09 2.78 3.17 13.70 570 224 880 105
TR Barolo 13.05 25.00 70.9 1.18 1.65 0.89 3.34 2.55 18.0 1025 85 98 382 23 2.45 2.43 0.29 1.44 4.25 1.12 2.51 2.87 8.88 627 220 1105 134
TS Barolo 13.07 24.30 73.9 1.16 1.50 1.00 3.41 2.10 15.5 930 75 98 386 18 2.40 2.64 0.28 1.37 3.70 1.18 2.69 3.04 9.50 658 212 1020 145
TR Barolo 14.22 30.20 114.8 1.85 3.99 0.64 3.11 2.51 13.2 895 88 128 280 76 3.00 3.04 0.20 2.08 5.10 0.89 3.53 3.66 12.34 1048 215 760 101
TR Barolo 13.56 26.60 80.3 1.57 1.71 0.91 3.32 2.31 16.2 890 75 117 316 70 3.15 3.29 0.34 2.34 6.13 0.95 3.38 3.53 9.77 733 246 795 118
TS Barolo 13.41 27.50 102.7 1.79 3.84 0.92 3.19 2.12 18.8 815 78 90 385 70 2.45 2.68 0.27 1.48 4.28 0.91 3.00 3.36 9.21 565 231 1035 106
TS Barolo 13.88 27.80 78.9 2.39 1.89 0.65 3.33 2.59 15.0 980 71 101 502 67 3.25 3.56 0.17 1.70 5.43 0.88 3.56 4.00 8.61 665 289 1095 121
TS Barolo 13.24 25.60 101.3 1.83 3.98 0.62 3.18 2.29 17.5 920 63 103 389 53 2.64 2.63 0.32 1.66 4.36 0.82 3.00 3.15 8.61 576 248 680 105
TR Barolo 13.05 23.70 80.0 1.22 1.77 0.82 3.33 2.10 17.0 901 49 107 408 50 3.00 3.00 0.28 2.03 5.04 0.88 3.35 3.78 9.96 1044 218 885 155
TR Barolo 14.21 29.65 104.9 1.74 4.04 0.86 3.35 2.44 18.9 930 63 111 324 46 2.85 2.65 0.30 1.25 5.24 0.87 3.33 3.78 10.08 700 264 1080 90
TS Barolo 14.38 30.70 90.3 1.24 3.59 0.99 3.16 2.28 16.0 788 71 102 408 70 3.25 3.17 0.27 2.19 4.90 1.04 3.44 3.56 9.48 766 218 1065 91
TS Barolo 13.90 25.30 75.2 1.93 1.68 0.63 3.16 2.12 16.0 762 81 101 484 56 3.10 3.39 0.21 2.14 6.10 0.91 3.33 3.51 8.78 570 281 985 77
TR Barolo 14.10 25.98 70.0 1.87 2.02 0.83 3.20 2.40 18.8 880 75 103 480 64 2.75 2.92 0.32 2.38 6.20 1.07 2.75 2.89 10.42 669 249 1060 78
TR Barolo 13.94 26.80 72.7 2.35 1.73 0.60 3.23 2.27 17.4 868 40 108 420 96 2.88 3.54 0.32 2.08 8.90 1.12 3.10 3.30 13.44 749 383 1260 155
TR Barolo 13.05 24.30 76.0 2.08 1.73 0.63 3.06 2.04 12.4 792 35 92 638 50 2.72 3.27 0.17 2.91 7.20 1.12 2.91 3.20 9.17 590 224 1150 124
TR Barolo 13.83 27.60 63.3 1.82 1.65 0.77 3.32 2.60 17.2 968 28 94 411 53 2.45 2.99 0.22 2.29 5.60 1.24 3.37 3.69 9.77 777 330 1265 110
TR Barolo 13.82 26.25 74.5 1.83 1.75 0.77 3.33 2.42 14.0 785 29 111 472 47 3.88 3.74 0.32 1.87 7.05 1.01 3.26 3.53 7.63 704 360 1190 88
TR Barolo 13.77 25.20 64.8 1.29 1.90 0.84 3.56 2.68 17.1 927 33 115 405 59 3.00 2.79 0.39 1.68 6.30 1.13 2.93 3.21 7.73 795 313 1375 109
TR Barolo 13.74 24.80 65.2 1.88 1.67 0.66 3.43 2.25 16.4 784 76 118 502 37 2.60 2.90 0.21 1.62 5.85 0.92 3.20 3.36 7.97 733 292 1060 87
TR Barolo 13.56 25.00 78.0 1.49 1.73 0.69 3.31 2.46 20.5 808 91 116 411 38 2.96 2.78 0.20 2.45 6.25 0.98 3.03 3.16 7.92 550 266 1120 86
TR Barolo 14.22 26.60 87.1 1.98 1.70 0.74 3.20 2.30 16.3 768 73 118 465 136 3.20 3.00 0.26 2.03 6.38 0.94 3.31 3.81 13.00 770 248 970 124
TR Barolo 13.29 26.80 80.0 1.63 1.97 0.96 3.24 2.68 16.8 905 76 102 360 24 3.00 3.23 0.31 1.66 6.00 1.07 2.84 3.21 9.30 676 258 1270 116
TR Barolo 13.72 27.10 73.3 1.34 1.43 0.93 3.38 2.50 16.7 906 71 108 403 33 3.40 3.67 0.19 2.04 6.80 0.89 2.87 3.10 9.94 755 232 1285 131
TR Grignolino 12.37 18.30 90.1 2.80 0.94 0.73 3.11 1.36 10.6 580 77 88 296 52 1.98 0.57 0.28 0.42 1.95 1.05 1.82 2.12 5.40 736 287 520 98
TR Grignolino 12.33 22.90 72.2 2.25 1.10 0.69 3.26 2.28 16.0 715 85 101 365 108 2.05 1.09 0.63 0.41 3.27 1.25 1.67 1.42 6.90 658 345 680 127
TR Grignolino 12.64 23.90 95.7 1.93 1.36 1.06 3.19 2.02 16.8 688 83 100 395 53 2.02 1.41 0.53 0.62 5.75 0.98 1.59 1.86 8.20 691 321 450 60
TS Grignolino 13.67 22.20 64.8 2.20 1.25 0.74 3.40 1.92 18.0 725 51 94 301 47 2.10 1.79 0.32 0.73 3.80 1.23 2.46 1.73 8.60 797 262 630 87
TR Grignolino 12.37 23.50 70.0 2.06 1.13 0.72 3.30 2.16 19.0 785 73 87 422 306 3.50 3.10 0.19 1.87 4.45 1.22 2.87 3.07 7.20 748 141 420 157
TR Grignolino 12.17 23.03 65.7 1.84 1.45 0.72 3.35 2.53 19.0 790 62 104 411 116 1.89 1.75 0.45 1.03 2.95 1.45 2.23 2.73 7.50 627 219 355 58
TR Grignolino 12.37 26.80 62.7 1.70 1.21 0.88 3.40 2.56 18.1 978 55 98 310 69 2.42 2.65 0.37 2.08 4.60 1.19 2.30 2.60 7.96 680 259 678 118
TR Grignolino 13.11 23.70 80.0 1.40 1.01 0.77 3.10 1.70 15.0 730 80 78 297 148 2.98 3.18 0.26 2.28 5.30 1.12 3.18 3.33 8.20 604 100 502 114
TR Grignolino 12.37 20.90 63.7 1.94 1.17 0.67 3.40 1.92 19.6 785 40 78 212 54 2.11 2.00 0.27 1.04 4.68 1.12 3.48 4.07 7.10 554 425 510 98
TR Grignolino 13.34 23.72 70.0 2.02 0.94 1.09 3.26 2.36 17.0 760 64 110 451 111 2.53 1.30 0.55 0.42 3.17 1.02 1.93 1.92 8.10 704 363 750 137
TR Grignolino 12.21 22.70 90.7 3.62 1.19 0.94 3.14 1.75 16.8 795 134 151 448 88 1.85 1.28 0.14 2.50 2.85 1.28 3.07 3.23 6.81 714 195 718 116
TR Grignolino 12.29 21.40 55.6 1.43 1.61 0.87 3.54 2.21 20.4 682 102 103 324 50 1.10 1.02 0.37 1.46 3.05 0.91 1.82 2.00 6.38 661 301 870 78
TR Grignolino 13.86 25.25 59.5 1.27 1.51 1.09 3.63 2.67 25.0 785 63 86 383 59 2.95 2.86 0.21 1.87 3.38 1.36 3.16 3.52 7.62 748 170 410 99
TR Grignolino 13.49 22.30 60.9 1.74 1.66 0.67 3.44 2.24 24.0 680 60 87 300 43 1.88 1.84 0.27 1.03 3.74 0.98 2.78 3.50 8.04 614 160 472 64
TS Grignolino 12.99 26.10 50.5 1.42 1.67 1.24 3.52 2.60 30.0 974 55 139 473 35 3.30 2.89 0.21 1.96 3.35 1.31 3.50 3.60 8.00 731 293 985 113
TR Grignolino 11.96 24.50 65.7 2.18 1.09 0.73 3.40 2.30 21.0 681 98 101 366 48 3.38 2.14 0.13 1.65 3.21 0.99 3.13 3.15 7.70 563 183 886 57
TR Grignolino 11.66 20.30 61.7 1.70 1.88 0.60 3.30 1.92 16.0 785 52 97 312 59 1.61 1.57 0.34 1.15 3.80 1.23 2.14 2.35 6.14 596 109 428 129
TS Grignolino 13.03 23.50 78.6 1.90 0.90 0.76 3.30 1.71 16.0 790 57 86 396 122 1.95 2.03 0.24 1.46 4.60 1.19 2.48 2.85 8.40 756 167 392 145
TS Grignolino 11.84 26.40 108.7 1.70 2.89 0.91 3.11 2.23 18.0 790 71 112 350 58 1.72 1.32 0.43 0.95 2.65 0.96 2.52 3.25 5.22 514 246 500 122
TS Grignolino 12.33 20.60 58.7 2.41 0.99 0.84 3.32 1.95 14.8 680 124 136 438 99 1.90 1.85 0.35 2.76 3.40 1.06 2.31 2.70 7.96 654 259 750 59
TR Grignolino 12.70 27.15 93.3 1.46 3.87 1.11 3.19 2.40 23.0 890 110 101 321 52 2.83 2.55 0.43 1.95 2.57 1.19 3.13 3.82 8.66 700 227 463 101
TR Grignolino 12.00 23.20 58.4 1.88 0.92 0.82 3.30 2.00 19.0 680 63 86 408 27 2.42 2.26 0.30 1.43 2.50 1.38 3.12 3.52 5.80 645 199 278 95
TR Grignolino 12.72 22.90 58.4 1.40 1.81 0.81 3.50 2.20 18.8 890 83 86 418 64 2.20 2.53 0.26 1.77 3.90 1.16 3.14 3.33 7.38 664 199 714 111
TS Grignolino 12.08 23.50 56.9 1.33 1.13 0.71 3.65 2.51 24.0 980 85 78 215 53 2.00 1.58 0.40 1.40 2.20 1.31 2.72 3.50 8.11 548 203 630 115
TS Grignolino 13.05 25.50 104.8 1.64 3.86 0.73 3.19 2.32 22.5 938 98 85 195 48 1.65 1.59 0.61 1.62 4.80 0.84 2.01 2.07 8.64 649 207 515 114
TR Grignolino 11.84 23.40 70.8 1.80 0.89 1.00 3.40 2.58 18.0 922 80 94 378 95 2.20 2.21 0.22 2.35 3.05 0.79 3.08 3.81 6.36 586 138 520 141
TR Grignolino 12.67 24.30 74.1 1.70 0.98 0.88 3.35 2.24 18.0 840 81 99 336 70 2.20 1.94 0.30 1.46 2.62 1.23 3.16 3.60 7.90 600 217 450 121
TS Grignolino 12.16 25.80 78.9 1.84 1.61 0.78 3.37 2.31 22.8 845 98 90 285 54 1.78 1.69 0.43 1.56 2.45 1.33 2.26 2.92 8.04 643 195 495 116
TR Grignolino 11.65 22.90 62.9 1.80 1.67 0.64 3.55 2.62 26.0 1045 125 88 281 36 1.92 1.61 0.40 1.34 2.60 1.36 3.21 3.27 9.54 608 262 562 120
TR Grignolino 11.64 24.20 72.4 1.84 2.06 0.89 3.40 2.46 21.6 962 79 84 304 70 1.95 1.69 0.48 1.35 2.80 1.00 2.75 3.60 7.97 523 223 680 120
TS Grignolino 12.08 24.00 67.6 1.93 1.33 1.05 3.50 2.30 23.6 932 65 70 278 27 2.20 1.59 0.42 1.38 1.74 1.07 3.21 3.77 8.47 557 200 625 163
TS Grignolino 12.08 25.50 78.9 1.93 1.83 0.77 3.25 2.32 18.5 960 128 81 329 48 1.60 1.50 0.52 1.64 2.40 1.08 2.27 2.28 8.33 563 314 480 105
TR Grignolino 12.00 25.30 75.6 1.80 1.51 0.74 3.27 2.42 22.0 915 102 86 342 110 1.45 1.25 0.50 1.63 3.60 1.05 2.65 2.75 8.21 495 170 450 152
TR Grignolino 12.69 25.00 70.9 1.47 1.53 0.82 3.43 2.26 20.7 845 92 80 214 73 1.38 1.46 0.58 1.62 3.05 0.96 2.06 2.28 8.88 792 198 495 101
TR Grignolino 12.29 25.00 86.0 1.84 2.83 0.71 3.24 2.22 18.0 915 94 88 329 84 2.45 2.25 0.25 1.99 2.15 1.15 3.30 3.75 5.64 594 190 290 117
TS Grignolino 11.62 28.40 92.8 1.35 1.99 0.84 3.22 2.28 18.0 794 88 98 372 76 3.02 2.26 0.17 1.35 3.25 1.16 2.96 2.97 13.60 930 200 345 120
TR Grignolino 12.47 24.95 72.0 1.93 1.52 1.02 3.32 2.20 19.0 790 188 162 464 84 2.50 2.27 0.32 3.28 2.60 1.16 2.63 2.99 6.21 683 268 937 79
TR Grignolino 11.81 27.50 75.3 1.75 2.12 0.91 3.29 2.74 21.5 942 125 134 375 83 1.60 0.99 0.14 1.56 2.50 0.95 2.26 2.88 7.56 687 179 625 84
TR Grignolino 12.29 25.30 68.5 1.80 1.41 0.57 3.30 1.98 16.0 890 82 85 440 40 2.55 2.50 0.29 1.77 2.90 1.23 2.74 3.14 8.44 696 335 428 117
TR Grignolino 12.37 24.80 61.2 1.60 1.07 1.01 3.40 2.10 18.5 845 84 88 385 80 3.52 3.75 0.24 1.95 4.50 1.04 2.77 3.05 7.23 655 180 660 127
TS Grignolino 12.29 26.50 112.4 2.61 3.17 1.09 2.95 2.21 18.0 845 122 88 438 35 2.85 2.99 0.45 2.81 2.30 1.42 2.83 3.90 8.45 759 159 406 146
TR Grignolino 12.08 22.90 75.2 2.20 2.08 0.67 3.15 1.70 17.5 805 62 97 212 42 2.23 2.17 0.26 1.40 3.30 1.27 2.96 3.41 7.08 591 399 710 105
TR Grignolino 12.60 21.90 63.7 2.00 1.34 0.64 3.15 1.90 18.5 870 135 88 224 80 1.45 1.36 0.29 1.35 2.45 1.04 2.77 3.75 8.56 610 195 562 130
TR Grignolino 12.34 25.80 78.0 2.50 2.45 0.57 3.42 2.46 21.0 915 144 98 146 82 2.56 2.11 0.34 1.31 2.80 0.80 3.38 4.19 8.36 536 306 438 98
TR Grignolino 11.82 22.70 67.2 2.17 1.72 0.80 3.40 1.88 19.5 874 64 86 442 85 2.50 1.64 0.37 1.42 2.06 0.94 2.44 3.80 7.36 653 194 415 103
TR Grignolino 12.51 24.50 63.2 1.34 1.73 0.67 3.50 1.98 20.5 905 74 85 254 50 2.20 1.92 0.32 1.48 2.94 1.04 3.57 4.50 10.44 882 158 672 99
TR Grignolino 12.42 23.50 78.7 1.92 2.55 0.92 3.30 2.27 22.0 980 93 90 342 92 1.68 1.84 0.66 1.42 2.70 0.86 3.30 3.50 7.92 680 219 315 89
TS Grignolino 12.25 25.00 75.2 1.40 1.73 0.64 3.45 2.12 19.0 890 102 80 265 53 1.65 2.03 0.37 1.63 3.40 1.00 3.17 4.16 10.13 790 207 510 126
TS Grignolino 12.72 24.10 85.6 2.34 1.75 0.71 3.33 2.28 22.5 910 58 84 159 67 1.38 1.76 0.48 1.63 3.30 0.88 2.42 2.54 7.61 855 194 488 81
TR Grignolino 12.22 24.50 70.1 1.42 1.29 0.60 3.36 1.94 19.0 897 103 92 157 65 2.36 2.04 0.39 2.08 2.70 0.86 3.02 3.64 7.24 780 132 312 97
TR Grignolino 11.61 27.60 84.0 1.85 1.35 0.87 3.46 2.70 20.0 950 98 94 408 58 2.74 2.92 0.29 2.49 2.65 0.96 3.26 3.85 6.42 592 386 680 110
TS Grignolino 11.46 24.84 104.4 2.20 3.74 0.78 3.07 1.82 19.5 685 143 107 322 70 3.18 2.58 0.24 3.58 2.90 0.75 2.81 3.60 7.87 684 196 562 91
TS Grignolino 12.52 26.35 100.4 1.45 2.43 0.97 3.21 2.17 21.0 680 112 88 339 48 2.55 2.27 0.26 1.22 2.00 0.90 2.78 3.10 8.50 730 171 325 60
TR Grignolino 11.76 29.60 90.3 2.10 2.68 1.04 3.30 2.92 20.0 1100 115 103 370 38 1.75 2.03 0.60 1.05 3.80 1.23 2.50 2.25 9.94 732 454 607 103
TR Grignolino 11.41 21.70 100.0 2.04 0.74 0.87 3.50 2.50 21.0 1085 105 88 315 56 2.48 2.01 0.42 1.44 3.08 1.10 2.31 4.16 6.56 638 228 434 81
TS Grignolino 12.08 23.50 95.7 2.31 1.39 0.66 3.30 2.50 22.5 1025 83 84 235 42 2.56 2.29 0.43 1.04 2.90 0.93 3.19 4.38 7.36 632 247 385 105
TR Grignolino 11.03 23.30 92.0 3.02 1.51 0.97 3.12 2.20 21.5 835 136 85 358 30 2.46 2.17 0.52 2.01 1.90 1.71 2.87 3.46 6.28 630 175 407 96
TS Grignolino 11.82 22.90 75.2 2.10 1.47 0.89 3.13 1.99 20.8 754 115 86 264 80 1.98 1.60 0.30 1.53 1.95 0.95 3.33 3.81 7.75 644 386 495 112
TS Grignolino 12.42 25.30 94.7 1.86 1.61 0.83 3.38 2.19 22.5 964 96 108 268 128 2.00 2.09 0.34 1.61 2.06 1.06 2.96 3.73 9.02 989 227 345 108
TR Grignolino 12.77 25.50 101.3 2.10 3.43 0.54 3.10 1.98 16.0 720 65 80 224 80 1.63 1.25 0.43 0.83 3.40 0.70 2.12 2.75 6.80 590 251 372 121
TS Grignolino 12.00 24.20 89.7 1.11 3.43 0.72 3.25 2.00 19.0 865 104 87 107 48 2.00 1.64 0.37 1.87 1.28 0.93 3.05 4.22 7.56 612 182 564 114
TR Grignolino 11.45 24.30 123.6 1.50 2.40 0.96 3.18 2.42 20.0 915 138 96 262 58 2.90 2.79 0.32 1.83 3.25 0.80 3.39 4.27 9.54 710 311 625 109
TR Grignolino 11.56 26.60 84.7 1.64 2.05 1.02 3.40 3.23 28.5 1160 92 119 490 94 3.18 5.08 0.47 1.87 6.00 0.93 3.69 4.37 7.68 687 538 465 183
TR Grignolino 12.42 25.00 110.0 2.13 4.43 0.93 3.23 2.73 26.5 1050 84 102 524 88 2.20 2.13 0.43 1.71 2.08 0.92 3.12 4.33 8.73 560 366 365 118
TR Grignolino 13.05 24.00 115.0 1.64 5.80 0.85 3.12 2.13 21.5 815 102 86 326 73 2.62 2.65 0.30 2.01 2.60 0.73 3.10 4.29 7.24 610 216 380 114
TR Grignolino 11.87 27.35 116.7 2.43 4.31 0.81 3.14 2.39 21.0 935 103 82 300 58 2.86 3.03 0.21 2.91 2.80 0.75 3.64 4.50 8.04 635 193 380 66
TR Grignolino 12.07 24.75 95.3 2.11 2.16 0.89 3.24 2.17 21.0 815 94 85 358 85 2.60 2.65 0.37 1.35 2.76 0.86 3.28 4.29 7.77 558 295 378 86
TS Grignolino 12.43 23.80 94.1 1.61 1.53 0.65 3.26 2.29 21.5 895 94 86 298 116 2.74 3.15 0.39 1.77 3.94 0.69 2.84 3.40 7.00 628 209 352 79
TS Grignolino 11.79 21.30 97.2 2.30 2.13 0.81 3.40 2.78 28.5 1075 105 92 345 70 2.13 2.24 0.58 1.76 3.00 0.97 2.44 4.00 7.17 634 173 466 56
TR Grignolino 12.37 23.30 102.6 1.91 1.63 0.96 3.21 2.30 24.5 925 120 88 302 79 2.22 2.45 0.40 1.90 2.12 0.89 2.78 3.70 8.85 530 166 342 108
TR Grignolino 12.04 22.80 111.8 1.40 4.30 0.74 3.20 2.38 22.0 930 98 80 138 41 2.10 1.75 0.42 1.35 2.60 0.79 2.57 4.40 6.57 585 144 580 115
TR Barbera 12.86 26.80 87.3 0.99 1.35 0.92 3.22 2.32 18.0 830 52 122 266 46 1.51 1.25 0.21 0.94 4.10 0.76 1.29 1.26 6.43 673 252 630 122
TS Barbera 12.88 23.95 78.9 1.85 2.99 0.98 3.50 2.40 20.0 795 55 104 269 72 1.30 1.22 0.24 0.83 5.40 0.74 1.42 1.34 10.10 918 319 530 102
TS Barbera 12.81 24.45 76.2 2.93 2.31 0.87 3.64 2.40 24.0 785 49 98 266 67 1.15 1.09 0.27 0.83 5.70 0.66 1.36 1.24 10.02 1095 258 560 132
TR Barbera 12.70 24.75 91.0 1.91 3.55 1.80 3.26 2.36 21.5 805 47 106 356 118 1.70 1.20 0.17 0.84 5.00 0.78 1.29 1.23 8.52 1020 238 600 121
TR Barbera 12.51 23.50 104.7 1.34 1.24 0.98 3.50 2.25 17.5 975 60 85 273 29 2.00 0.58 0.60 1.25 5.45 0.75 1.51 1.40 8.32 764 178 650 79
TR Barbera 12.60 23.60 80.6 2.26 2.46 0.97 3.31 2.20 18.5 760 103 94 275 77 1.62 0.66 0.63 0.94 7.10 0.73 1.58 1.37 6.47 573 174 695 100
TR Barbera 12.25 25.30 91.4 1.42 4.72 1.25 3.40 2.54 21.0 995 105 89 262 144 1.38 0.47 0.53 0.80 3.85 0.75 1.27 1.12 8.25 680 217 720 107
TR Barbera 12.53 27.10 99.8 1.88 5.51 1.19 3.30 2.64 25.0 930 100 96 360 6 1.79 0.60 0.63 1.10 5.00 0.82 1.69 1.80 8.35 821 230 515 139
TR Barbera 13.49 25.70 115.5 2.17 3.59 1.47 3.24 2.19 19.5 825 111 88 315 56 1.62 0.48 0.58 0.88 5.70 0.81 1.82 2.23 10.40 700 245 580 150
TR Barbera 12.84 26.20 82.0 1.79 2.96 1.26 3.50 2.61 24.0 925 48 101 398 15 2.32 0.60 0.53 0.81 4.92 0.89 2.15 2.25 10.60 940 269 590 132
TR Barbera 12.93 26.78 80.0 1.69 2.81 1.15 3.31 2.70 21.0 965 40 96 351 25 1.54 0.50 0.53 0.75 4.60 0.77 2.31 2.34 10.62 955 260 600 82
TR Barbera 13.36 24.12 97.8 2.83 2.56 0.77 3.35 2.35 20.0 880 47 89 235 71 1.40 0.50 0.37 0.64 5.60 0.70 2.47 2.60 10.41 814 216 780 106
TR Barbera 13.52 27.90 85.0 1.46 3.17 1.23 3.28 2.72 23.5 880 38 97 325 21 1.55 0.52 0.50 0.55 4.35 0.89 2.06 2.21 10.20 976 201 520 118
TS Barbera 13.62 25.52 93.7 2.70 4.95 1.56 3.41 2.35 20.0 805 57 92 191 16 2.00 0.80 0.47 1.02 4.40 0.91 2.05 2.55 8.90 899 205 550 140
TR Barbera 12.25 23.40 113.5 3.54 3.88 1.04 3.01 2.20 18.5 785 77 112 358 14 1.38 0.78 0.29 1.14 8.21 0.65 2.00 2.23 8.16 521 218 855 97
TS Barbera 13.16 22.90 117.9 3.15 3.57 1.18 3.14 2.15 21.0 805 88 102 456 17 1.50 0.55 0.43 1.30 4.00 0.60 1.68 2.24 5.61 696 252 830 63
TS Barbera 13.88 21.40 99.3 2.81 5.04 1.29 3.28 2.23 20.0 750 43 80 171 10 0.98 0.34 0.40 0.68 4.90 0.58 1.33 1.81 7.94 670 156 415 154
TR Barbera 12.87 24.35 98.9 2.51 4.61 1.25 3.18 2.48 21.5 830 63 86 366 50 1.70 0.65 0.47 0.86 7.65 0.54 1.86 2.10 8.52 806 213 625 122
TR Barbera 13.32 21.46 96.9 2.85 3.24 1.75 3.30 2.38 21.5 790 42 92 306 21 1.93 0.76 0.45 1.25 8.42 0.55 1.62 2.19 6.12 604 219 650 106
TR Barbera 13.08 26.80 120.6 2.90 3.90 1.11 3.16 2.36 21.5 790 73 113 303 50 1.41 1.39 0.34 1.14 9.40 0.57 1.33 1.26 7.36 733 164 550 114
TR Barbera 13.50 26.50 105.5 2.31 3.12 1.31 3.23 2.62 24.0 980 67 123 338 106 1.40 1.57 0.22 1.25 8.60 0.59 1.30 1.29 6.28 568 129 500 107
TS Barbera 12.79 23.40 117.8 3.12 2.67 0.82 3.21 2.48 22.0 890 53 112 407 127 1.48 1.36 0.24 1.26 10.80 0.48 1.47 1.40 7.00 898 154 480 91
TR Barbera 13.11 25.20 95.4 2.26 1.90 0.86 3.49 2.75 25.5 1140 74 116 289 55 2.20 1.28 0.26 1.56 7.10 0.61 1.33 1.25 8.57 905 249 425 125
TR Barbera 13.23 23.85 120.6 2.80 3.30 0.80 3.20 2.28 18.5 915 68 98 351 35 1.80 0.83 0.61 1.87 10.52 0.56 1.51 1.42 10.80 915 154 675 84
TR Barbera 12.58 21.75 102.7 2.92 1.29 0.79 3.21 2.10 20.0 875 107 103 368 100 1.48 0.58 0.53 1.40 7.60 0.58 1.55 1.34 7.52 924 142 640 100
TS Barbera 13.17 23.20 129.3 2.28 5.19 1.49 3.58 2.32 22.0 1045 102 93 241 84 1.74 0.63 0.61 1.55 7.90 0.60 1.48 1.31 9.50 969 207 725 84
TS Barbera 13.84 24.70 122.9 2.76 4.12 1.07 3.19 2.38 19.5 840 108 89 402 6 1.80 0.83 0.48 1.56 9.01 0.57 1.64 1.92 9.29 902 159 480 132
TS Barbera 12.45 25.35 105.9 2.23 3.03 1.24 3.62 2.64 27.0 1050 118 97 393 53 1.90 0.58 0.63 1.14 7.50 0.67 1.73 2.18 10.20 865 252 880 118
TR Barbera 14.34 29.10 97.5 2.73 1.68 1.60 3.42 2.70 25.0 1095 78 98 462 49 2.80 1.31 0.53 2.70 13.00 0.57 1.96 2.25 10.82 764 223 660 182
TR Barbera 13.48 26.95 102.5 3.75 1.67 1.37 3.41 2.64 22.5 1055 79 89 480 35 2.60 1.10 0.52 2.29 11.75 0.57 1.78 2.09 11.09 1080 250 620 160
TS Barbera 12.36 34.60 116.5 2.25 3.83 0.99 3.32 2.38 21.0 1035 112 88 394 28 2.30 0.92 0.50 1.04 7.65 0.56 1.58 2.00 9.29 636 154 520 127
TR Barbera 13.69 24.80 74.9 1.04 3.26 0.75 3.36 2.54 20.0 1010 54 107 394 21 1.83 0.56 0.50 0.80 5.88 0.96 1.82 2.61 9.31 653 275 680 130
TR Barbera 12.85 25.70 86.9 1.79 3.27 0.92 3.33 2.58 22.0 935 46 106 318 48 1.65 0.60 0.60 0.96 5.58 0.87 2.11 2.77 9.77 814 224 570 102
TR Barbera 12.96 23.30 97.9 2.66 3.45 1.31 3.11 2.35 18.5 795 35 106 257 11 1.39 0.70 0.40 0.94 5.28 0.68 1.75 2.00 10.13 667 212 675 123
TR Barbera 13.78 25.10 103.5 3.80 2.76 1.23 3.13 2.30 22.0 803 88 90 417 19 1.35 0.68 0.41 1.03 9.58 0.70 1.68 2.05 8.93 677 198 615 109
TR Barbera 13.73 24.65 92.6 2.91 4.36 1.10 3.31 2.26 22.5 785 96 88 360 34 1.28 0.47 0.52 1.15 6.62 0.78 1.75 2.15 9.67 670 275 520 131
TR Barbera 13.45 24.90 82.9 1.91 3.70 1.13 3.28 2.60 23.0 890 56 111 386 8 1.70 0.92 0.43 1.46 10.68 0.85 1.56 1.60 10.37 733 196 695 107
TS Barbera 12.82 22.40 119.9 3.86 3.37 0.96 2.98 2.30 19.5 810 81 88 308 14 1.48 0.66 0.40 0.97 10.26 0.72 1.75 1.90 8.45 589 158 685 132
TS Barbera 13.58 27.20 119.9 3.04 2.58 0.98 2.98 2.69 24.5 930 80 105 369 38 1.55 0.84 0.39 1.54 8.66 0.74 1.80 1.96 8.90 847 215 750 129
TS Barbera 13.40 28.15 137.8 3.48 4.60 1.34 3.06 2.86 25.0 1085 92 112 387 27 1.98 0.96 0.27 1.11 8.50 0.67 1.92 2.15 7.80 700 218 630 117
TR Barbera 12.20 23.70 107.3 3.23 3.03 0.74 3.08 2.32 19.0 845 87 96 265 56 1.25 0.49 0.40 0.73 5.50 0.66 1.83 2.80 7.90 854 224 510 77
TR Barbera 12.77 23.70 111.5 3.34 2.39 0.79 2.99 2.28 19.5 850 69 86 394 13 1.39 0.51 0.48 0.64 9.90 0.57 1.63 1.69 6.07 579 156 470 152
TR Barbera 14.16 23.82 118.2 3.63 2.51 1.12 3.10 2.48 20.0 840 73 91 319 15 1.68 0.70 0.44 1.24 9.70 0.62 1.71 1.90 8.93 953 196 660 135
TS Barbera 13.71 24.95 113.9 2.88 5.65 1.75 3.15 2.45 20.5 1035 72 95 298 12 1.68 0.61 0.52 1.06 7.70 0.64 1.74 1.94 9.90 1120 238 740 120
TS Barbera 13.40 24.60 126.2 2.94 3.91 1.25 3.12 2.48 23.0 860 84 102 490 15 1.80 0.75 0.43 1.41 7.30 0.70 1.56 1.93 7.58 855 226 750 96
TR Barbera 13.27 22.75 103.9 2.84 4.28 1.62 3.16 2.26 20.0 760 61 120 526 6 1.59 0.69 0.43 1.35 10.20 0.59 1.56 1.94 7.27 749 157 835 126
TS Barbera 13.17 23.45 113.9 3.87 2.59 1.59 3.17 2.37 20.0 785 62 120 534 6 1.65 0.68 0.53 1.46 9.30 0.60 1.62 2.05 11.16 1110 160 840 52
TR Barbera 14.13 27.20 125.9 3.18 4.10 1.43 3.21 2.74 24.5 930 53 96 315 35 2.05 0.76 0.56 1.35 9.20 0.61 1.60 1.87 11.28 857 198 560 112
model = plsda(df1TR[-(1:2)], df1TR$type, cv = list('ven', 5), lim.type = 'jm', scale = T, method = 'simpls')

dfrmse = model$cvres$rmse %>% data.frame()

dfrmse = sapply(dfrmse, mean) %>% data.frame()
colnames(dfrmse) = 'Mean'

plotRMSE(model)

model = selectCompNum(model, 3)

par(mfrow = c(2,2))

plotPredictions(model, nc = 1)
plotPredictions(model, nc = 2)
plotPredictions(model, nc = 3)

plot(model)

plotRegcoeffs(model, show.labels = T)

pred = predict(model, df1TS[-(1:2)], df1TS$type)
plot(pred)


\(R^2\) of the prediction is 0.8761831







References

Forina, Michele. 1986. “Wines M.Forina, C.Armanino, M.Castino, M.Ubigli, Multivariate Data Analysis as Discriminating Method of the Origin of Wines, Vitis, 25, 189-201 (1986).” https://doi.org/10.13140/2.1.4312.6560.