MyAnimeList.net

Column

Best Rated Anime Studios

Column

Most Common Type of Anime Format

Anime With Highest Episode Count (Finished Airing)

Title Episodes Source
3000 Whys Of Blue Cat 3057 Original
Doraemon 1787 Manga
The Affectuous Family 1428 Unknown
Ninja Hattori-kun 694 Manga
Magic Eye Is Back 624 Original
Pleasant Goat and Big Big Wolf 530 Unknown
Superkid (1983) 526 Manga
Naruto Shippuden 500 Manga
Magic Eye, The Wonder Boy 500 Original
Kayoe! Chugaku 425 Original
Home With Kids 367 Unknown
Bleach 366 Manga
The Adventures of QiQi and KeKe 365 Original
Happy City 365 Original
Sgt. Frog 358 Manga
Kiteretsu Encyclopedia 331 Manga
My Family 330 Manga
Red Bicycle 302 Unknown
Hippo and Thomas 300 Unknown
Hamtaro 296 Manga
Ikkyu the Little Monk 296 Unknown
Dragon Ball Z 291 Manga
Pokémon 276 Game
The God of War Dominates 272 Novel
Folktales from Japan 258 Other
Mr.Digital Tokoro 245 Original
Kotori Samba 240 Game
Aware! Meisaku-kun 230 Original
Miracle! Mimika 225 Original
Yu-Gi-Oh! 224 Manga
Naruto 220 Manga
Yo-kai Watch 214 Game
Haier Brothers 212 Original
The Adventures of Star Cat 208 Original
Reborn! 203 Manga
Gintama 201 Manga
Urusei Yatsura 195 Manga
Astro Boy 193 Manga
Pokémon Advanced 192 Game
Secret Jouju 182 Original
Yu-Gi-Oh! GX 180 Manga
The Prince of Tennis 178 Manga
Fairy Tail 175 Manga
Mirmo Zibang! 172 Manga
Black Clover 170 Manga
Yadamon Magical Dreamer 170 Unknown
Rocky Rackat! 170 Unknown
Nutsberry Town 170 Unknown
InuYasha 167 Manga
Ranma ½ 161 Manga

Steam

Column

Best Rated Video Games

Recommendation Count vs Metacritic

Column

Proportion of Game Prices

Popularity Based Recommendation Count

Title RecommendationCount PriceInitial
Counter-Strike: Global Offensive 1427633 14.99
Dota 2 590480 0.00
Team Fortress 2 383949 0.00
Garrys Mod 237684 9.99
Unturned 222301 0.00
PAYDAY 2 219763 19.99
The Elder Scrolls V: Skyrim 182587 19.99
DayZ 153350 34.99
Rust 145688 19.99
Left 4 Dead 2 140726 19.99
Terraria 139819 9.99
Grand Theft Auto V 136846 59.99
Warframe 97562 0.00
ARK: Survival Evolved 96815 29.99
Rocket League(r) 86627 19.99
Borderlands 2 86362 19.99
Sid Meiers Civilization(r) V 85750 29.99
Portal 2 73128 19.99
Fallout 4 72929 59.99
Robocraft 71023 0.00
H1Z1 : Just Survive 70765 19.99
Counter-Strike 68991 9.99
No Mans Sky 68725 59.99
Euro Truck Simulator 2 68021 22.99
Arma 3 63534 39.99
Undertale 60314 9.99
Life Is Strange - Episode 1 59864 0.00
Starbound 57493 14.99
Tomb Raider 55844 19.99
BioShock Infinite 55512 29.99
Heroes & Generals 54072 0.00
Counter-Strike: Source 53931 19.99
Space Engineers 53882 24.99
The Forest 51125 14.99
The Witcher(r) 3: Wild Hunt 50325 39.99
Insurgency 48918 9.99
DARK SOULS(tm): Prepare To Die(tm) Edition 47180 19.99
Killing Floor 44364 19.99
Call of Duty(r): Black Ops III 44348 59.99
Dont Starve 43420 14.99
Mount & Blade: Warband 43319 19.99
Chivalry: Medieval Warfare 42478 24.99
No More Room in Hell 42348 0.00
Fallout: New Vegas 41001 9.99
Trove 40879 0.00
Loadout 40106 0.00
The Binding of Isaac 39367 4.99
Saints Row IV 39363 14.99
Goat Simulator 38929 9.99
The Binding of Isaac: Rebirth 37982 14.99
---
title: "Popular Content in MyAnimeList and Steam"
output: 
  flexdashboard::flex_dashboard:
    orientation: columns
    vertical_layout: fill
    theme: bootstrap
    source_code: embed
    
---

```{r setup, include=FALSE}

# Importing libraries
library(flexdashboard)
library(flexdashboard)
library(tidyverse)
library(highcharter)
library(gt)
library(htmltools)
library(viridis)


# Importing data
df <- read_csv('Anime.csv', show_col_types = FALSE)

df <- df %>% 
  select(-c(ID, Synonyms, Japanese, Title)) %>%
  distinct(English, .keep_all = TRUE) %>%
  rename(Title = 'English') %>%
  rename(`Type` = 'Type')

```

MyAnimeList.net
=======================================================================

Column {.tabset .tabset-fade data-width=650}
-----------------------------------------------------------------------

### Best Rated Anime Studios

```{r}
df7 <- df %>% 
  group_by(Studios) %>%
  summarise(Score = mean(Score)) %>%
  arrange(desc(Score)) %>%
  head(15) 

df7 %>%
  hchart('lollipop', hcaes(x = Studios, y = Score)) %>%
  hc_yAxis(min = '8',
           max = '9',
           title = list(text = '')) %>%
  hc_xAxis(title = list(text = '')) %>%
  hc_add_theme(hc_theme_google()) %>%
  hc_tooltip(pointFormat = '<b>Average Score </b> {point.y} <br>') %>%
  hc_subtitle(text = 'Average score of anime given from users in MyAnimeList.net',
              style = list(fontSize = '16px'))

```


### Most Popular Anime

```{r}

df8 <- df %>%
  arrange(desc(Score)) %>%
  head(15) 

df8 %>%
  hchart('bar', hcaes(x = Title, y = Score)) %>%
  hc_yAxis(min = '8.9',
           max = '9.15',
           title = list(text = '')) %>%
  hc_xAxis(title = list(text = '')) %>%
  hc_add_theme(hc_theme_google()) %>%
  hc_tooltip(pointFormat = 'Rank </b> {point.y} <br>') %>%
  hc_subtitle(text = 'Average score of the anime given from users in MyAnimeList.net',
              style = list(fontSize = '16px'))  %>%
  hc_legend(
    align = "left",
    verticalAlign = "top",
    layout = "vertical",
    x = 0,
    y = 100,
    enabled = TRUE

  )


```


Column {data-width=350}
-----------------------------------------------------------------------

### Most Common Type of Anime Format

```{r}

# Colors
custom_colors <- viridis::mako(n=6)


# make data
df9 <- df %>%
  filter(!Type == 'Unknown') %>%
  group_by(Type) %>%
  summarise(count = n())

# Most common genre
df9 %>%
  hchart('pie', hcaes(x=Type, y=count, color = custom_colors)) %>%
  hc_add_theme(hc_theme_google()) %>%
  hc_tooltip(pointFormat = '<b> Proportion: </b> {point.percentage:,.2f}%')
           

```


### Anime With Highest Episode Count (Finished Airing)
```{r}

# This is going to be the datatable for highest episode count

df1 <- df %>%
  arrange(desc(Episodes)) %>%
  select(Title, Episodes, Source) %>% 
  head(50)


# HTML table
div(style = 'height:600px; overflow-y:scroll', gt(df1) %>% 
      opt_table_font(font = list(google_font('Chivo'), default_fonts())) %>% 
      tab_style(location = cells_column_labels(columns = everything()),
                style = list(cell_borders(sides = 'bottom', 
                                          weight = px(2)), 
                             cell_text(weight = 'bold'))) %>% 
      tab_options(table.font.size = px(12L),
                  table.border.top.style = 'none',
                  column_labels.border.bottom.width = 2,
                  table_body.border.top.style = 'none',
                  data_row.padding = px(3))
    )



```



Steam
=======================================================================

Column {.tabset .tabset-fade data-width=650}
-----------------------------------------------------------------------

### Best Rated Video Games
```{r}

df2 <- read_csv('games-features-edit.csv')

df2 <- df2 %>% 
  distinct(ResponseName, .keep_all = TRUE) %>%
  rename(Title = 'ResponseName')

df2 %>% 
  arrange(desc(Metacritic)) %>%
  head(15) %>%
  hchart('lollipop', hcaes(x = Title, y = Metacritic)) %>%
  hc_yAxis(min='92',
           max = '98') %>%
  hc_add_theme(hc_theme_google()) %>%
  hc_tooltip(pointFormat = '<b>Metacritic Score </b> {point.y} <br>') 

```

### Recommendation Count vs Metacritic
```{r}

df2 %>%
  mutate(Genre = case_when(GenreIsMassivelyMultiplayer == TRUE ~ 'MMO', TRUE ~ 'Not MMO')) %>%
  filter(PriceInitial >= 19.99) %>%
  filter(!RecommendationCount == 0 & !Metacritic ==  0) %>%
  hchart('scatter', hcaes(x = log(RecommendationCount), 
                          y = log(Metacritic),
                          group = Genre)) %>%
  hc_tooltip(pointFormat = '<b>Recommendation Count: </b> {point.x} <br>
                            <b>Metacritic Score: </b> {point.y}') %>%   
  hc_yAxis(title = list(text = 'Metacritic (log)')) %>%  
  hc_xAxis(title = list(text = 'Recommendation Count (log)')) %>%
  hc_add_theme(hc_theme_google())   

```

Column {data-width=350}
-----------------------------------------------------------------------

### Proportion of Game Prices
```{r}

custom_colors = viridis::turbo(n = 8)

df3 <- df2 %>% 
  group_by(PriceInitial) %>% 
  summarise(count = n()) %>%
  arrange(desc(count))

df3 %>%
  filter(count >= 500) %>%
  hchart('pie', hcaes(x=PriceInitial, y=count, color = custom_colors)) %>%
  hc_add_theme(hc_theme_google()) %>%
  hc_tooltip(pointFormat = '<b> Price: </b> ${point.x} <b> Proportion: </b> {point.percentage:,.2f}%') %>%
  hc_subtitle(text = 'Volume of over 500',
              style = list(fontSize = '16px'))
            
```

### Popularity Based Recommendation Count
```{r}

# This is going to be the datatable

df4 <- df2 %>%
  arrange(desc(RecommendationCount)) %>%
  select(Title, RecommendationCount, PriceInitial) %>%
  head(50)

# HTML table
div(style = 'height:600px; overflow-y:scroll', gt(df4) %>%
      opt_table_font(font = list(google_font('Chivo'), default_fonts())) %>% 
      tab_style(location = cells_column_labels(columns = everything()),
                style = list(cell_borders(sides = 'bottom', 
                                          weight = px(2)), 
                             cell_text(weight = 'bold'))) %>% 
      tab_options(table.font.size = px(12L),
                  table.border.top.style = 'none',
                  column_labels.border.bottom.width = 2,
                  table_body.border.top.style = 'none',
                  data_row.padding = px(3))
    )



```