Setup

library(pacman); p_load(psych, lavaan, sjmisc)

data$EduDi16 <- rec(data$educ5_2016, rec = "1, 2, 3 = 0; 4, 5 = 1")
data$ParDi16 <- rec(data$party7_2016, rec = "4, 5, 6, 7 = 0; 1, 2, 3 = 1")
data$EduDi20 <- rec(data$educ5_2020, rec = "1, 2, 3 = 0; 4, 5 = 1")
data$ParDi20 <- rec(data$party7_2020, rec = "4, 5, 6, 7 = 0; 1, 2, 3 = 1")

describe(data)

Lagged Model

DWLS

ZMod <- '
party7_2020 ~ educ5_2016 + party7_2016
educ5_2020 ~ educ5_2016 + party7_2016

educ5_2016 ~~ party7_2016' #Redundant when estimator = "DWLS", but doesn't hurt to specify anyway

ZFit <- sem(ZMod, data, estimator = "DWLS")

summary(ZFit, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 33 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##                                                   Used       Total
##   Number of observations                          2778        2839
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                              4699.075
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.148    0.051   -2.935    0.003   -0.148   -0.072
##     party7_2016       0.862    0.021   41.292    0.000    0.862    0.810
##   educ5_2020 ~                                                          
##     educ5_2016        0.881    0.028   31.350    0.000    0.881    0.877
##     party7_2016      -0.009    0.013   -0.664    0.507   -0.009   -0.017
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016      -0.110    0.045   -2.438    0.015   -0.110   -0.046
##  .party7_2020 ~~                                                        
##    .educ5_2020       -0.048    0.083   -0.576    0.565   -0.048   -0.068
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       1.753    0.159   11.021    0.000    1.753    0.333
##    .educ5_2020        0.284    0.056    5.096    0.000    0.284    0.230
##     educ5_2016        1.227    0.026   46.405    0.000    1.227    1.000
##     party7_2016       4.657    0.069   67.559    0.000    4.657    1.000
ZFit <- sem(ZMod, data, estimator = "DWLS", sampling.weights = "weight_panel_pre")

summary(ZFit, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 31 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##                                                           Used       Total
##   Number of observations                                  2778        2839
##   Sampling weights variable                   weight_panel_pre            
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                              4668.490
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.107    0.045   -2.371    0.018   -0.107   -0.055
##     party7_2016       0.845    0.021   40.262    0.000    0.845    0.795
##   educ5_2020 ~                                                          
##     educ5_2016        0.840    0.025   34.061    0.000    0.840    0.846
##     party7_2016      -0.007    0.013   -0.555    0.579   -0.007   -0.013
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016      -0.025    0.045   -0.562    0.574   -0.025   -0.010
##  .party7_2020 ~~                                                        
##    .educ5_2020       -0.090    0.081   -1.112    0.266   -0.090   -0.105
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       1.884    0.156   12.090    0.000    1.884    0.364
##    .educ5_2020        0.383    0.053    7.163    0.000    0.383    0.284
##     educ5_2016        1.365    0.026   51.647    0.000    1.365    1.000
##     party7_2016       4.583    0.069   66.487    0.000    4.583    1.000
ZFit <- sem(ZMod, data, cluster = "state_2020") #Identical to state_2016 results, and both can be used with long data

summary(ZFit, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 38 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##                                                   Used       Total
##   Number of observations                          2778        2839
##   Number of clusters [state_2020]                   50            
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
##   Information                                 Observed            
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7162.736    4924.066
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.455
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -17208.793  -17208.793
##   Loglikelihood unrestricted model (H1)     -17208.793  -17208.793
##                                                                   
##   Akaike (AIC)                               34445.585   34445.585
##   Bayesian (BIC)                             34528.598   34528.598
##   Sample-size adjusted Bayesian (BIC)        34484.115   34484.115
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Expected
##   Information saturated (h1) model           Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.148    0.025   -5.853    0.000   -0.148   -0.072
##     party7_2016       0.862    0.012   71.612    0.000    0.862    0.810
##   educ5_2020 ~                                                          
##     educ5_2016        0.881    0.009   99.424    0.000    0.881    0.877
##     party7_2016      -0.009    0.005   -1.863    0.062   -0.009   -0.017
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016      -0.110    0.057   -1.928    0.054   -0.110   -0.046
##  .party7_2020 ~~                                                        
##    .educ5_2020       -0.048    0.014   -3.391    0.001   -0.048   -0.068
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       1.122    0.112   10.033    0.000    1.122    0.489
##    .educ5_2020        0.486    0.038   12.796    0.000    0.486    0.436
##     educ5_2016        3.351    0.036   91.996    0.000    3.351    3.026
##     party7_2016       3.821    0.075   51.195    0.000    3.821    1.771
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       1.752    0.087   20.224    0.000    1.752    0.333
##    .educ5_2020        0.284    0.017   16.982    0.000    0.284    0.230
##     educ5_2016        1.226    0.028   44.035    0.000    1.226    1.000
##     party7_2016       4.655    0.085   54.731    0.000    4.655    1.000
ZFit <- sem(ZMod, data, sampling.weights = "weight_panel_pre", cluster = "state_2020")

summary(ZFit, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 36 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##                                                           Used       Total
##   Number of observations                                  2778        2839
##   Number of clusters [state_2020]                           50            
##   Sampling weights variable                   weight_panel_pre            
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Model Test Baseline Model:
## 
##   Test statistic                              6333.348    2302.690
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  2.750
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -17844.681  -17844.681
##   Loglikelihood unrestricted model (H1)     -17844.681  -17844.681
##                                                                   
##   Akaike (AIC)                               35717.361   35717.361
##   Bayesian (BIC)                             35800.374   35800.374
##   Sample-size adjusted Bayesian (BIC)        35755.892   35755.892
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.107    0.031   -3.443    0.001   -0.107   -0.055
##     party7_2016       0.845    0.016   52.117    0.000    0.845    0.795
##   educ5_2020 ~                                                          
##     educ5_2016        0.840    0.015   56.644    0.000    0.840    0.846
##     party7_2016      -0.007    0.008   -0.865    0.387   -0.007   -0.013
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016      -0.025    0.070   -0.362    0.717   -0.025   -0.010
##  .party7_2020 ~~                                                        
##    .educ5_2020       -0.090    0.028   -3.232    0.001   -0.090   -0.105
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       1.020    0.140    7.269    0.000    1.020    0.448
##    .educ5_2020        0.643    0.060   10.707    0.000    0.643    0.554
##     educ5_2016        2.987    0.039   76.412    0.000    2.987    2.556
##     party7_2016       3.796    0.089   42.481    0.000    3.796    1.773
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       1.884    0.108   17.422    0.000    1.884    0.364
##    .educ5_2020        0.383    0.026   14.893    0.000    0.383    0.284
##     educ5_2016        1.365    0.041   33.587    0.000    1.365    1.000
##     party7_2016       4.583    0.092   49.657    0.000    4.583    1.000

Binary Model

ZModBi <- '
ParDi20 ~ EduDi16 + ParDi16
EduDi20 ~ EduDi16 + ParDi16

EduDi16 ~~ ParDi16'

ZFit <- sem(ZModBi, data, estimator = "DWLS")

summary(ZFit, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 32 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##                                                   Used       Total
##   Number of observations                          2778        2839
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                             10989.154
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ParDi20 ~                                                             
##     EduDi16           0.083    0.024    3.526    0.000    0.083    0.083
##     ParDi16           0.733    0.013   55.578    0.000    0.733    0.734
##   EduDi20 ~                                                             
##     EduDi16           0.875    0.011   77.033    0.000    0.875    0.870
##     ParDi16           0.024    0.025    0.936    0.349    0.024    0.024
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   EduDi16 ~~                                                            
##     ParDi16           0.021    0.005    4.386    0.000    0.021    0.083
##  .ParDi20 ~~                                                            
##    .EduDi20           0.004    0.008    0.533    0.594    0.004    0.051
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.110    0.005   22.569    0.000    0.110    0.444
##    .EduDi20           0.059    0.005   13.119    0.000    0.059    0.239
##     EduDi16           0.245    0.001  187.856    0.000    0.245    1.000
##     ParDi16           0.249    0.001  462.686    0.000    0.249    1.000
ZFit <- sem(ZModBi, data, estimator = "DWLS", sampling.weights = "weight_panel_pre")

summary(ZFit, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 30 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##                                                           Used       Total
##   Number of observations                                  2778        2839
##   Sampling weights variable                   weight_panel_pre            
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                              8961.013
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ParDi20 ~                                                             
##     EduDi16           0.068    0.026    2.582    0.010    0.068    0.064
##     ParDi16           0.715    0.013   54.487    0.000    0.715    0.717
##   EduDi20 ~                                                             
##     EduDi16           0.860    0.013   68.307    0.000    0.860    0.832
##     ParDi16           0.032    0.025    1.269    0.204    0.032    0.033
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   EduDi16 ~~                                                            
##     ParDi16           0.014    0.005    3.064    0.002    0.014    0.062
##  .ParDi20 ~~                                                            
##    .EduDi20           0.007    0.008    0.871    0.384    0.007    0.072
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.118    0.005   24.913    0.000    0.118    0.476
##    .EduDi20           0.071    0.004   15.815    0.000    0.071    0.303
##     EduDi16           0.218    0.001  167.177    0.000    0.218    1.000
##     ParDi16           0.249    0.001  462.162    0.000    0.249    1.000
ZFit <- sem(ZModBi, data, cluster = "state_2020") 
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= -2.173504e-19) is smaller than zero. This may be a symptom that
##     the model is not identified.
summary(ZFit, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##                                                   Used       Total
##   Number of observations                          2778        2839
##   Number of clusters [state_2020]                   50            
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
##   Information                                 Observed            
## 
## Model Test Baseline Model:
## 
##   Test statistic                              6254.698    2724.243
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  2.296
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                         1.000
##   Robust Tucker-Lewis Index (TLI)                            1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4887.287   -4887.287
##   Loglikelihood unrestricted model (H1)      -4887.287   -4887.287
##                                                                   
##   Akaike (AIC)                                9802.574    9802.574
##   Bayesian (BIC)                              9885.587    9885.587
##   Sample-size adjusted Bayesian (BIC)         9841.104    9841.104
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Expected
##   Information saturated (h1) model           Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ParDi20 ~                                                             
##     EduDi16           0.083    0.012    6.738    0.000    0.083    0.083
##     ParDi16           0.733    0.014   51.592    0.000    0.733    0.734
##   EduDi20 ~                                                             
##     EduDi16           0.875    0.010   83.736    0.000    0.875    0.870
##     ParDi16           0.024    0.011    2.223    0.026    0.024    0.024
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   EduDi16 ~~                                                            
##     ParDi16           0.021    0.005    4.012    0.000    0.021    0.083
##  .ParDi20 ~~                                                            
##    .EduDi20           0.004    0.001    3.075    0.002    0.004    0.051
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.078    0.009    8.295    0.000    0.078    0.156
##    .EduDi20           0.071    0.007    9.685    0.000    0.071    0.142
##     EduDi16           0.431    0.015   28.658    0.000    0.431    0.869
##     ParDi16           0.472    0.017   27.734    0.000    0.472    0.945
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.110    0.005   21.496    0.000    0.110    0.444
##    .EduDi20           0.059    0.005   13.084    0.000    0.059    0.239
##     EduDi16           0.245    0.002  117.455    0.000    0.245    1.000
##     ParDi16           0.249    0.001  257.681    0.000    0.249    1.000
ZFit <- sem(ZModBi, data, sampling.weights = "weight_panel_pre", cluster = "state_2020")
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= -4.263925e-18) is smaller than zero. This may be a symptom that
##     the model is not identified.
summary(ZFit, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##                                                           Used       Total
##   Number of observations                                  2778        2839
##   Number of clusters [state_2020]                           50            
##   Sampling weights variable                   weight_panel_pre            
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Model Test Baseline Model:
## 
##   Test statistic                              5404.084    1521.471
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  3.552
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5058.191   -5058.191
##   Loglikelihood unrestricted model (H1)      -5058.191   -5058.191
##                                                                   
##   Akaike (AIC)                               10144.382   10144.382
##   Bayesian (BIC)                             10227.394   10227.394
##   Sample-size adjusted Bayesian (BIC)        10182.912   10182.912
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ParDi20 ~                                                             
##     EduDi16           0.068    0.015    4.495    0.000    0.068    0.064
##     ParDi16           0.715    0.016   43.798    0.000    0.715    0.717
##   EduDi20 ~                                                             
##     EduDi16           0.860    0.014   63.572    0.000    0.860    0.832
##     ParDi16           0.032    0.019    1.708    0.088    0.032    0.033
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   EduDi16 ~~                                                            
##     ParDi16           0.014    0.005    2.614    0.009    0.014    0.062
##  .ParDi20 ~~                                                            
##    .EduDi20           0.007    0.002    3.147    0.002    0.007    0.072
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.096    0.015    6.303    0.000    0.096    0.192
##    .EduDi20           0.078    0.009    8.325    0.000    0.078    0.161
##     EduDi16           0.322    0.014   23.423    0.000    0.322    0.689
##     ParDi16           0.468    0.020   23.161    0.000    0.468    0.939
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.118    0.006   18.885    0.000    0.118    0.476
##    .EduDi20           0.071    0.006   11.248    0.000    0.071    0.303
##     EduDi16           0.218    0.005   44.582    0.000    0.218    1.000
##     ParDi16           0.249    0.001  194.574    0.000    0.249    1.000

Ordered Categorical

ZFit <- sem(ZMod, data, ordered = T)

summary(ZFit, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 14 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        26
## 
##                                                   Used       Total
##   Number of observations                          2778        2839
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Model Test Baseline Model:
## 
##   Test statistic                            118954.137   78564.625
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.514
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.081    0.012   -6.532    0.000   -0.081   -0.081
##     party7_2016       0.855    0.006  149.789    0.000    0.855    0.855
##   educ5_2020 ~                                                          
##     educ5_2016        0.911    0.003  300.554    0.000    0.911    0.911
##     party7_2016      -0.017    0.009   -1.783    0.075   -0.017   -0.017
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016      -0.051    0.020   -2.478    0.013   -0.051   -0.051
##  .party7_2020 ~~                                                        
##    .educ5_2020       -0.018    0.007   -2.609    0.009   -0.018   -0.088
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.000                               0.000    0.000
##    .educ5_2020        0.000                               0.000    0.000
##     educ5_2016        0.000                               0.000    0.000
##     party7_2016       0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020|t1   -0.681    0.026  -26.285    0.000   -0.681   -0.681
##     party7_2020|t2   -0.378    0.024  -15.479    0.000   -0.378   -0.378
##     party7_2020|t3   -0.102    0.024   -4.286    0.000   -0.102   -0.102
##     party7_2020|t4    0.171    0.024    7.167    0.000    0.171    0.171
##     party7_2020|t5    0.456    0.025   18.444    0.000    0.456    0.456
##     party7_2020|t6    0.768    0.027   28.949    0.000    0.768    0.768
##     educ5_2020|t1    -1.692    0.041  -40.866    0.000   -1.692   -1.692
##     educ5_2020|t2    -0.813    0.027  -30.258    0.000   -0.813   -0.813
##     educ5_2020|t3     0.104    0.024    4.362    0.000    0.104    0.104
##     educ5_2020|t4     0.842    0.027   31.062    0.000    0.842    0.842
##     educ5_2016|t1    -1.669    0.041  -40.948    0.000   -1.669   -1.669
##     educ5_2016|t2    -0.778    0.027  -29.269    0.000   -0.778   -0.778
##     educ5_2016|t3     0.175    0.024    7.319    0.000    0.175    0.175
##     educ5_2016|t4     0.892    0.028   32.371    0.000    0.892    0.892
##     party7_2016|t1   -0.788    0.027  -29.553    0.000   -0.788   -0.788
##     party7_2016|t2   -0.384    0.024  -15.705    0.000   -0.384   -0.384
##     party7_2016|t3   -0.071    0.024   -2.997    0.003   -0.071   -0.071
##     party7_2016|t4    0.234    0.024    9.742    0.000    0.234    0.234
##     party7_2016|t5    0.557    0.025   22.133    0.000    0.557    0.557
##     party7_2016|t6    0.983    0.028   34.537    0.000    0.983    0.983
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.256                               0.256    0.256
##    .educ5_2020        0.168                               0.168    0.168
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020       1.000                               1.000    1.000
##     educ5_2020        1.000                               1.000    1.000
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
ZFit <- sem(ZMod, data, ordered = T, sampling.weights = "weight_panel_pre")

summary(ZFit, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 16 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        26
## 
##                                                           Used       Total
##   Number of observations                                  2778        2839
##   Sampling weights variable                   weight_panel_pre            
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Model Test Baseline Model:
## 
##   Test statistic                             42209.644   28908.857
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.460
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.067    0.017   -3.813    0.000   -0.067   -0.067
##     party7_2016       0.844    0.008  111.444    0.000    0.844    0.844
##   educ5_2020 ~                                                          
##     educ5_2016        0.882    0.005  170.076    0.000    0.882    0.882
##     party7_2016      -0.014    0.014   -0.970    0.332   -0.014   -0.014
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016      -0.003    0.027   -0.129    0.897   -0.003   -0.003
##  .party7_2020 ~~                                                        
##    .educ5_2020       -0.036    0.012   -2.884    0.004   -0.036   -0.144
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.000                               0.000    0.000
##    .educ5_2020        0.000                               0.000    0.000
##     educ5_2016        0.000                               0.000    0.000
##     party7_2016       0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020|t1   -0.704    0.032  -21.698    0.000   -0.704   -0.704
##     party7_2020|t2   -0.378    0.030  -12.401    0.000   -0.378   -0.378
##     party7_2020|t3   -0.120    0.030   -4.054    0.000   -0.120   -0.120
##     party7_2020|t4    0.206    0.029    7.048    0.000    0.206    0.206
##     party7_2020|t5    0.473    0.030   15.753    0.000    0.473    0.473
##     party7_2020|t6    0.771    0.032   23.988    0.000    0.771    0.771
##     educ5_2020|t1    -1.466    0.051  -28.590    0.000   -1.466   -1.466
##     educ5_2020|t2    -0.452    0.033  -13.516    0.000   -0.452   -0.452
##     educ5_2020|t3     0.333    0.028   11.733    0.000    0.333    0.333
##     educ5_2020|t4     1.034    0.031   33.508    0.000    1.034    1.034
##     educ5_2016|t1    -1.346    0.052  -26.049    0.000   -1.346   -1.346
##     educ5_2016|t2    -0.309    0.033   -9.466    0.000   -0.309   -0.309
##     educ5_2016|t3     0.463    0.027   16.863    0.000    0.463    0.463
##     educ5_2016|t4     1.114    0.030   36.561    0.000    1.114    1.114
##     party7_2016|t1   -0.788    0.034  -23.115    0.000   -0.788   -0.788
##     party7_2016|t2   -0.375    0.030  -12.305    0.000   -0.375   -0.375
##     party7_2016|t3   -0.079    0.029   -2.697    0.007   -0.079   -0.079
##     party7_2016|t4    0.259    0.029    8.771    0.000    0.259    0.259
##     party7_2016|t5    0.583    0.031   18.871    0.000    0.583    0.583
##     party7_2016|t6    1.011    0.035   29.217    0.000    1.011    1.011
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.283                               0.283    0.283
##    .educ5_2020        0.222                               0.222    0.222
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020       1.000                               1.000    1.000
##     educ5_2020        1.000                               1.000    1.000
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
ZFit <- sem(ZMod, data, ordered = T, cluster = "state_2020") #Identical to state_2016 results, and both can be used with long data

summary(ZFit, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 14 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        26
## 
##                                                   Used       Total
##   Number of observations                          2778        2839
##   Number of clusters [state_2020]                   50            
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Model Test Baseline Model:
## 
##   Test statistic                            118954.137  118954.137
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster.sem
##   Information                                      Expected
##   Information saturated (h1) model             Unstructured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.081    0.012   -6.532    0.000   -0.081   -0.081
##     party7_2016       0.855    0.006  149.789    0.000    0.855    0.855
##   educ5_2020 ~                                                          
##     educ5_2016        0.911    0.003  300.554    0.000    0.911    0.911
##     party7_2016      -0.017    0.009   -1.783    0.075   -0.017   -0.017
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016      -0.051    0.020   -2.478    0.013   -0.051   -0.051
##  .party7_2020 ~~                                                        
##    .educ5_2020       -0.018    0.007   -2.609    0.009   -0.018   -0.088
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.000                               0.000    0.000
##    .educ5_2020        0.000                               0.000    0.000
##     educ5_2016        0.000                               0.000    0.000
##     party7_2016       0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020|t1   -0.681    0.026  -26.285    0.000   -0.681   -0.681
##     party7_2020|t2   -0.378    0.024  -15.479    0.000   -0.378   -0.378
##     party7_2020|t3   -0.102    0.024   -4.286    0.000   -0.102   -0.102
##     party7_2020|t4    0.171    0.024    7.167    0.000    0.171    0.171
##     party7_2020|t5    0.456    0.025   18.444    0.000    0.456    0.456
##     party7_2020|t6    0.768    0.027   28.949    0.000    0.768    0.768
##     educ5_2020|t1    -1.692    0.041  -40.866    0.000   -1.692   -1.692
##     educ5_2020|t2    -0.813    0.027  -30.258    0.000   -0.813   -0.813
##     educ5_2020|t3     0.104    0.024    4.362    0.000    0.104    0.104
##     educ5_2020|t4     0.842    0.027   31.062    0.000    0.842    0.842
##     educ5_2016|t1    -1.669    0.041  -40.948    0.000   -1.669   -1.669
##     educ5_2016|t2    -0.778    0.027  -29.269    0.000   -0.778   -0.778
##     educ5_2016|t3     0.175    0.024    7.319    0.000    0.175    0.175
##     educ5_2016|t4     0.892    0.028   32.371    0.000    0.892    0.892
##     party7_2016|t1   -0.788    0.027  -29.553    0.000   -0.788   -0.788
##     party7_2016|t2   -0.384    0.024  -15.705    0.000   -0.384   -0.384
##     party7_2016|t3   -0.071    0.024   -2.997    0.003   -0.071   -0.071
##     party7_2016|t4    0.234    0.024    9.742    0.000    0.234    0.234
##     party7_2016|t5    0.557    0.025   22.133    0.000    0.557    0.557
##     party7_2016|t6    0.983    0.028   34.537    0.000    0.983    0.983
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.256                               0.256    0.256
##    .educ5_2020        0.168                               0.168    0.168
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020       1.000                               1.000    1.000
##     educ5_2020        1.000                               1.000    1.000
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
ZFit <- sem(ZMod, data, ordered = T, sampling.weights = "weight_panel_pre", cluster = "state_2020")

summary(ZFit, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 16 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        26
## 
##                                                           Used       Total
##   Number of observations                                  2778        2839
##   Number of clusters [state_2020]                           50            
##   Sampling weights variable                   weight_panel_pre            
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Model Test Baseline Model:
## 
##   Test statistic                             42209.644   42209.644
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster.sem
##   Information                                      Expected
##   Information saturated (h1) model             Unstructured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.067    0.017   -3.813    0.000   -0.067   -0.067
##     party7_2016       0.844    0.008  111.444    0.000    0.844    0.844
##   educ5_2020 ~                                                          
##     educ5_2016        0.882    0.005  170.076    0.000    0.882    0.882
##     party7_2016      -0.014    0.014   -0.970    0.332   -0.014   -0.014
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016      -0.003    0.027   -0.129    0.897   -0.003   -0.003
##  .party7_2020 ~~                                                        
##    .educ5_2020       -0.036    0.012   -2.884    0.004   -0.036   -0.144
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.000                               0.000    0.000
##    .educ5_2020        0.000                               0.000    0.000
##     educ5_2016        0.000                               0.000    0.000
##     party7_2016       0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020|t1   -0.704    0.032  -21.698    0.000   -0.704   -0.704
##     party7_2020|t2   -0.378    0.030  -12.401    0.000   -0.378   -0.378
##     party7_2020|t3   -0.120    0.030   -4.054    0.000   -0.120   -0.120
##     party7_2020|t4    0.206    0.029    7.048    0.000    0.206    0.206
##     party7_2020|t5    0.473    0.030   15.753    0.000    0.473    0.473
##     party7_2020|t6    0.771    0.032   23.988    0.000    0.771    0.771
##     educ5_2020|t1    -1.466    0.051  -28.590    0.000   -1.466   -1.466
##     educ5_2020|t2    -0.452    0.033  -13.516    0.000   -0.452   -0.452
##     educ5_2020|t3     0.333    0.028   11.733    0.000    0.333    0.333
##     educ5_2020|t4     1.034    0.031   33.508    0.000    1.034    1.034
##     educ5_2016|t1    -1.346    0.052  -26.049    0.000   -1.346   -1.346
##     educ5_2016|t2    -0.309    0.033   -9.466    0.000   -0.309   -0.309
##     educ5_2016|t3     0.463    0.027   16.863    0.000    0.463    0.463
##     educ5_2016|t4     1.114    0.030   36.561    0.000    1.114    1.114
##     party7_2016|t1   -0.788    0.034  -23.115    0.000   -0.788   -0.788
##     party7_2016|t2   -0.375    0.030  -12.305    0.000   -0.375   -0.375
##     party7_2016|t3   -0.079    0.029   -2.697    0.007   -0.079   -0.079
##     party7_2016|t4    0.259    0.029    8.771    0.000    0.259    0.259
##     party7_2016|t5    0.583    0.031   18.871    0.000    0.583    0.583
##     party7_2016|t6    1.011    0.035   29.217    0.000    1.011    1.011
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.283                               0.283    0.283
##    .educ5_2020        0.222                               0.222    0.222
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020       1.000                               1.000    1.000
##     educ5_2020        1.000                               1.000    1.000
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000

Racial Equivalence

FITM <- c("chisq", "df", "nPar", "cfi", "rmsea", "rmsea.ci.lower", "rmsea.ci.upper", "aic", "bic")

ZFitR  <- sem(ZMod, data, estimator = "DWLS", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
ZFitRE <- sem(ZMod, data, estimator = "DWLS", group = "white_2020", group.equal = "regressions")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
round(cbind(Free       = fitMeasures(ZFitR, FITM), #Saturated vs not-saturated
            Restricted = fitMeasures(ZFitRE, FITM)), 3)
##                Free Restricted
## chisq             0      3.399
## df                0      4.000
## npar             28     24.000
## cfi               1      1.000
## rmsea             0      0.000
## rmsea.ci.lower    0      0.000
## rmsea.ci.upper    0      0.038
## aic              NA         NA
## bic              NA         NA
ZFitR  <- sem(ZMod, data, estimator = "DWLS", sampling.weights = "weight_panel_pre", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
ZFitRE <- sem(ZMod, data, estimator = "DWLS", sampling.weights = "weight_panel_pre", group = "white_2020", 
              group.equal = "regressions")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
round(cbind(Free       = fitMeasures(ZFitR, FITM),
            Restricted = fitMeasures(ZFitRE, FITM)), 3)
##                Free Restricted
## chisq             0      4.627
## df                0      4.000
## npar             28     24.000
## cfi               1      1.000
## rmsea             0      0.011
## rmsea.ci.lower    0      0.000
## rmsea.ci.upper    0      0.043
## aic              NA         NA
## bic              NA         NA
ZFitR  <- sem(ZMod, data, cluster = "state_2020", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
ZFitRE <- sem(ZMod, data, cluster = "state_2020", group = "white_2020", 
              group.equal = "regressions")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
round(cbind(Free       = fitMeasures(ZFitR, FITM),
            Restricted = fitMeasures(ZFitRE, FITM)), 3)
##                    Free Restricted
## chisq              0.00     17.823
## df                 0.00      4.000
## npar              28.00     24.000
## cfi                1.00      0.998
## rmsea              0.00      0.050
## rmsea.ci.lower     0.00      0.028
## rmsea.ci.upper     0.00      0.075
## aic            33916.49  33926.317
## bic            34082.33  34068.460
ZFitR  <- sem(ZMod, data, sampling.weights = "weight_panel_pre", cluster = "state_2020", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
ZFitRE <- sem(ZMod, data, sampling.weights = "weight_panel_pre", cluster = "state_2020", group = "white_2020", 
              group.equal = "regressions")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
round(cbind(Free       = fitMeasures(ZFitR, FITM),
            Restricted = fitMeasures(ZFitRE, FITM)), 3)
##                    Free Restricted
## chisq              0.00     24.520
## df                 0.00      4.000
## npar              28.00     24.000
## cfi                1.00      0.997
## rmsea              0.00      0.061
## rmsea.ci.lower     0.00      0.039
## rmsea.ci.upper     0.00      0.085
## aic            35071.88  35088.401
## bic            35237.71  35230.544

There was racial equivalence for the first model and the second, but not the third and fourth, unless we scale the threshold \(\alpha\).

ZFitR  <- sem(ZMod, data, ordered = T, group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
ZFitRE <- sem(ZMod, data, ordered = T, group = "white_2020", group.equal = "regressions")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
round(cbind(Free       = fitMeasures(ZFitR, FITM),
            Restricted = fitMeasures(ZFitRE, FITM)), 3)
##                Free Restricted
## chisq             0     11.094
## df                0      4.000
## npar             52     48.000
## cfi               1      1.000
## rmsea             0      0.036
## rmsea.ci.lower    0      0.011
## rmsea.ci.upper    0      0.062
## aic              NA         NA
## bic              NA         NA
ZFitR  <- sem(ZMod, data, ordered = T, sampling.weights = "weight_panel_pre", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
ZFitRE <- sem(ZMod, data, ordered = T, sampling.weights = "weight_panel_pre", group = "white_2020", 
              group.equal = "regressions")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
round(cbind(Free       = fitMeasures(ZFitR, FITM),
            Restricted = fitMeasures(ZFitRE, FITM)), 3)
##                Free Restricted
## chisq             0      5.763
## df                0      4.000
## npar             52     48.000
## cfi               1      1.000
## rmsea             0      0.018
## rmsea.ci.lower    0      0.000
## rmsea.ci.upper    0      0.047
## aic              NA         NA
## bic              NA         NA
ZFitR  <- sem(ZMod, data, ordered = T, cluster = "state_2020", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
ZFitRE <- sem(ZMod, data, ordered = T, cluster = "state_2020", group = "white_2020", 
              group.equal = "regressions")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
round(cbind(Free       = fitMeasures(ZFitR, FITM),
            Restricted = fitMeasures(ZFitRE, FITM)), 3)
##                Free Restricted
## chisq             0     11.094
## df                0      4.000
## npar             52     48.000
## cfi               1      1.000
## rmsea             0      0.036
## rmsea.ci.lower    0      0.011
## rmsea.ci.upper    0      0.062
## aic              NA         NA
## bic              NA         NA
ZFitR  <- sem(ZMod, data, ordered = T, sampling.weights = "weight_panel_pre", cluster = "state_2020", 
              group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
ZFitRE <- sem(ZMod, data, ordered = T, sampling.weights = "weight_panel_pre", cluster = "state_2020", 
              group = "white_2020", 
              group.equal = "regressions")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
round(cbind(Free       = fitMeasures(ZFitR, FITM),
            Restricted = fitMeasures(ZFitRE, FITM)), 3)
##                Free Restricted
## chisq             0      5.763
## df                0      4.000
## npar             52     48.000
## cfi               1      1.000
## rmsea             0      0.018
## rmsea.ci.lower    0      0.000
## rmsea.ci.upper    0      0.047
## aic              NA         NA
## bic              NA         NA

Significant, not significant, significant, not significant.

ZFitR  <- sem(ZMod, data, cluster = "state_2020", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
summary(ZFitR, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 59 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        28
## 
##   Number of observations per group:               Used       Total
##     1                                             2018        2059
##     0                                              741         756
##   Number of clusters [state_2020]:                                
##     1                                               50            
##     0                                               49            
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
##   Information                                 Observed            
##   Test statistic for each group:
##     1                                            0.000       0.000
##     0                                            0.000       0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7033.481    4362.910
##   Degrees of freedom                                12          12
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.612
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -16930.247  -16930.247
##   Loglikelihood unrestricted model (H1)     -16930.247  -16930.247
##                                                                   
##   Akaike (AIC)                               33916.494   33916.494
##   Bayesian (BIC)                             34082.327   34082.327
##   Sample-size adjusted Bayesian (BIC)        33993.362   33993.362
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Expected
##   Information saturated (h1) model           Structured
## 
## 
## Group 1 [1]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.207    0.027   -7.762    0.000   -0.207   -0.097
##     party7_2016       0.857    0.014   59.996    0.000    0.857    0.802
##   educ5_2020 ~                                                          
##     educ5_2016        0.888    0.010   85.039    0.000    0.888    0.884
##     party7_2016      -0.010    0.004   -2.436    0.015   -0.010   -0.019
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016      -0.262    0.079   -3.313    0.001   -0.262   -0.112
##  .party7_2020 ~~                                                        
##    .educ5_2020       -0.064    0.018   -3.495    0.000   -0.064   -0.096
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       1.423    0.136   10.446    0.000    1.423    0.617
##    .educ5_2020        0.455    0.043   10.683    0.000    0.455    0.417
##     educ5_2016        3.419    0.046   74.874    0.000    3.419    3.149
##     party7_2016       4.117    0.096   43.045    0.000    4.117    1.908
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       1.754    0.101   17.435    0.000    1.754    0.330
##    .educ5_2020        0.254    0.017   14.967    0.000    0.254    0.214
##     educ5_2016        1.179    0.033   35.376    0.000    1.179    1.000
##     party7_2016       4.656    0.100   46.460    0.000    4.656    1.000
## 
## 
## Group 2 [0]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.040    0.048   -0.825    0.409   -0.040   -0.023
##     party7_2016       0.802    0.025   32.527    0.000    0.802    0.775
##   educ5_2020 ~                                                          
##     educ5_2016        0.864    0.019   44.748    0.000    0.864    0.851
##     party7_2016       0.006    0.014    0.414    0.679    0.006    0.009
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016       0.094    0.088    1.074    0.283    0.094    0.043
##  .party7_2020 ~~                                                        
##    .educ5_2020        0.012    0.039    0.310    0.757    0.012    0.016
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.723    0.171    4.229    0.000    0.723    0.361
##    .educ5_2020        0.525    0.084    6.268    0.000    0.525    0.453
##     educ5_2016        3.166    0.045   69.965    0.000    3.166    2.778
##     party7_2016       3.009    0.084   35.689    0.000    3.009    1.555
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       1.603    0.112   14.321    0.000    1.603    0.400
##    .educ5_2020        0.369    0.036   10.199    0.000    0.369    0.275
##     educ5_2016        1.299    0.051   25.325    0.000    1.299    1.000
##     party7_2016       3.748    0.125   30.002    0.000    3.748    1.000
ZFitR  <- sem(ZMod, data, sampling.weights = "weight_panel_pre", cluster = "state_2020", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
summary(ZFitR, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 58 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        28
## 
##   Number of observations per group:                       Used       Total
##     1                                                     2018        2059
##     0                                                      741         756
##   Number of clusters [state_2020]:                                        
##     1                                                       50            
##     0                                                       49            
##   Sampling weights variable                   weight_panel_pre            
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
##   Test statistic for each group:
##     1                                            0.000       0.000
##     0                                            0.000       0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              6153.172    2063.727
##   Degrees of freedom                                12          12
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  2.982
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -17507.941  -17507.941
##   Loglikelihood unrestricted model (H1)     -17507.941  -17507.941
##                                                                   
##   Akaike (AIC)                               35071.882   35071.882
##   Bayesian (BIC)                             35237.715   35237.715
##   Sample-size adjusted Bayesian (BIC)        35148.750   35148.750
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## 
## Group 1 [1]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.174    0.034   -5.075    0.000   -0.174   -0.089
##     party7_2016       0.837    0.020   42.146    0.000    0.837    0.782
##   educ5_2020 ~                                                          
##     educ5_2016        0.840    0.019   44.913    0.000    0.840    0.858
##     party7_2016      -0.013    0.008   -1.663    0.096   -0.013   -0.024
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016      -0.215    0.093   -2.313    0.021   -0.215   -0.087
##  .party7_2020 ~~                                                        
##    .educ5_2020       -0.113    0.037   -3.080    0.002   -0.113   -0.141
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       1.386    0.173    8.023    0.000    1.386    0.609
##    .educ5_2020        0.652    0.073    8.908    0.000    0.652    0.572
##     educ5_2016        3.075    0.053   58.471    0.000    3.075    2.643
##     party7_2016       4.177    0.102   40.758    0.000    4.177    1.963
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       1.909    0.129   14.748    0.000    1.909    0.368
##    .educ5_2020        0.338    0.026   12.933    0.000    0.338    0.260
##     educ5_2016        1.354    0.047   28.567    0.000    1.354    1.000
##     party7_2016       4.527    0.096   47.170    0.000    4.527    1.000
## 
## 
## Group 2 [0]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.005    0.052   -0.098    0.922   -0.005   -0.003
##     party7_2016       0.764    0.033   22.892    0.000    0.764    0.753
##   educ5_2020 ~                                                          
##     educ5_2016        0.835    0.030   28.142    0.000    0.835    0.808
##     party7_2016       0.019    0.018    1.032    0.302    0.019    0.030
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016       0.145    0.108    1.343    0.179    0.145    0.066
##  .party7_2020 ~~                                                        
##    .educ5_2020       -0.017    0.061   -0.276    0.782   -0.017   -0.019
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.685    0.193    3.556    0.000    0.685    0.354
##    .educ5_2020        0.610    0.125    4.873    0.000    0.610    0.513
##     educ5_2016        2.789    0.049   56.408    0.000    2.789    2.425
##     party7_2016       2.948    0.113   26.164    0.000    2.948    1.543
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       1.620    0.120   13.544    0.000    1.620    0.433
##    .educ5_2020        0.484    0.052    9.389    0.000    0.484    0.343
##     educ5_2016        1.324    0.061   21.648    0.000    1.324    1.000
##     party7_2016       3.647    0.132   27.534    0.000    3.647    1.000
ZFitR  <- sem(ZMod, data, ordered = T, group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
summary(ZFitR, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 30 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        52
## 
##   Number of observations per group:               Used       Total
##     1                                             2018        2059
##     0                                              741         756
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
##   Test statistic for each group:
##     1                                            0.000       0.000
##     0                                            0.000       0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                            135050.240   90311.071
##   Degrees of freedom                                12          12
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.495
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [1]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.108    0.014   -7.506    0.000   -0.108   -0.108
##     party7_2016       0.844    0.007  116.243    0.000    0.844    0.844
##   educ5_2020 ~                                                          
##     educ5_2016        0.925    0.003  278.796    0.000    0.925    0.925
##     party7_2016      -0.019    0.011   -1.779    0.075   -0.019   -0.019
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016      -0.124    0.024   -5.231    0.000   -0.124   -0.124
##  .party7_2020 ~~                                                        
##    .educ5_2020       -0.023    0.008   -2.830    0.005   -0.023   -0.122
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.000                               0.000    0.000
##    .educ5_2020        0.000                               0.000    0.000
##     educ5_2016        0.000                               0.000    0.000
##     party7_2016       0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020|t1   -0.786    0.031  -25.117    0.000   -0.786   -0.786
##     party7_2020|t2   -0.525    0.029  -17.884    0.000   -0.525   -0.525
##     party7_2020|t3   -0.256    0.028   -9.070    0.000   -0.256   -0.256
##     party7_2020|t4   -0.011    0.028   -0.401    0.689   -0.011   -0.011
##     party7_2020|t5    0.287    0.028   10.134    0.000    0.287    0.287
##     party7_2020|t6    0.626    0.030   20.877    0.000    0.626    0.626
##     educ5_2020|t1    -1.810    0.053  -34.226    0.000   -1.810   -1.810
##     educ5_2020|t2    -0.855    0.032  -26.761    0.000   -0.855   -0.855
##     educ5_2020|t3     0.052    0.028    1.869    0.062    0.052    0.052
##     educ5_2020|t4     0.827    0.032   26.108    0.000    0.827    0.827
##     educ5_2016|t1    -1.803    0.053  -34.268    0.000   -1.803   -1.803
##     educ5_2016|t2    -0.844    0.032  -26.517    0.000   -0.844   -0.844
##     educ5_2016|t3     0.108    0.028    3.871    0.000    0.108    0.108
##     educ5_2016|t4     0.852    0.032   26.680    0.000    0.852    0.852
##     party7_2016|t1   -0.920    0.033  -28.163    0.000   -0.920   -0.920
##     party7_2016|t2   -0.535    0.029  -18.190    0.000   -0.535   -0.535
##     party7_2016|t3   -0.213    0.028   -7.561    0.000   -0.213   -0.213
##     party7_2016|t4    0.071    0.028    2.537    0.011    0.071    0.071
##     party7_2016|t5    0.410    0.029   14.244    0.000    0.410    0.410
##     party7_2016|t6    0.859    0.032   26.842    0.000    0.859    0.859
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.253                               0.253    0.253
##    .educ5_2020        0.140                               0.140    0.140
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020       1.000                               1.000    1.000
##     educ5_2020        1.000                               1.000    1.000
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.024    0.027   -0.894    0.371   -0.024   -0.024
##     party7_2016       0.823    0.013   64.177    0.000    0.823    0.823
##   educ5_2020 ~                                                          
##     educ5_2016        0.894    0.007  122.774    0.000    0.894    0.894
##     party7_2016       0.016    0.021    0.768    0.442    0.016    0.016
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016       0.058    0.040    1.441    0.150    0.058    0.058
##  .party7_2020 ~~                                                        
##    .educ5_2020        0.003    0.017    0.209    0.834    0.003    0.014
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.000                               0.000    0.000
##    .educ5_2020        0.000                               0.000    0.000
##     educ5_2016        0.000                               0.000    0.000
##     party7_2016       0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020|t1   -0.420    0.048   -8.822    0.000   -0.420   -0.420
##     party7_2020|t2    0.005    0.046    0.110    0.912    0.005    0.005
##     party7_2020|t3    0.329    0.047    7.001    0.000    0.329    0.329
##     party7_2020|t4    0.732    0.051   14.397    0.000    0.732    0.732
##     party7_2020|t5    1.037    0.056   18.425    0.000    1.037    1.037
##     party7_2020|t6    1.298    0.063   20.491    0.000    1.298    1.298
##     educ5_2020|t1    -1.465    0.069  -21.111    0.000   -1.465   -1.465
##     educ5_2020|t2    -0.710    0.051  -14.049    0.000   -0.710   -0.710
##     educ5_2020|t3     0.255    0.047    5.466    0.000    0.255    0.255
##     educ5_2020|t4     0.887    0.053   16.643    0.000    0.887    0.887
##     educ5_2016|t1    -1.417    0.068  -20.989    0.000   -1.417   -1.417
##     educ5_2016|t2    -0.617    0.049  -12.496    0.000   -0.617   -0.617
##     educ5_2016|t3     0.365    0.047    7.731    0.000    0.365    0.365
##     educ5_2016|t4     1.014    0.056   18.181    0.000    1.014    1.014
##     party7_2016|t1   -0.483    0.048  -10.055    0.000   -0.483   -0.483
##     party7_2016|t2   -0.002    0.046   -0.037    0.971   -0.002   -0.002
##     party7_2016|t3    0.322    0.047    6.855    0.000    0.322    0.322
##     party7_2016|t4    0.736    0.051   14.467    0.000    0.736    0.736
##     party7_2016|t5    1.055    0.057   18.605    0.000    1.055    1.055
##     party7_2016|t6    1.455    0.069   21.089    0.000    1.455    1.455
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.324                               0.324    0.324
##    .educ5_2020        0.199                               0.199    0.199
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020       1.000                               1.000    1.000
##     educ5_2020        1.000                               1.000    1.000
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
ZFitR  <- sem(ZMod, data, ordered = T, cluster = "state_2020", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
summary(ZFitR, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 30 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        52
## 
##   Number of observations per group:               Used       Total
##     1                                             2018        2059
##     0                                              741         756
##   Number of clusters [state_2020]:                                
##     1                                               50            
##     0                                               49            
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
##   Test statistic for each group:
##     1                                            0.000       0.000
##     0                                            0.000       0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                            135050.240  135050.240
##   Degrees of freedom                                12          12
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster.sem
##   Information                                      Expected
##   Information saturated (h1) model             Unstructured
## 
## 
## Group 1 [1]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.108    0.014   -7.506    0.000   -0.108   -0.108
##     party7_2016       0.844    0.007  116.243    0.000    0.844    0.844
##   educ5_2020 ~                                                          
##     educ5_2016        0.925    0.003  278.796    0.000    0.925    0.925
##     party7_2016      -0.019    0.011   -1.779    0.075   -0.019   -0.019
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016      -0.124    0.024   -5.231    0.000   -0.124   -0.124
##  .party7_2020 ~~                                                        
##    .educ5_2020       -0.023    0.008   -2.830    0.005   -0.023   -0.122
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.000                               0.000    0.000
##    .educ5_2020        0.000                               0.000    0.000
##     educ5_2016        0.000                               0.000    0.000
##     party7_2016       0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020|t1   -0.786    0.031  -25.117    0.000   -0.786   -0.786
##     party7_2020|t2   -0.525    0.029  -17.884    0.000   -0.525   -0.525
##     party7_2020|t3   -0.256    0.028   -9.070    0.000   -0.256   -0.256
##     party7_2020|t4   -0.011    0.028   -0.401    0.689   -0.011   -0.011
##     party7_2020|t5    0.287    0.028   10.134    0.000    0.287    0.287
##     party7_2020|t6    0.626    0.030   20.877    0.000    0.626    0.626
##     educ5_2020|t1    -1.810    0.053  -34.226    0.000   -1.810   -1.810
##     educ5_2020|t2    -0.855    0.032  -26.761    0.000   -0.855   -0.855
##     educ5_2020|t3     0.052    0.028    1.869    0.062    0.052    0.052
##     educ5_2020|t4     0.827    0.032   26.108    0.000    0.827    0.827
##     educ5_2016|t1    -1.803    0.053  -34.268    0.000   -1.803   -1.803
##     educ5_2016|t2    -0.844    0.032  -26.517    0.000   -0.844   -0.844
##     educ5_2016|t3     0.108    0.028    3.871    0.000    0.108    0.108
##     educ5_2016|t4     0.852    0.032   26.680    0.000    0.852    0.852
##     party7_2016|t1   -0.920    0.033  -28.163    0.000   -0.920   -0.920
##     party7_2016|t2   -0.535    0.029  -18.190    0.000   -0.535   -0.535
##     party7_2016|t3   -0.213    0.028   -7.561    0.000   -0.213   -0.213
##     party7_2016|t4    0.071    0.028    2.537    0.011    0.071    0.071
##     party7_2016|t5    0.410    0.029   14.244    0.000    0.410    0.410
##     party7_2016|t6    0.859    0.032   26.842    0.000    0.859    0.859
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.253                               0.253    0.253
##    .educ5_2020        0.140                               0.140    0.140
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020       1.000                               1.000    1.000
##     educ5_2020        1.000                               1.000    1.000
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   party7_2020 ~                                                         
##     educ5_2016       -0.024    0.027   -0.894    0.371   -0.024   -0.024
##     party7_2016       0.823    0.013   64.177    0.000    0.823    0.823
##   educ5_2020 ~                                                          
##     educ5_2016        0.894    0.007  122.774    0.000    0.894    0.894
##     party7_2016       0.016    0.021    0.768    0.442    0.016    0.016
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   educ5_2016 ~~                                                         
##     party7_2016       0.058    0.040    1.441    0.150    0.058    0.058
##  .party7_2020 ~~                                                        
##    .educ5_2020        0.003    0.017    0.209    0.834    0.003    0.014
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.000                               0.000    0.000
##    .educ5_2020        0.000                               0.000    0.000
##     educ5_2016        0.000                               0.000    0.000
##     party7_2016       0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020|t1   -0.420    0.048   -8.822    0.000   -0.420   -0.420
##     party7_2020|t2    0.005    0.046    0.110    0.912    0.005    0.005
##     party7_2020|t3    0.329    0.047    7.001    0.000    0.329    0.329
##     party7_2020|t4    0.732    0.051   14.397    0.000    0.732    0.732
##     party7_2020|t5    1.037    0.056   18.425    0.000    1.037    1.037
##     party7_2020|t6    1.298    0.063   20.491    0.000    1.298    1.298
##     educ5_2020|t1    -1.465    0.069  -21.111    0.000   -1.465   -1.465
##     educ5_2020|t2    -0.710    0.051  -14.049    0.000   -0.710   -0.710
##     educ5_2020|t3     0.255    0.047    5.466    0.000    0.255    0.255
##     educ5_2020|t4     0.887    0.053   16.643    0.000    0.887    0.887
##     educ5_2016|t1    -1.417    0.068  -20.989    0.000   -1.417   -1.417
##     educ5_2016|t2    -0.617    0.049  -12.496    0.000   -0.617   -0.617
##     educ5_2016|t3     0.365    0.047    7.731    0.000    0.365    0.365
##     educ5_2016|t4     1.014    0.056   18.181    0.000    1.014    1.014
##     party7_2016|t1   -0.483    0.048  -10.055    0.000   -0.483   -0.483
##     party7_2016|t2   -0.002    0.046   -0.037    0.971   -0.002   -0.002
##     party7_2016|t3    0.322    0.047    6.855    0.000    0.322    0.322
##     party7_2016|t4    0.736    0.051   14.467    0.000    0.736    0.736
##     party7_2016|t5    1.055    0.057   18.605    0.000    1.055    1.055
##     party7_2016|t6    1.455    0.069   21.089    0.000    1.455    1.455
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .party7_2020       0.324                               0.324    0.324
##    .educ5_2020        0.199                               0.199    0.199
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     party7_2020       1.000                               1.000    1.000
##     educ5_2020        1.000                               1.000    1.000
##     educ5_2016        1.000                               1.000    1.000
##     party7_2016       1.000                               1.000    1.000

So, there’s the difference: education only affects party among Whites, but not non-Whites. This is presumably due to range-restriction, since few non-Whites vote Republican.

Binary Model

ZFitR  <- sem(ZModBi, data, estimator = "DWLS", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
ZFitRE <- sem(ZModBi, data, estimator = "DWLS", group = "white_2020", group.equal = "regressions")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
round(cbind(Free       = fitMeasures(ZFitR, FITM), #Saturated vs not-saturated
            Restricted = fitMeasures(ZFitRE, FITM)), 3)
##                Free Restricted
## chisq             0      4.885
## df                0      4.000
## npar             28     24.000
## cfi               1      1.000
## rmsea             0      0.013
## rmsea.ci.lower    0      0.000
## rmsea.ci.upper    0      0.044
## aic              NA         NA
## bic              NA         NA
ZFitR  <- sem(ZModBi, data, estimator = "DWLS", sampling.weights = "weight_panel_pre", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
ZFitRE <- sem(ZModBi, data, estimator = "DWLS", sampling.weights = "weight_panel_pre", group = "white_2020", 
              group.equal = "regressions")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
round(cbind(Free       = fitMeasures(ZFitR, FITM),
            Restricted = fitMeasures(ZFitRE, FITM)), 3)
##                Free Restricted
## chisq             0      7.135
## df                0      4.000
## npar             28     24.000
## cfi               1      1.000
## rmsea             0      0.024
## rmsea.ci.lower    0      0.000
## rmsea.ci.upper    0      0.052
## aic              NA         NA
## bic              NA         NA
ZFitR  <- sem(ZModBi, data, cluster = "state_2020", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= -7.934755e-18) is smaller than zero. This may be a symptom that
##     the model is not identified.
ZFitRE <- sem(ZModBi, data, cluster = "state_2020", group = "white_2020", 
              group.equal = "regressions")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= 1.034559e-18) is close to zero. This may be a symptom that the
##     model is not identified.
round(cbind(Free       = fitMeasures(ZFitR, FITM),
            Restricted = fitMeasures(ZFitRE, FITM)), 3)
##                    Free Restricted
## chisq             0.000     10.340
## df                0.000      4.000
## npar             28.000     24.000
## cfi               1.000      0.999
## rmsea             0.000      0.034
## rmsea.ci.lower    0.000      0.008
## rmsea.ci.upper    0.000      0.060
## aic            9508.995   9511.335
## bic            9674.828   9653.478
ZFitR  <- sem(ZModBi, data, sampling.weights = "weight_panel_pre", cluster = "state_2020", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= -1.234322e-17) is smaller than zero. This may be a symptom that
##     the model is not identified.
ZFitRE <- sem(ZModBi, data, sampling.weights = "weight_panel_pre", cluster = "state_2020", group = "white_2020", 
              group.equal = "regressions")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= 7.584927e-20) is close to zero. This may be a symptom that the
##     model is not identified.
round(cbind(Free       = fitMeasures(ZFitR, FITM),
            Restricted = fitMeasures(ZFitRE, FITM)), 3)
##                    Free Restricted
## chisq             0.000     15.852
## df                0.000      4.000
## npar             28.000     24.000
## cfi               1.000      0.998
## rmsea             0.000      0.046
## rmsea.ci.lower    0.000      0.024
## rmsea.ci.upper    0.000      0.071
## aic            9771.753   9779.605
## bic            9937.587   9921.748

Not significant, not significant, significant, significant.

ZFitR  <- sem(ZModBi, data, cluster = "state_2020", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= -7.934755e-18) is smaller than zero. This may be a symptom that
##     the model is not identified.
summary(ZFitR, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 45 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        28
## 
##   Number of observations per group:               Used       Total
##     1                                             2018        2059
##     0                                              741         756
##   Number of clusters [state_2020]:                                
##     1                                               50            
##     0                                               49            
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
##   Information                                 Observed            
##   Test statistic for each group:
##     1                                            0.000       0.000
##     0                                            0.000       0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              6212.830    2833.240
##   Degrees of freedom                                12          12
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  2.193
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                         1.000
##   Robust Tucker-Lewis Index (TLI)                            1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4726.497   -4726.497
##   Loglikelihood unrestricted model (H1)      -4726.497   -4726.497
##                                                                   
##   Akaike (AIC)                                9508.995    9508.995
##   Bayesian (BIC)                              9674.828    9674.828
##   Sample-size adjusted Bayesian (BIC)         9585.863    9585.863
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Expected
##   Information saturated (h1) model           Structured
## 
## 
## Group 1 [1]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ParDi20 ~                                                             
##     EduDi16           0.104    0.016    6.373    0.000    0.104    0.106
##     ParDi16           0.731    0.016   45.413    0.000    0.731    0.735
##   EduDi20 ~                                                             
##     EduDi16           0.888    0.011   78.493    0.000    0.888    0.885
##     ParDi16           0.024    0.011    2.226    0.026    0.024    0.024
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   EduDi16 ~~                                                            
##     ParDi16           0.034    0.007    4.865    0.000    0.034    0.139
##  .ParDi20 ~~                                                            
##    .EduDi20           0.005    0.002    2.806    0.005    0.005    0.065
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.048    0.009    5.274    0.000    0.048    0.097
##    .EduDi20           0.063    0.008    7.823    0.000    0.063    0.127
##     EduDi16           0.457    0.018   25.262    0.000    0.457    0.917
##     ParDi16           0.416    0.022   19.317    0.000    0.416    0.844
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.102    0.005   21.669    0.000    0.102    0.426
##    .EduDi20           0.052    0.005   10.756    0.000    0.052    0.210
##     EduDi16           0.248    0.002  159.124    0.000    0.248    1.000
##     ParDi16           0.243    0.004   66.984    0.000    0.243    1.000
## 
## 
## Group 2 [0]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ParDi20 ~                                                             
##     EduDi16           0.051    0.024    2.079    0.038    0.051    0.050
##     ParDi16           0.675    0.030   22.549    0.000    0.675    0.676
##   EduDi20 ~                                                             
##     EduDi16           0.841    0.021   39.225    0.000    0.841    0.823
##     ParDi16           0.016    0.024    0.650    0.515    0.016    0.016
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   EduDi16 ~~                                                            
##     ParDi16           0.001    0.008    0.190    0.850    0.001    0.006
##  .ParDi20 ~~                                                            
##    .EduDi20           0.002    0.003    0.460    0.646    0.002    0.015
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.188    0.027    7.008    0.000    0.188    0.389
##    .EduDi20           0.089    0.018    5.025    0.000    0.089    0.181
##     EduDi16           0.358    0.019   19.231    0.000    0.358    0.746
##     ParDi16           0.626    0.021   30.458    0.000    0.626    1.294
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.126    0.010   12.631    0.000    0.126    0.540
##    .EduDi20           0.077    0.009    8.289    0.000    0.077    0.323
##     EduDi16           0.230    0.005   43.384    0.000    0.230    1.000
##     ParDi16           0.234    0.005   45.117    0.000    0.234    1.000
ZFitR  <- sem(ZModBi, data, sampling.weights = "weight_panel_pre", cluster = "state_2020", group = "white_2020")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'white_2020' contains missing values
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= -1.234322e-17) is smaller than zero. This may be a symptom that
##     the model is not identified.
summary(ZFitR, stand = T, fit = T)
## lavaan 0.6-12 ended normally after 43 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        28
## 
##   Number of observations per group:                       Used       Total
##     1                                                     2018        2059
##     0                                                      741         756
##   Number of clusters [state_2020]:                                        
##     1                                                       50            
##     0                                                       49            
##   Sampling weights variable                   weight_panel_pre            
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
##   Test statistic for each group:
##     1                                            0.000       0.000
##     0                                            0.000       0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              5360.319    1640.851
##   Degrees of freedom                                12          12
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  3.267
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4857.877   -4857.877
##   Loglikelihood unrestricted model (H1)      -4857.877   -4857.877
##                                                                   
##   Akaike (AIC)                                9771.753    9771.753
##   Bayesian (BIC)                              9937.587    9937.587
##   Sample-size adjusted Bayesian (BIC)         9848.621    9848.621
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.000
##   P-value RMSEA <= 0.05                             NA          NA
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000       0.000
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## 
## Group 1 [1]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ParDi20 ~                                                             
##     EduDi16           0.097    0.018    5.447    0.000    0.097    0.095
##     ParDi16           0.714    0.020   34.953    0.000    0.714    0.722
##   EduDi20 ~                                                             
##     EduDi16           0.876    0.013   65.732    0.000    0.876    0.858
##     ParDi16           0.036    0.019    1.850    0.064    0.036    0.036
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   EduDi16 ~~                                                            
##     ParDi16           0.029    0.008    3.866    0.000    0.029    0.126
##  .ParDi20 ~~                                                            
##    .EduDi20           0.008    0.003    3.247    0.001    0.008    0.102
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.058    0.011    5.168    0.000    0.058    0.120
##    .EduDi20           0.067    0.009    7.360    0.000    0.067    0.137
##     EduDi16           0.351    0.017   20.245    0.000    0.351    0.735
##     ParDi16           0.396    0.024   16.329    0.000    0.396    0.810
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.106    0.006   17.156    0.000    0.106    0.453
##    .EduDi20           0.061    0.006   10.398    0.000    0.061    0.255
##     EduDi16           0.228    0.005   43.979    0.000    0.228    1.000
##     ParDi16           0.239    0.005   47.550    0.000    0.239    1.000
## 
## 
## Group 2 [0]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ParDi20 ~                                                             
##     EduDi16           0.022    0.033    0.673    0.501    0.022    0.020
##     ParDi16           0.645    0.044   14.769    0.000    0.645    0.645
##   EduDi20 ~                                                             
##     EduDi16           0.819    0.027   30.366    0.000    0.819    0.763
##     ParDi16           0.012    0.032    0.365    0.715    0.012    0.012
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   EduDi16 ~~                                                            
##     ParDi16          -0.002    0.008   -0.215    0.829   -0.002   -0.008
##  .ParDi20 ~~                                                            
##    .EduDi20           0.001    0.005    0.269    0.788    0.001    0.013
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.215    0.045    4.779    0.000    0.215    0.445
##    .EduDi20           0.108    0.018    5.902    0.000    0.108    0.231
##     EduDi16           0.256    0.018   13.922    0.000    0.256    0.587
##     ParDi16           0.629    0.026   24.145    0.000    0.629    1.303
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ParDi20           0.137    0.012   11.309    0.000    0.137    0.584
##    .EduDi20           0.092    0.013    7.228    0.000    0.092    0.418
##     EduDi16           0.191    0.009   21.236    0.000    0.191    1.000
##     ParDi16           0.233    0.007   34.606    0.000    0.233    1.000
sessionInfo()
## R version 4.2.1 (2022-06-23 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19044)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_United States.utf8 
## [2] LC_CTYPE=English_United States.utf8   
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] sjmisc_2.8.9  lavaan_0.6-12 psych_2.2.9   pacman_0.5.1 
## 
## loaded via a namespace (and not attached):
##  [1] pillar_1.8.1     bslib_0.4.0      compiler_4.2.1   jquerylib_0.1.4 
##  [5] tools_4.2.1      digest_0.6.29    tibble_3.1.8     lifecycle_1.0.3 
##  [9] jsonlite_1.8.2   evaluate_0.17    nlme_3.1-157     lattice_0.20-45 
## [13] pkgconfig_2.0.3  rlang_1.0.6      cli_3.4.1        rstudioapi_0.14 
## [17] yaml_2.3.5       parallel_4.2.1   pbivnorm_0.6.0   xfun_0.33       
## [21] fastmap_1.1.0    stringr_1.4.1    dplyr_1.0.10     knitr_1.40      
## [25] generics_0.1.3   sass_0.4.2       vctrs_0.4.2      tidyselect_1.2.0
## [29] stats4_4.2.1     sjlabelled_1.2.0 grid_4.2.1       snakecase_0.11.0
## [33] glue_1.6.2       R6_2.5.1         fansi_1.0.3      rmarkdown_2.17  
## [37] purrr_0.3.5      magrittr_2.0.3   MASS_7.3-57      htmltools_0.5.3 
## [41] mnormt_2.1.1     insight_0.18.5   utf8_1.2.2       stringi_1.7.8   
## [45] cachem_1.0.6