# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("RTX", "GD", "LMT", "BA")
stock_prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
ar_table <- stock_prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- ar_table %>% distinct(asset) %>% pull()
symbols
## [1] "BA" "GD" "LMT" "RTX"
# weights
weights <- c(0.35, 0.30, 0.20, 0.15)
weights
## [1] 0.35 0.30 0.20 0.15
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 BA 0.35
## 2 GD 0.3
## 3 LMT 0.2
## 4 RTX 0.15
portfolio_returns_table <- ar_table %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = ("returns"))
portfolio_returns_table
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.0224
## 2 2013-02-28 0.0349
## 3 2013-03-28 0.0727
## 4 2013-04-30 0.0405
## 5 2013-05-31 0.0642
## 6 2013-06-28 0.0184
## 7 2013-07-31 0.0764
## 8 2013-08-30 -0.0114
## 9 2013-09-30 0.0773
## 10 2013-10-31 0.0423
## # … with 50 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_table %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 0.320
# Assign a value for window
window = 24
# Transform data: calculate 24 month rolling kurtosis
rolling_kurt_table <- portfolio_returns_table %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
# Plot
rolling_kurt_table %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "slateblue") +
# Formatting
scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5))+
# Labeling
labs(x = NULL,
y = "Kurtosis",
title = paste0("Rolling ", window, "-Month Kurtosis")) +
annotate(geom = "text",
x = as.Date("2016-07-01"),
y = 1.5,
size = 5,
color = "red",
label = str_glue("Downside risk skyrocketed
toward the end of 2017"))
Has the downside risk of your portfolio increased or decreased over
time? Explain using the plot you created. You may also refer to the
skewness of the returns distribution you plotted in the previous
assignment.
The downside risk of my portfolio has increases over this time. The first thing we need to look at to see this is the skewness plot from last week. From that plot we are able to see that the portfolio has negative skewness. This means that a majority of returns are going to be on the left of a graph or negative. And as the kurtosis increases, the amount of returns on the left side of the graph will increase which will make the tail thicker on that side.