Integrantes:

-Eisik, Magali

-Gomez, Sergio

-Querci, Marcia

-Valenti, Florencia

-Estudio de Sobrevida Global en pacientes pediÔtricos con diagnóstico de Leucemia LinfoblÔstica Aguda en Argentina.

-Objetivo General: evaluar sobrevida global en pacientes pediatricos con LLA considerando la enfermedad residual minima como una de las variables explicativas mas importantes.

## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.5     v dplyr   1.0.7
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.0.2     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
##  [1] "Sexo"        "Down"        "Blancos"     "Blastos"     "MO"         
##  [6] "SNC"         "Ploidia"     "Estirpe"     "RTA_PRED"    "CAT_ERM"    
## [11] "Edad"        "MLL"         "TIEMPOSG"    "SGSTATUS"    "Edad_cat"   
## [16] "Blancos_cat" "TEL"
## [1] 17
## [1] 2096
DT::datatable(head(datos))

Analisis exploratorio de datos

## Warning: NAs introducidos por coerción
##                      Stratified by SGSTATUS
##                       0             1              p      test
##   n                    1628           468                     
##   Edad_cat = 2 (%)      713 (43.8)    258 ( 55.1)  <0.001     
##   MO (mean (SD))      86.76 (14.95) 86.89 (15.39)   0.870     
##   Blancos_cat = 2 (%)   490 (30.1)    227 ( 48.5)  <0.001     
##   Blastos (mean (SD)) 45.98 (34.85) 55.24 (36.17)  <0.001     
##   Sexo = 1 (%)          896 (55.0)    276 ( 59.0)   0.145     
##   Down = 1 (%)           21 ( 1.3)     23 (  4.9)  <0.001     
##   Ploidia (%)                                      <0.001     
##      1                  277 (17.0)     63 ( 13.5)             
##      2                  849 (52.1)     53 ( 11.3)             
##      4                  427 (26.2)    351 ( 75.0)             
##      5                   75 ( 4.6)      1 (  0.2)             
##   Down = 1 (%)           21 ( 1.3)     23 (  4.9)  <0.001     
##   MLL = 1 (%)            19 ( 1.2)      5 (  1.1)   1.000     
##   TEL = 1 (%)           193 (14.8)     29 (  7.4)  <0.001     
##   CAT_ERM (%)                                      <0.001     
##      1                  569 (41.4)     87 ( 23.6)             
##      2                  629 (45.8)    177 ( 48.0)             
##      3                  175 (12.7)    105 ( 28.5)             
##   SNC (%)                                           0.004     
##      1                 1561 (95.9)    431 ( 92.1)             
##      2                   15 ( 0.9)      9 (  1.9)             
##      3                   52 ( 3.2)     28 (  6.0)             
##   Estirpe = T (%)       156 ( 9.6)     82 ( 17.5)  <0.001     
##   RTA_PRED = 1 (%)     1502 (92.3)    358 ( 77.2)  <0.001     
##   SGSTATUS = 1 (%)        0 ( 0.0)    468 (100.0)  <0.001
## 
##      ### Summary of continuous variables ###
## 
## SGSTATUS: 0
##            n miss p.miss mean sd median p25 p75 min max  skew kurt
## MO      1628    0    0.0   87 15     90  84  96  10 100 -2.19    5
## Blastos 1628   11    0.7   46 35     45  10  80   0 100  0.06   -2
## ------------------------------------------------------------ 
## SGSTATUS: 1
##           n miss p.miss mean sd median p25 p75 min max skew kurt
## MO      468    0    0.0   87 15     90  84  97  14 100 -2.1    4
## Blastos 468    2    0.4   55 36     66  18  90   0 100 -0.3   -1
## 
## p-values
##              pNormal   pNonNormal
## MO      8.704414e-01 3.045138e-01
## Blastos 5.956894e-07 1.283530e-07
## 
## Standardize mean differences
##              1 vs 2
## MO      0.008487245
## Blastos 0.260606893
## 
## =======================================================================================
## 
##      ### Summary of categorical variables ### 
## 
## SGSTATUS: 0
##          var    n miss p.miss level freq percent cum.percent
##     Edad_cat 1628    0    0.0     1  915    56.2        56.2
##                                   2  713    43.8       100.0
##                                                             
##  Blancos_cat 1628    0    0.0     1 1138    69.9        69.9
##                                   2  490    30.1       100.0
##                                                             
##         Sexo 1628    0    0.0     0  732    45.0        45.0
##                                   1  896    55.0       100.0
##                                                             
##         Down 1628    0    0.0     0 1607    98.7        98.7
##                                   1   21     1.3       100.0
##                                                             
##      Ploidia 1628    0    0.0     1  277    17.0        17.0
##                                   2  849    52.1        69.2
##                                   4  427    26.2        95.4
##                                   5   75     4.6       100.0
##                                                             
##         Down 1628    0    0.0     0 1607    98.7        98.7
##                                   1   21     1.3       100.0
##                                                             
##          MLL 1628    8    0.5     0 1601    98.8        98.8
##                                   1   19     1.2       100.0
##                                                             
##          TEL 1628  324   19.9     0 1111    85.2        85.2
##                                   1  193    14.8       100.0
##                                                             
##      CAT_ERM 1628  255   15.7     1  569    41.4        41.4
##                                   2  629    45.8        87.3
##                                   3  175    12.7       100.0
##                                                             
##          SNC 1628    0    0.0     1 1561    95.9        95.9
##                                   2   15     0.9        96.8
##                                   3   52     3.2       100.0
##                                                             
##      Estirpe 1628    0    0.0     B 1472    90.4        90.4
##                                   T  156     9.6       100.0
##                                                             
##     RTA_PRED 1628    1    0.1     0  125     7.7         7.7
##                                   1 1502    92.3       100.0
##                                                             
##     SGSTATUS 1628    0    0.0     0 1628   100.0       100.0
##                                   1    0     0.0       100.0
##                                                             
## ------------------------------------------------------------ 
## SGSTATUS: 1
##          var   n miss p.miss level freq percent cum.percent
##     Edad_cat 468    0    0.0     1  210    44.9        44.9
##                                  2  258    55.1       100.0
##                                                            
##  Blancos_cat 468    0    0.0     1  241    51.5        51.5
##                                  2  227    48.5       100.0
##                                                            
##         Sexo 468    0    0.0     0  192    41.0        41.0
##                                  1  276    59.0       100.0
##                                                            
##         Down 468    0    0.0     0  445    95.1        95.1
##                                  1   23     4.9       100.0
##                                                            
##      Ploidia 468    0    0.0     1   63    13.5        13.5
##                                  2   53    11.3        24.8
##                                  4  351    75.0        99.8
##                                  5    1     0.2       100.0
##                                                            
##         Down 468    0    0.0     0  445    95.1        95.1
##                                  1   23     4.9       100.0
##                                                            
##          MLL 468    1    0.2     0  462    98.9        98.9
##                                  1    5     1.1       100.0
##                                                            
##          TEL 468   77   16.5     0  362    92.6        92.6
##                                  1   29     7.4       100.0
##                                                            
##      CAT_ERM 468   99   21.2     1   87    23.6        23.6
##                                  2  177    48.0        71.5
##                                  3  105    28.5       100.0
##                                                            
##          SNC 468    0    0.0     1  431    92.1        92.1
##                                  2    9     1.9        94.0
##                                  3   28     6.0       100.0
##                                                            
##      Estirpe 468    0    0.0     B  386    82.5        82.5
##                                  T   82    17.5       100.0
##                                                            
##     RTA_PRED 468    4    0.9     0  106    22.8        22.8
##                                  1  358    77.2       100.0
##                                                            
##     SGSTATUS 468    0    0.0     0    0     0.0         0.0
##                                  1  468   100.0       100.0
##                                                            
## 
## p-values
##                  pApprox       pExact
## Edad_cat    1.866934e-05 1.581855e-05
## Blancos_cat 2.106591e-13 4.595884e-13
## Sexo        1.445013e-01 1.391732e-01
## Down        3.525496e-06 1.102234e-05
## Ploidia     1.706850e-85 1.906877e-89
## Down1       3.525496e-06 1.102234e-05
## MLL         1.000000e+00 1.000000e+00
## TEL         2.069250e-04 7.934739e-05
## CAT_ERM     7.721123e-16 3.250971e-15
## SNC         3.806641e-03 4.424535e-03
## Estirpe     2.755190e-06 4.764492e-06
## RTA_PRED    8.530406e-20 1.595150e-17
## SGSTATUS    0.000000e+00 0.000000e+00
## 
## Standardize mean differences
##                  1 vs 2
## Edad_cat    0.228125508
## Blancos_cat 0.383721247
## Sexo        0.079597601
## Down        0.210209547
## Ploidia     1.219003556
## Down        0.210209547
## MLL         0.009701837
## TEL         0.236609459
## CAT_ERM     0.481288932
## SNC         0.160304959
## Estirpe     0.233524495
## RTA_PRED    0.431279929
## SGSTATUS            NaN
Tabla 1: Caracteristicas de pacientes con LLA segun sobrevida global
1 vs 2
Edad_cat 0.2281255
Blancos_cat 0.3837212
Sexo 0.0795976
Down 0.2102095
Ploidia 1.2190036
Down 0.2102095
MLL 0.0097018
TEL 0.2366095
CAT_ERM 0.4812889
SNC 0.1603050
Estirpe 0.2335245
RTA_PRED 0.4312799
SGSTATUS NaN
1 Test de Wilcoxon
2 Test de Chi Cuadrado
3 Test de Fisher

-TABLA1

## Warning in ModuleReturnVarsExist(vars, data): The data frame does not have: Rto
## Globulos Blancos (GB/L sangre) Dropped
##                                                
##                                                 Overall      
##   n                                              2096        
##   Sexo Masculino = 1 (%)                         1172 (55.9) 
##   Presencia de Down = 1 (%)                        44 ( 2.1) 
##    Blastos en Sangre Periferica (%) (mean (SD)) 48.05 (35.35)
##   Blastos en MO (%) (mean (SD))                 86.79 (15.05)
##   Compromiso SNC (%)                                         
##      1                                           1992 (95.0) 
##      2                                             24 ( 1.1) 
##      3                                             80 ( 3.8) 
##   Ploidia (%)                                                
##      1                                            340 (16.2) 
##      2                                            902 (43.0) 
##      4                                            778 (37.1) 
##      5                                             76 ( 3.6) 
##   Estirpe T = T (%)                               238 (11.4) 
##   Rta prednisona = 1 (%)                         1860 (89.0) 
##   Edad (aƱos) (mean (SD))                        6.55 (4.47) 
##   Gen MLL = 1 (%)                                  24 ( 1.1) 
##   Fallecio = 1 (%)                                468 (22.3) 
##   Categoria Rto GB = 2 (%)                        971 (46.3) 
##   Gen TEL = 1 (%)                                 222 (13.1)
##                                                
##                                                 Overall      
##   n                                              2096        
##   Sexo Masculino = 1 (%)                         1172 (55.9) 
##   Presencia de Down = 1 (%)                        44 ( 2.1) 
##    Blastos en Sangre Periferica (%) (mean (SD)) 48.05 (35.35)
##   Blastos en MO (%) (mean (SD))                 86.79 (15.05)
##   Compromiso SNC (%)                                         
##      1                                           1992 (95.0) 
##      2                                             24 ( 1.1) 
##      3                                             80 ( 3.8) 
##   Ploidia (%)                                                
##      1                                            340 (16.2) 
##      2                                            902 (43.0) 
##      4                                            778 (37.1) 
##      5                                             76 ( 3.6) 
##   Estirpe T = T (%)                               238 (11.4) 
##   Rta prednisona = 1 (%)                         1860 (89.0) 
##   Edad (aƱos) (mean (SD))                        6.55 (4.47) 
##   Gen MLL = 1 (%)                                  24 ( 1.1) 
##   Fallecio = 1 (%)                                468 (22.3) 
##   Categoria Rto GB = 2 (%)                        971 (46.3) 
##   Gen TEL = 1 (%)                                 222 (13.1)
Tabla 1: Caracteristicas de pacientes con LLA
Overall
n 2096
Sexo Masculino = 1 (%) 1172 (55.9)
Presencia de Down = 1 (%) 44 ( 2.1)
Blastos en Sangre Periferica (%) (mean (SD)) 48.05 (35.35)
Blastos en MO (%) (mean (SD)) 86.79 (15.05)
Compromiso SNC (%)
1 1992 (95.0)
2 24 ( 1.1)
3 80 ( 3.8)
Ploidia (%)
1 340 (16.2)
2 902 (43.0)
4 778 (37.1)
5 76 ( 3.6)
Estirpe T = T (%) 238 (11.4)
Rta prednisona = 1 (%) 1860 (89.0)
Edad (aƱos) (mean (SD)) 6.55 (4.47)
Gen MLL = 1 (%) 24 ( 1.1)
Fallecio = 1 (%) 468 (22.3)
Categoria Rto GB = 2 (%) 971 (46.3)
Gen TEL = 1 (%) 222 (13.1)
1 Test de Wilcoxon
2 Test de Chi Cuadrado
3 Test de Fisher

##Analisis de supuestos y test

-Variables categoricas

## Warning: NAs introducidos por coerción
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla1
## X-squared = 21.507, df = 1, p-value = 3.525e-06
## 
##  Pearson's Chi-squared test
## 
## data:  tabla2
## X-squared = 395.9, df = 3, p-value < 2.2e-16

## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla3
## X-squared = 82.923, df = 1, p-value < 2.2e-16
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla4
## X-squared = 2.1294, df = 1, p-value = 0.1445

## 
##  Pearson's Chi-squared test
## 
## data:  tabla5
## X-squared = 11.142, df = 2, p-value = 0.003807
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla6
## X-squared = 3.0278e-30, df = 1, p-value = 1

## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla7
## X-squared = 13.767, df = 1, p-value = 0.0002069
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla8
## X-squared = 21.98, df = 1, p-value = 2.755e-06

## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla9
## X-squared = 18.32, df = 1, p-value = 1.867e-05
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  tabla10
## X-squared = 53.903, df = 1, p-value = 2.107e-13
## 
##  Pearson's Chi-squared test
## 
## data:  tabla11
## X-squared = 69.595, df = 2, p-value = 7.721e-16

-Variables continuas

## 
##  Shapiro-Wilk normality test
## 
## data:  datos$Edad
## W = 0.90726, p-value < 2.2e-16
## Warning in as.data.frame.numeric(residuos, r_estandarizados, predichos):
## 'row.names' is not a character vector of length 2096 -- omitting it. Will be an
## error!
## Warning in if (!optional) names(value) <- nm: la condición tiene longitud > 1 y
## sólo el primer elemento serÔ usado
## 
##  Shapiro-Wilk normality test
## 
## data:  residuos
## W = 0.91756, p-value < 2.2e-16

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## 
##  Shapiro-Wilk normality test
## 
## data:  datos$Blastos
## W = 0.89253, p-value < 2.2e-16
## Warning in as.data.frame.numeric(residuos, r_estandarizados1, predichos1):
## 'row.names' is not a character vector of length 2096 -- omitting it. Will be an
## error!

## Warning in as.data.frame.numeric(residuos, r_estandarizados1, predichos1): la
## condición tiene longitud > 1 y sólo el primer elemento serÔ usado
## 
##  Shapiro-Wilk normality test
## 
## data:  residuos1
## W = 0.90662, p-value < 2.2e-16

## 
##  Shapiro-Wilk normality test
## 
## data:  datos$Blancos
## W = 0.44578, p-value < 2.2e-16
## Warning in as.data.frame.numeric(residuos2, r_estandarizados2, predichos2):
## 'row.names' is not a character vector of length 2096 -- omitting it. Will be an
## error!

## Warning in as.data.frame.numeric(residuos2, r_estandarizados2, predichos2): la
## condición tiene longitud > 1 y sólo el primer elemento serÔ usado
## 
##  Shapiro-Wilk normality test
## 
## data:  residuos2
## W = 0.5307, p-value < 2.2e-16

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## 
##  Shapiro-Wilk normality test
## 
## data:  datos$MO
## W = 0.74845, p-value < 2.2e-16
## Warning in as.data.frame.numeric(residuos3, r_estandarizados3, predichos3):
## 'row.names' is not a character vector of length 2096 -- omitting it. Will be an
## error!

## Warning in as.data.frame.numeric(residuos3, r_estandarizados3, predichos3): la
## condición tiene longitud > 1 y sólo el primer elemento serÔ usado
## 
##  Shapiro-Wilk normality test
## 
## data:  residuos3
## W = 0.74877, p-value < 2.2e-16

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:purrr':
## 
##     some
## Levene's Test for Homogeneity of Variance (center = median)
##         Df F value    Pr(>F)    
## group    1  23.892 1.096e-06 ***
##       2094                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Levene's Test for Homogeneity of Variance (center = median)
##         Df F value Pr(>F)
## group    1  0.9532  0.329
##       2081
## Levene's Test for Homogeneity of Variance (center = median)
##         Df F value    Pr(>F)    
## group    1  96.876 < 2.2e-16 ***
##       2094                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Levene's Test for Homogeneity of Variance (center = median)
##         Df F value Pr(>F)
## group    1  0.4469 0.5039
##       2094
#Test para variables continuas
#Blastos: no cumple normalidad ni homocedasticidad. Test de la mediana.
#MO: no cumple normalidad y cumple homocedasticidad. Test de Wilcoxon/Mann Whitney

library(coin)
#Test de la mediana
median_test(Blastos~SGSTATUS,datos)  
## 
##  Asymptotic Two-Sample Brown-Mood Median Test
## 
## data:  Blastos by SGSTATUS (0, 1)
## Z = -4.0017, p-value = 6.29e-05
## alternative hypothesis: true mu is not equal to 0
# Da pv < 0.05
#Test de Wilcoxon/Mann Whitney
wilcox.test(datos$MO~datos$SGSTATUS,paired=FALSE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  datos$MO by datos$SGSTATUS
## W = 369200, p-value = 0.3045
## alternative hypothesis: true location shift is not equal to 0
#da pv > 0.05

Visualizacion de datos

## 
## Attaching package: 'networkD3'
## The following object is masked from 'package:DT':
## 
##     JS
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## 
## Attaching package: 'highcharter'
## The following object is masked from 'package:networkD3':
## 
##     JS

## Warning: Removed 13 rows containing non-finite values (stat_boxplot).
## Warning: Removed 13 rows containing missing values (geom_point).

## Warning: Removed 13 rows containing non-finite values (stat_density).

-Sankey plot para variables categoricas

#Sankey plot




#CATEGORIAS DE ENFERMEDAD RESIDUAL  Y SNC
data1<- basesankey%>%dplyr::select(SNC,CAT_ERM, evolucion)
hchart(data_to_sankey(data1), "sankey", name = "Sobrevida segun ERM y SNC")
##CATEGORIAS DE ENFERMEDAD RESIDUAL  Y SNC
data2<- basesankey%>%dplyr::select(Estirpe,CAT_ERM, evolucion)
hchart(data_to_sankey(data2), "sankey", name = "Sobrevida segun ERM y Estirpe")
#CATEGORIAS DE ENFERMEDAD residual minima
data2<- basesankey%>%dplyr::select(CAT_ERM, evolucion)
hchart(data_to_sankey(data2), "sankey", name = "Sobrevida segun ERM ")
sankeyNetworkOutput("TF-ceecs.html", width = "500px", height = "1000px")

#ESTIRPE, Rta pred Y CAT ERM
data3<- basesankey%>%dplyr::select(Estirpe, RTA_PRED,CAT_ERM, Estirpe)
hchart(data_to_sankey(data3), "sankey", name = "Estirpe, Respuesta a Prednisona y ERM ")

Analisis e imputacion de datos faltantes

## 
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
## 
##     filter
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.5.1
## Current Matrix version is 1.4.0
## Please re-install 'TMB' from source using install.packages('TMB', type = 'source') or ask CRAN for a binary version of 'TMB' matching CRAN's 'Matrix' package
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
## 
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
## 
##     sleep

##        Sexo        Down     Blancos     Blastos          MO         SNC 
##           0           0           0          13           0           0 
##     Ploidia     Estirpe    RTA_PRED     CAT_ERM        Edad         MLL 
##           0           0           5         354           0           9 
##    TIEMPOSG    SGSTATUS    Edad_cat Blancos_cat         TEL 
##           0           0           0           0         401
## [1] 782
## [1] 34850
## [1] 0.02194656
## [1] 2.194656
## [1] 0.9780534
## [1] 97.80534
## [1] 0.1688931
## [1] 83.11069
## [1] 0.1913168
## [1] 80.86832
## [1] 0.004293893
## [1] 99.57061
## [1] 0.002385496
## [1] 99.76145
## [1] 0.00620229
## [1] 99.37977
## # A tibble: 17 x 3
##    variable    n_miss pct_miss
##    <chr>        <int>    <dbl>
##  1 TEL            401   19.1  
##  2 CAT_ERM        354   16.9  
##  3 Blastos         13    0.620
##  4 MLL              9    0.429
##  5 RTA_PRED         5    0.239
##  6 Sexo             0    0    
##  7 Down             0    0    
##  8 Blancos          0    0    
##  9 MO               0    0    
## 10 SNC              0    0    
## 11 Ploidia          0    0    
## 12 Estirpe          0    0    
## 13 Edad             0    0    
## 14 TIEMPOSG         0    0    
## 15 SGSTATUS         0    0    
## 16 Edad_cat         0    0    
## 17 Blancos_cat      0    0
## # A tibble: 2,096 x 3
##     case n_miss pct_miss
##    <int>  <int>    <dbl>
##  1   498      3     17.6
##  2   555      3     17.6
##  3  1350      3     17.6
##  4     9      2     11.8
##  5   313      2     11.8
##  6   376      2     11.8
##  7   408      2     11.8
##  8   411      2     11.8
##  9   412      2     11.8
## 10   419      2     11.8
## # ... with 2,086 more rows

## Warning: It is deprecated to specify `guide = FALSE` to remove a guide. Please
## use `guide = "none"` instead.

## Warning: It is deprecated to specify `guide = FALSE` to remove a guide. Please
## use `guide = "none"` instead.

## Warning: It is deprecated to specify `guide = FALSE` to remove a guide. Please
## use `guide = "none"` instead.

## Warning: It is deprecated to specify `guide = FALSE` to remove a guide. Please
## use `guide = "none"` instead.

## Warning: It is deprecated to specify `guide = FALSE` to remove a guide. Please
## use `guide = "none"` instead.

##      Sexo Down Blancos MO SNC Ploidia Estirpe Edad TIEMPOSG SGSTATUS Edad_cat
## 1472    1    1       1  1   1       1       1    1        1        1        1
## 249     1    1       1  1   1       1       1    1        1        1        1
## 200     1    1       1  1   1       1       1    1        1        1        1
## 148     1    1       1  1   1       1       1    1        1        1        1
## 12      1    1       1  1   1       1       1    1        1        1        1
## 1       1    1       1  1   1       1       1    1        1        1        1
## 8       1    1       1  1   1       1       1    1        1        1        1
## 1       1    1       1  1   1       1       1    1        1        1        1
## 3       1    1       1  1   1       1       1    1        1        1        1
## 2       1    1       1  1   1       1       1    1        1        1        1
##         0    0       0  0   0       0       0    0        0        0        0
##      Blancos_cat RTA_PRED MLL Blastos CAT_ERM TEL    
## 1472           1        1   1       1       1   1   0
## 249            1        1   1       1       1   0   1
## 200            1        1   1       1       0   1   1
## 148            1        1   1       1       0   0   2
## 12             1        1   1       0       1   1   1
## 1              1        1   1       0       1   0   2
## 8              1        1   0       1       1   1   1
## 1              1        1   0       1       0   0   3
## 3              1        0   1       1       0   1   2
## 2              1        0   1       1       0   0   3
##                0        5   9      13     354 401 782
## Warning in plot.aggr(res, ...): not enough horizontal space to display
## frequencies

## 
##  Variables sorted by number of missings: 
##     Variable       Count
##          TEL 0.191316794
##      CAT_ERM 0.168893130
##      Blastos 0.006202290
##          MLL 0.004293893
##     RTA_PRED 0.002385496
##         Sexo 0.000000000
##         Down 0.000000000
##      Blancos 0.000000000
##           MO 0.000000000
##          SNC 0.000000000
##      Ploidia 0.000000000
##      Estirpe 0.000000000
##         Edad 0.000000000
##     TIEMPOSG 0.000000000
##     SGSTATUS 0.000000000
##     Edad_cat 0.000000000
##  Blancos_cat 0.000000000

## 
##  Variables sorted by number of missings: 
##     Variable       Count
##          TEL 0.191316794
##      CAT_ERM 0.168893130
##      Blastos 0.006202290
##          MLL 0.004293893
##     RTA_PRED 0.002385496
##         Sexo 0.000000000
##         Down 0.000000000
##      Blancos 0.000000000
##           MO 0.000000000
##          SNC 0.000000000
##      Ploidia 0.000000000
##      Estirpe 0.000000000
##         Edad 0.000000000
##     TIEMPOSG 0.000000000
##     SGSTATUS 0.000000000
##     Edad_cat 0.000000000
##  Blancos_cat 0.000000000
## # A tibble: 2,096 x 17
##    Sexo_NA Down_NA Blancos_NA Blastos_NA MO_NA SNC_NA Ploidia_NA Estirpe_NA
##    <fct>   <fct>   <fct>      <fct>      <fct> <fct>  <fct>      <fct>     
##  1 !NA     !NA     !NA        !NA        !NA   !NA    !NA        !NA       
##  2 !NA     !NA     !NA        !NA        !NA   !NA    !NA        !NA       
##  3 !NA     !NA     !NA        !NA        !NA   !NA    !NA        !NA       
##  4 !NA     !NA     !NA        !NA        !NA   !NA    !NA        !NA       
##  5 !NA     !NA     !NA        !NA        !NA   !NA    !NA        !NA       
##  6 !NA     !NA     !NA        !NA        !NA   !NA    !NA        !NA       
##  7 !NA     !NA     !NA        !NA        !NA   !NA    !NA        !NA       
##  8 !NA     !NA     !NA        !NA        !NA   !NA    !NA        !NA       
##  9 !NA     !NA     !NA        !NA        !NA   !NA    !NA        !NA       
## 10 !NA     !NA     !NA        !NA        !NA   !NA    !NA        !NA       
## # ... with 2,086 more rows, and 9 more variables: RTA_PRED_NA <fct>,
## #   CAT_ERM_NA <fct>, Edad_NA <fct>, MLL_NA <fct>, TIEMPOSG_NA <fct>,
## #   SGSTATUS_NA <fct>, Edad_cat_NA <fct>, Blancos_cat_NA <fct>, TEL_NA <fct>
## Rows: 2,096
## Columns: 34
## $ Sexo           <fct> 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1~
## $ Down           <fct> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ Blancos        <dbl> 3, 36, 10, 8, 12, 37, 203, 3, 1, 3, 13, 30, 52, 130, 6,~
## $ Blastos        <dbl> 2, 48, 95, 98, 22, 62, 93, 21, 0, 8, 27, 90, 84, 100, 0~
## $ MO             <dbl> 90, 50, 98, 98, 80, 95, 80, 85, 87, 54, 95, 92, 99, 100~
## $ SNC            <fct> 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1~
## $ Ploidia        <fct> 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2~
## $ Estirpe        <fct> B, T, B, B, B, T, T, B, B, B, T, T, T, T, T, T, T, T, T~
## $ RTA_PRED       <fct> 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
## $ CAT_ERM        <fct> NA, 3, 3, 1, 1, 1, 3, 1, NA, NA, NA, 1, 2, 2, 2, NA, 1,~
## $ Edad           <dbl> 2, 14, 4, 3, 1, 15, 13, 6, 8, 12, 5, 10, 3, 6, 14, 10, ~
## $ MLL            <fct> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ TIEMPOSG       <dbl> 81, 16, 67, 131, 28, 69, 37, 86, 67, 36, 61, 23, 62, 26~
## $ SGSTATUS       <fct> 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0~
## $ Edad_cat       <fct> 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2~
## $ Blancos_cat    <fct> 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2~
## $ TEL            <fct> 0, NA, 0, 0, NA, 0, 0, NA, NA, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ Sexo_NA        <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ Down_NA        <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ Blancos_NA     <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ Blastos_NA     <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ MO_NA          <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ SNC_NA         <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ Ploidia_NA     <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ Estirpe_NA     <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ RTA_PRED_NA    <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ CAT_ERM_NA     <fct> NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, NA, NA, NA, !NA,~
## $ Edad_NA        <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ MLL_NA         <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ TIEMPOSG_NA    <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ SGSTATUS_NA    <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ Edad_cat_NA    <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ Blancos_cat_NA <fct> !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, !NA, ~
## $ TEL_NA         <fct> !NA, NA, !NA, !NA, NA, !NA, !NA, NA, NA, !NA, !NA, !NA,~
## [1] 0.2977099

## Warning: Use with(imp, glm(yourmodel).
##           term      estimate   std.error  statistic        df      p.value
## 1  (Intercept) -1.3007824567 0.439605193 -2.9589788 1798.0207 3.126940e-03
## 2        Sexo1  0.0528324772 0.125672434  0.4203983 2070.3249 6.742381e-01
## 3        Down1  1.3294313553 0.370595340  3.5872857 2028.2466 3.420539e-04
## 4         MLL1  0.2933404553 0.591795702  0.4956786 2067.1251 6.201739e-01
## 5    RTA_PRED1 -0.6300229939 0.195031252 -3.2303694 1734.5375 1.259454e-03
## 6     EstirpeT -0.1338678892 0.211047902 -0.6343010 2064.1655 5.259547e-01
## 7         Edad  0.0241103446 0.013660319  1.7649913 1999.8605 7.771782e-02
## 8         TEL1 -0.5762202082 0.219948876 -2.6197916 1038.0977 8.926733e-03
## 9      Blancos  0.0032928612 0.000776925  4.2383258 2035.2579 2.352554e-05
## 10          MO -0.0052278182 0.004291177 -1.2182715 2047.3730 2.232612e-01
## 11        SNC2  0.1325226406 0.527806214  0.2510820 1994.8570 8.017766e-01
## 12        SNC3  0.4430398638 0.306363535  1.4461247 2071.0550 1.482936e-01
## 13    Ploidia2 -1.2226491648 0.208346585 -5.8683427 2072.1236 5.112339e-09
## 14    Ploidia4  1.3205602248 0.167215416  7.8973593 2070.0768 4.440892e-15
## 15    Ploidia5 -2.8068669981 1.035198470 -2.7114289 2071.1581 6.754730e-03
## 16     Blastos  0.0003344771 0.002084880  0.1604299 1938.6126 8.725591e-01
## 17    CAT_ERM2  0.4590747846 0.156960393  2.9247811  348.2371 3.672853e-03
## 18    CAT_ERM3  0.9860947469 0.205451455  4.7996484  285.7899 2.565611e-06
## Warning: Use with(imp, glm(yourmodel).
##           term    estimate   std.error  statistic        df      p.value
## 1  (Intercept) -1.26208331 0.437958070 -2.8817446 1694.6959 4.004599e-03
## 2        Sexo1  0.04899378 0.124543894  0.3933857 2072.7918 6.940751e-01
## 3        Down1  1.39049740 0.373925620  3.7186470 1995.9577 2.058186e-04
## 4         MLL1  0.24426628 0.583121942  0.4188940 2067.9673 6.753371e-01
## 5    RTA_PRED1 -0.73714835 0.186589926 -3.9506332 1693.6616 8.114415e-05
## 6     EstirpeT  0.30192226 0.187722543  1.6083431 2064.7640 1.079129e-01
## 7         TEL1 -0.65544778 0.217400163 -3.0149369 1039.0232 2.632755e-03
## 8           MO -0.00166119 0.004050626 -0.4101069 2046.7945 6.817705e-01
## 9         SNC2  0.28734335 0.508397001  0.5651948 1955.0885 5.720061e-01
## 10        SNC3  0.61996426 0.291573851  2.1262684 2073.5829 3.359874e-02
## 11    CAT_ERM2  0.47708443 0.155414077  3.0697633  355.6627 2.306936e-03
## 12    CAT_ERM3  1.07755125 0.204907401  5.2587230  238.6481 3.222466e-07
## 13    Ploidia2 -1.22634393 0.205553505 -5.9660570 2074.9933 2.850354e-09
## 14    Ploidia4  1.32664881 0.165069215  8.0369244 2073.1694 1.554312e-15
## 15    Ploidia5 -2.65753854 1.020358390 -2.6045148 2076.2030 9.266080e-03
## Class: mipo    m = 10 
##           term  m    estimate         ubar            b            t dfcom
## 1  (Intercept) 10 -1.26208331 1.862100e-01 5.088400e-03 1.918073e-01  2081
## 2        Sexo1 10  0.04899378 1.547961e-02 2.870093e-05 1.551118e-02  2081
## 3        Down1 10  1.39049740 1.382252e-01 1.450147e-03 1.398204e-01  2081
## 4         MLL1 10  0.24426628 3.389761e-01 9.591450e-04 3.400312e-01  2081
## 5    RTA_PRED1 10 -0.73714835 3.379803e-02 9.252474e-04 3.481580e-02  2081
## 6     EstirpeT 10  0.30192226 3.510911e-02 1.187691e-04 3.523975e-02  2081
## 7         TEL1 10 -0.65544778 4.425906e-02 2.730699e-03 4.726283e-02  2081
## 8           MO 10 -0.00166119 1.630325e-05 9.483332e-08 1.640757e-05  2081
## 9         SNC2 10  0.28734335 2.547164e-01 3.410089e-03 2.584675e-01  2081
## 10        SNC3 10  0.61996426 8.485942e-02 1.417211e-04 8.501531e-02  2081
## 11    CAT_ERM2 10  0.47708443 2.071579e-02 3.125222e-03 2.415354e-02  2081
## 12    CAT_ERM3 10  1.07755125 3.442558e-02 6.874061e-03 4.198704e-02  2081
## 13    Ploidia2 10 -1.22634393 4.219111e-02 5.557140e-05 4.225224e-02  2081
## 14    Ploidia4 10  1.32664881 2.719498e-02 4.806337e-05 2.724785e-02  2081
## 15    Ploidia5 10 -2.65753854 1.040008e+00 1.020910e-03 1.041131e+00  2081
##           df         riv      lambda         fmi
## 1  1694.6959 0.030058746 0.029181584 0.030325273
## 2  2072.7918 0.002039523 0.002035372 0.002996899
## 3  1995.9577 0.011540313 0.011408654 0.012397760
## 4  2067.9673 0.003112489 0.003102831 0.004065567
## 5  1693.6616 0.030113359 0.029233053 0.030377379
## 6  2064.7640 0.003721142 0.003707346 0.004670989
## 7  1039.0232 0.067867886 0.063554572 0.065351932
## 8  2046.7945 0.006398517 0.006357836 0.007327341
## 9  1955.0885 0.014726565 0.014512841 0.015519422
## 10 2073.5829 0.001837076 0.001833707 0.002795062
## 11  355.6627 0.165947974 0.142328799 0.147111405
## 12  238.6481 0.219646794 0.180090494 0.186876474
## 13 2074.9933 0.001448849 0.001446753 0.002407827
## 14 2073.1694 0.001944098 0.001940326 0.002901770
## 15 2076.2030 0.001079800 0.001078635 0.002039505
## Class: mipo    m = 10 
##           term  m    estimate         ubar            b            t dfcom
## 1  (Intercept) 10 -1.26208331 1.862100e-01 5.088400e-03 1.918073e-01  2081
## 2        Sexo1 10  0.04899378 1.547961e-02 2.870093e-05 1.551118e-02  2081
## 3        Down1 10  1.39049740 1.382252e-01 1.450147e-03 1.398204e-01  2081
## 4         MLL1 10  0.24426628 3.389761e-01 9.591450e-04 3.400312e-01  2081
## 5    RTA_PRED1 10 -0.73714835 3.379803e-02 9.252474e-04 3.481580e-02  2081
## 6     EstirpeT 10  0.30192226 3.510911e-02 1.187691e-04 3.523975e-02  2081
## 7         TEL1 10 -0.65544778 4.425906e-02 2.730699e-03 4.726283e-02  2081
## 8           MO 10 -0.00166119 1.630325e-05 9.483332e-08 1.640757e-05  2081
## 9         SNC2 10  0.28734335 2.547164e-01 3.410089e-03 2.584675e-01  2081
## 10        SNC3 10  0.61996426 8.485942e-02 1.417211e-04 8.501531e-02  2081
## 11    CAT_ERM2 10  0.47708443 2.071579e-02 3.125222e-03 2.415354e-02  2081
## 12    CAT_ERM3 10  1.07755125 3.442558e-02 6.874061e-03 4.198704e-02  2081
## 13    Ploidia2 10 -1.22634393 4.219111e-02 5.557140e-05 4.225224e-02  2081
## 14    Ploidia4 10  1.32664881 2.719498e-02 4.806337e-05 2.724785e-02  2081
## 15    Ploidia5 10 -2.65753854 1.040008e+00 1.020910e-03 1.041131e+00  2081
##           df         riv      lambda         fmi
## 1  1694.6959 0.030058746 0.029181584 0.030325273
## 2  2072.7918 0.002039523 0.002035372 0.002996899
## 3  1995.9577 0.011540313 0.011408654 0.012397760
## 4  2067.9673 0.003112489 0.003102831 0.004065567
## 5  1693.6616 0.030113359 0.029233053 0.030377379
## 6  2064.7640 0.003721142 0.003707346 0.004670989
## 7  1039.0232 0.067867886 0.063554572 0.065351932
## 8  2046.7945 0.006398517 0.006357836 0.007327341
## 9  1955.0885 0.014726565 0.014512841 0.015519422
## 10 2073.5829 0.001837076 0.001833707 0.002795062
## 11  355.6627 0.165947974 0.142328799 0.147111405
## 12  238.6481 0.219646794 0.180090494 0.186876474
## 13 2074.9933 0.001448849 0.001446753 0.002407827
## 14 2073.1694 0.001944098 0.001940326 0.002901770
## 15 2076.2030 0.001079800 0.001078635 0.002039505

Random forest para seleccion de variables

## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
## 
##     combine
## The following object is masked from 'package:ggplot2':
## 
##     margin
## List of 18
##  $ call           : language randomForest(formula = TIEMPOSG ~ CAT_ERM + Sexo + Down + RTA_PRED + Estirpe +      Edad + TEL + Blancos + SNC + | __truncated__ ...
##  $ type           : chr "regression"
##  $ predicted      : Named num [1:2096] 59.6 30 48.2 62 67.8 ...
##   ..- attr(*, "names")= chr [1:2096] "1" "2" "3" "4" ...
##  $ mse            : num [1:500] 1646 1444 1345 1349 1323 ...
##  $ rsq            : num [1:500] -0.457 -0.278 -0.19 -0.195 -0.171 ...
##  $ oob.times      : int [1:2096] 184 198 178 193 190 169 178 172 196 203 ...
##  $ importance     : num [1:11, 1:2] 16.959 0.932 -2.253 33.495 5.026 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:11] "CAT_ERM" "Sexo" "Down" "RTA_PRED" ...
##   .. ..$ : chr [1:2] "%IncMSE" "IncNodePurity"
##  $ importanceSD   : Named num [1:11] 2.369 1.842 0.569 1.766 1.359 ...
##   ..- attr(*, "names")= chr [1:11] "CAT_ERM" "Sexo" "Down" "RTA_PRED" ...
##  $ localImportance: NULL
##  $ proximity      : NULL
##  $ ntree          : num 500
##  $ mtry           : num 3
##  $ forest         :List of 11
##   ..$ ndbigtree    : int [1:500] 1013 691 871 893 977 847 1017 1041 919 841 ...
##   ..$ nodestatus   : int [1:1125, 1:500] -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 ...
##   ..$ leftDaughter : int [1:1125, 1:500] 2 4 6 8 10 12 14 16 18 20 ...
##   ..$ rightDaughter: int [1:1125, 1:500] 3 5 7 9 11 13 15 17 19 21 ...
##   ..$ nodepred     : num [1:1125, 1:500] 51.4 52.9 36 38.9 54.1 ...
##   ..$ bestvar      : int [1:1125, 1:500] 8 4 6 8 8 10 11 1 1 11 ...
##   ..$ xbestsplit   : num [1:1125, 1:500] 122.5 1 11.5 110.5 1.5 ...
##   ..$ ncat         : Named int [1:11] 3 2 2 2 2 1 2 1 3 4 ...
##   .. ..- attr(*, "names")= chr [1:11] "CAT_ERM" "Sexo" "Down" "RTA_PRED" ...
##   ..$ nrnodes      : int 1125
##   ..$ ntree        : num 500
##   ..$ xlevels      :List of 11
##   .. ..$ CAT_ERM : chr [1:3] "1" "2" "3"
##   .. ..$ Sexo    : chr [1:2] "0" "1"
##   .. ..$ Down    : chr [1:2] "0" "1"
##   .. ..$ RTA_PRED: chr [1:2] "0" "1"
##   .. ..$ Estirpe : chr [1:2] "B" "T"
##   .. ..$ Edad    : num 0
##   .. ..$ TEL     : chr [1:2] "0" "1"
##   .. ..$ Blancos : num 0
##   .. ..$ SNC     : chr [1:3] "1" "2" "3"
##   .. ..$ Ploidia : chr [1:4] "1" "2" "4" "5"
##   .. ..$ Blastos : num 0
##  $ coefs          : NULL
##  $ y              : Named num [1:2096] 81 16 67 131 28 69 37 86 67 36 ...
##   ..- attr(*, "names")= chr [1:2096] "1" "2" "3" "4" ...
##  $ test           : NULL
##  $ inbag          : NULL
##  $ terms          :Classes 'terms', 'formula'  language TIEMPOSG ~ CAT_ERM + Sexo + Down + RTA_PRED + Estirpe + Edad + TEL + Blancos +      SNC + RTA_PRED + Ploidia + Blastos
##   .. ..- attr(*, "variables")= language list(TIEMPOSG, CAT_ERM, Sexo, Down, RTA_PRED, Estirpe, Edad, TEL, Blancos,      SNC, Ploidia, Blastos)
##   .. ..- attr(*, "factors")= int [1:12, 1:11] 0 1 0 0 0 0 0 0 0 0 ...
##   .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. ..$ : chr [1:12] "TIEMPOSG" "CAT_ERM" "Sexo" "Down" ...
##   .. .. .. ..$ : chr [1:11] "CAT_ERM" "Sexo" "Down" "RTA_PRED" ...
##   .. ..- attr(*, "term.labels")= chr [1:11] "CAT_ERM" "Sexo" "Down" "RTA_PRED" ...
##   .. ..- attr(*, "order")= int [1:11] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..- attr(*, "intercept")= num 0
##   .. ..- attr(*, "response")= int 1
##   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. ..- attr(*, "predvars")= language list(TIEMPOSG, CAT_ERM, Sexo, Down, RTA_PRED, Estirpe, Edad, TEL, Blancos,      SNC, Ploidia, Blastos)
##   .. ..- attr(*, "dataClasses")= Named chr [1:12] "numeric" "factor" "factor" "factor" ...
##   .. .. ..- attr(*, "names")= chr [1:12] "TIEMPOSG" "CAT_ERM" "Sexo" "Down" ...
##  - attr(*, "class")= chr [1:2] "randomForest.formula" "randomForest"
##              %IncMSE IncNodePurity
## CAT_ERM   16.9591729      81738.82
## Sexo       0.9315931      48819.71
## Down      -2.2526670      15959.19
## RTA_PRED  33.4947526      50318.57
## Estirpe    5.0262561      27585.99
## Edad       4.0521685     243419.65
## TEL        2.8139730      30138.20
## Blancos   62.6043195     330429.83
## SNC        2.7122820      32780.21
## Ploidia  255.7426601     337653.91
## Blastos   40.2086143     312194.30
## Warning in base::cbind(...): number of rows of result is not a multiple of
## vector length (arg 2)
## 'data.frame':    17 obs. of  2 variables:
##  $ w: chr  "Sexo" "Down" "Blancos" "Blastos" ...
##  $ v: chr  "16.9591728930578" "0.931593088517574" "-2.25266700890893" "33.4947525579218" ...

-Regresion de COX con base de datos con imputacion

#models<-with(datos_imputados,coxph(Surv(TIEMPOSG,SGSTATUS)~ Down+RTA_PRED+Estirpe+Edad_cat+TEL+Blancos_cat+SNC+RTA_PRED+Ploidia+Blastos+CAT_ERM+MO+MLL))
#summary(pool(models))

#Comentario: no nos dio la regresion de cox con la base de datos imputada, trabajamos con la base sin imputar.

-Regresion de COX con base de datos sin imputacion

library(survival)
library(ggplot2)
library(KMsurv)
library(ggfortify)
library ( survminer)
## Loading required package: ggpubr
## 
## Attaching package: 'survminer'
## The following object is masked from 'package:survival':
## 
##     myeloma
library(survMisc)
## 
## Attaching package: 'survMisc'
## The following object is masked from 'package:ggplot2':
## 
##     autoplot
library(base)
library(flexsurv)
library(coin)
library(data.table)
## 
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
## The following object is masked from 'package:purrr':
## 
##     transpose
library(Hmisc)
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following object is masked from 'package:arsenal':
## 
##     %nin%
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
#Graficos
#CATEGORIAS DE ENFERMEDAD RESIDUAL
ckm<-survfit(Surv(TIEMPOSG, SGSTATUS) ~ CAT_ERM,data=datos, conf.type="log-log")

ggsurvplot(fit = ckm, data =datos, conf.int = T, title = "LLA",
          xlab = "Tiempo", ylab = "Probabilidad de sobrevida", legend.title = "CAT_ERM",
                legend.labs = c("Estandar", "Intermedio", "Elevado"), risk.table = "percentage",  ncensor.plot = F, surv.median.line = "hv")
## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, : Median
## survival not reached.

print(ckm, print.rmean=TRUE)
## Call: survfit(formula = Surv(TIEMPOSG, SGSTATUS) ~ CAT_ERM, data = datos, 
##     conf.type = "log-log")
## 
##    354 observations deleted due to missingness 
##             n events rmean* se(rmean) median 0.95LCL 0.95UCL
## CAT_ERM=1 656     87  115.6      1.76     NA      NA      NA
## CAT_ERM=2 806    177  102.8      2.05     NA      NA      NA
## CAT_ERM=3 280    105   83.4      3.73     NA      67      NA
##     * restricted mean with upper limit =  133
#SEXO
ckm_sexo<-survfit(Surv(TIEMPOSG, SGSTATUS) ~ Sexo,data=datos, conf.type="log-log")
ggsurvplot(fit = ckm_sexo, data =datos, conf.int = T, title = "LLA",
          xlab = "Tiempo", ylab = "Probabilidad de sobrevida", legend.title = "Sexo",
                legend.labs = c("Femenino","Masculino"), risk.table = "percentage",  ncensor.plot = F, surv.median.line = "hv")
## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, : Median
## survival not reached.

print(ckm_sexo, print.rmean=TRUE)
## Call: survfit(formula = Surv(TIEMPOSG, SGSTATUS) ~ Sexo, data = datos, 
##     conf.type = "log-log")
## 
##           n events rmean* se(rmean) median 0.95LCL 0.95UCL
## Sexo=0  924    192    105      1.76     NA      NA      NA
## Sexo=1 1172    276    102      1.65     NA      NA      NA
##     * restricted mean with upper limit =  133
#Down
ckm_down<-survfit(Surv(TIEMPOSG, SGSTATUS) ~ Down,data=datos, conf.type="log-log")
ggsurvplot(fit = ckm_down, data =datos, conf.int = T, title = "LLA",
          xlab = "Tiempo", ylab = "Probabilidad de sobrevida", legend.title = "Down",
                legend.labs = c("No","Si"), risk.table = "percentage",  ncensor.plot = F, surv.median.line = "hv")

print(ckm_down, print.rmean=TRUE)
## Call: survfit(formula = Surv(TIEMPOSG, SGSTATUS) ~ Down, data = datos, 
##     conf.type = "log-log")
## 
##           n events rmean* se(rmean) median 0.95LCL 0.95UCL
## Down=0 2052    445  104.2      1.21     NA      NA      NA
## Down=1   44     23   66.8      9.31     46      23      NA
##     * restricted mean with upper limit =  133
#SNC
ckm_snc<-survfit(Surv(TIEMPOSG, SGSTATUS) ~ SNC,data=datos, conf.type="log-log")
ggsurvplot(fit = ckm_snc, data =datos, conf.int = T, title = "LLA",
          xlab = "Tiempo", ylab = "Probabilidad de sobrevida", legend.title = "SNC",
                legend.labs = c("1","2","3"), risk.table = "percentage",  ncensor.plot = F, surv.median.line = "hv")
## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, : Median
## survival not reached.

print(ckm_snc, print.rmean=TRUE)
## Call: survfit(formula = Surv(TIEMPOSG, SGSTATUS) ~ SNC, data = datos, 
##     conf.type = "log-log")
## 
##          n events rmean* se(rmean) median 0.95LCL 0.95UCL
## SNC=1 1992    431  104.2      1.23     NA      NA      NA
## SNC=2   24      9   87.9     11.97     NA      12      NA
## SNC=3   80     28   87.1      6.88     NA      47      NA
##     * restricted mean with upper limit =  133
#Ploidia
ckm_ploidia<-survfit(Surv(TIEMPOSG, SGSTATUS) ~ Ploidia,data=datos, conf.type="log-log")
ggsurvplot(fit = ckm_ploidia, data =datos, conf.int = T, title = "LLA",
          xlab = "Tiempo", ylab = "Probabilidad de sobrevida", legend.title = "Ploidia",
                legend.labs = c("1","2","4","5"), risk.table = "percentage",  ncensor.plot = F, surv.median.line = "hv")

print(ckm_ploidia, print.rmean=TRUE)
## Call: survfit(formula = Surv(TIEMPOSG, SGSTATUS) ~ Ploidia, data = datos, 
##     conf.type = "log-log")
## 
##             n events rmean* se(rmean) median 0.95LCL 0.95UCL
## Ploidia=1 340     63  106.4      3.07     NA      NA      NA
## Ploidia=2 902     53  124.7      1.31     NA      NA      NA
## Ploidia=4 778    351   73.7      2.26     65      52      97
## Ploidia=5  76      1  131.7      1.28     NA      NA      NA
##     * restricted mean with upper limit =  133
#Estirpe
ckm_estirpe<-survfit(Surv(TIEMPOSG, SGSTATUS) ~ Estirpe,data=datos, conf.type="log-log")
ggsurvplot(fit = ckm_estirpe, data =datos, conf.int = T, title = "LLA",
          xlab = "Tiempo", ylab = "Probabilidad de sobrevida", legend.title = "Estirpe",
                legend.labs = c("B","T"), risk.table = "percentage",  ncensor.plot = F, surv.median.line = "hv")
## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, : Median
## survival not reached.

print(ckm_estirpe, print.rmean=TRUE)
## Call: survfit(formula = Surv(TIEMPOSG, SGSTATUS) ~ Estirpe, data = datos, 
##     conf.type = "log-log")
## 
##              n events rmean* se(rmean) median 0.95LCL 0.95UCL
## Estirpe=B 1858    386  105.3      1.26     NA      NA      NA
## Estirpe=T  238     82   88.9      3.90     NA      NA      NA
##     * restricted mean with upper limit =  133
#RTA_pred
ckm_pred<-survfit(Surv(TIEMPOSG, SGSTATUS) ~ RTA_PRED,data=datos, conf.type="log-log")
ggsurvplot(fit = ckm_pred, data =datos, conf.int = T, title = "LLA",
          xlab = "Tiempo", ylab = "Probabilidad de sobrevida", legend.title = "Rta Prednisona",
                legend.labs = c("No","Si"), risk.table = "percentage",  ncensor.plot = F, surv.median.line = "hv")

print(ckm_pred, print.rmean=TRUE)
## Call: survfit(formula = Surv(TIEMPOSG, SGSTATUS) ~ RTA_PRED, data = datos, 
##     conf.type = "log-log")
## 
##    5 observations deleted due to missingness 
##               n events rmean* se(rmean) median 0.95LCL 0.95UCL
## RTA_PRED=0  231    106   71.9      4.36     49      30      NA
## RTA_PRED=1 1860    358  107.4      1.22     NA      NA      NA
##     * restricted mean with upper limit =  133
#MLL

ckm_mll<-survfit(Surv(TIEMPOSG, SGSTATUS) ~ MLL,data=datos, conf.type="log-log")
ggsurvplot(fit = ckm_mll, data =datos, conf.int = T, title = "LLA",
          xlab = "Tiempo", ylab = "Probabilidad de sobrevida", legend.title = "MLL",
                legend.labs = c("Ausente","Presente"), risk.table = "percentage",  ncensor.plot = F, surv.median.line = "hv")
## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, : Median
## survival not reached.

print(ckm_mll, print.rmean=TRUE)
## Call: survfit(formula = Surv(TIEMPOSG, SGSTATUS) ~ MLL, data = datos, 
##     conf.type = "log-log")
## 
##    9 observations deleted due to missingness 
##          n events rmean* se(rmean) median 0.95LCL 0.95UCL
## MLL=0 2063    462    103      1.22     NA      NA      NA
## MLL=1   24      5    106     10.69     NA      55      NA
##     * restricted mean with upper limit =  133
#TEL
ckm_tel<-survfit(Surv(TIEMPOSG, SGSTATUS) ~ TEL,data=datos, conf.type="log-log")
ggsurvplot(fit = ckm_tel, data =datos, conf.int = T, title = "LLA",
          xlab = "Tiempo", ylab = "Probabilidad de sobrevida", legend.title = "TEL",
                legend.labs = c("Ausente","Presente"), risk.table = "percentage",  ncensor.plot = F, surv.median.line = "hv")
## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, : Median
## survival not reached.

print(ckm_tel, print.rmean=TRUE)
## Call: survfit(formula = Surv(TIEMPOSG, SGSTATUS) ~ TEL, data = datos, 
##     conf.type = "log-log")
## 
##    401 observations deleted due to missingness 
##          n events rmean* se(rmean) median 0.95LCL 0.95UCL
## TEL=0 1473    362    100      1.51     NA      NA      NA
## TEL=1  222     29    116      2.90     NA      NA      NA
##     * restricted mean with upper limit =  133
#Edad cat
ckm_edad<-survfit(Surv(TIEMPOSG, SGSTATUS) ~ Edad_cat,data=datos, conf.type="log-log")
ggsurvplot(fit = ckm_edad, data =datos, conf.int = T, title = "LLA",
          xlab = "Tiempo", ylab = "Probabilidad de sobrevida", legend.title = "Edad",
                legend.labs = c("Menor a 6","Mayor a 6"), risk.table = "percentage",  ncensor.plot = F, surv.median.line = "hv")
## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, : Median
## survival not reached.

print(ckm_edad, print.rmean=TRUE)
## Call: survfit(formula = Surv(TIEMPOSG, SGSTATUS) ~ Edad_cat, data = datos, 
##     conf.type = "log-log")
## 
##               n events rmean* se(rmean) median 0.95LCL 0.95UCL
## Edad_cat=1 1125    210  108.5      1.52     NA      NA      NA
## Edad_cat=2  971    258   97.4      1.93     NA      NA      NA
##     * restricted mean with upper limit =  133
#Blancos cat

ckm_blancos<-survfit(Surv(TIEMPOSG, SGSTATUS) ~ Blancos_cat,data=datos, conf.type="log-log")
ggsurvplot(fit = ckm_blancos, data =datos, conf.int = T, title = "LLA",
          xlab = "Tiempo", ylab = "Probabilidad de sobrevida", legend.title = "GB",
                legend.labs = c("Menor a 20.000","Mayor a 20.000"), risk.table = "percentage",  ncensor.plot = F, surv.median.line = "hv")
## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, : Median
## survival not reached.

print(ckm_blancos, print.rmean=TRUE)
## Call: survfit(formula = Surv(TIEMPOSG, SGSTATUS) ~ Blancos_cat, data = datos, 
##     conf.type = "log-log")
## 
##                  n events rmean* se(rmean) median 0.95LCL 0.95UCL
## Blancos_cat=1 1379    241  109.7      1.37     NA      NA      NA
## Blancos_cat=2  717    227   91.4      2.27     NA      NA      NA
##     * restricted mean with upper limit =  133
kmaids<-survfit(Surv(TIEMPOSG, SGSTATUS)~CAT_ERM,data=datos, type="kaplan-meier",conf.type = "log-log", conf.int = 0.95)
 
print(kmaids, print.rmean=T)
## Call: survfit(formula = Surv(TIEMPOSG, SGSTATUS) ~ CAT_ERM, data = datos, 
##     type = "kaplan-meier", conf.type = "log-log", conf.int = 0.95)
## 
##    354 observations deleted due to missingness 
##             n events rmean* se(rmean) median 0.95LCL 0.95UCL
## CAT_ERM=1 656     87  115.6      1.76     NA      NA      NA
## CAT_ERM=2 806    177  102.8      2.05     NA      NA      NA
## CAT_ERM=3 280    105   83.4      3.73     NA      67      NA
##     * restricted mean with upper limit =  133
#Modelos univariados

#Categorias de ERM
modelo_erm<- coxph( Surv(TIEMPOSG,SGSTATUS) ~ I(CAT_ERM=="2")+I(CAT_ERM=="3"), data=datos)
summary(modelo_erm)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ I(CAT_ERM == "2") + 
##     I(CAT_ERM == "3"), data = datos)
## 
##   n= 1742, number of events= 369 
##    (354 observations deleted due to missingness)
## 
##                         coef exp(coef) se(coef)     z Pr(>|z|)    
## I(CAT_ERM == "2")TRUE 0.5966    1.8160   0.1310 4.555 5.25e-06 ***
## I(CAT_ERM == "3")TRUE 1.2912    3.6371   0.1452 8.893  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                       exp(coef) exp(-coef) lower .95 upper .95
## I(CAT_ERM == "2")TRUE     1.816     0.5507     1.405     2.348
## I(CAT_ERM == "3")TRUE     3.637     0.2749     2.736     4.834
## 
## Concordance= 0.628  (se = 0.014 )
## Likelihood ratio test= 77.78  on 2 df,   p=<2e-16
## Wald test            = 80.19  on 2 df,   p=<2e-16
## Score (logrank) test = 87.6  on 2 df,   p=<2e-16
#Down
modelo_down<- coxph( Surv(TIEMPOSG,SGSTATUS) ~ Down, data=datos)
summary(modelo_down)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Down, data = datos)
## 
##   n= 2096, number of events= 468 
## 
##         coef exp(coef) se(coef)     z Pr(>|z|)    
## Down1 1.0702    2.9159   0.2139 5.004 5.63e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##       exp(coef) exp(-coef) lower .95 upper .95
## Down1     2.916     0.3429     1.917     4.434
## 
## Concordance= 0.516  (se = 0.005 )
## Likelihood ratio test= 18.5  on 1 df,   p=2e-05
## Wald test            = 25.04  on 1 df,   p=6e-07
## Score (logrank) test = 27.52  on 1 df,   p=2e-07
#Modelo con SNC 
modelo_snc<- coxph( Surv(TIEMPOSG, SGSTATUS)~SNC, data=datos)
summary(modelo_snc)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ SNC, data = datos)
## 
##   n= 2096, number of events= 468 
## 
##        coef exp(coef) se(coef)     z Pr(>|z|)   
## SNC2 0.5656    1.7606   0.3368 1.679  0.09311 . 
## SNC3 0.5882    1.8008   0.1951 3.015  0.00257 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      exp(coef) exp(-coef) lower .95 upper .95
## SNC2     1.761     0.5680    0.9098     3.407
## SNC3     1.801     0.5553    1.2286     2.640
## 
## Concordance= 0.519  (se = 0.006 )
## Likelihood ratio test= 9.86  on 2 df,   p=0.007
## Wald test            = 11.57  on 2 df,   p=0.003
## Score (logrank) test = 11.9  on 2 df,   p=0.003
#Modelo con Globulos blancos
modelo_blancos<- coxph( Surv(TIEMPOSG, SGSTATUS)~Blancos, data=datos)
summary(modelo_blancos)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Blancos, data = datos)
## 
##   n= 2096, number of events= 468 
## 
##              coef exp(coef)  se(coef)     z Pr(>|z|)    
## Blancos 0.0030767 1.0030814 0.0002609 11.79   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##         exp(coef) exp(-coef) lower .95 upper .95
## Blancos     1.003     0.9969     1.003     1.004
## 
## Concordance= 0.615  (se = 0.014 )
## Likelihood ratio test= 82.27  on 1 df,   p=<2e-16
## Wald test            = 139.1  on 1 df,   p=<2e-16
## Score (logrank) test = 153.8  on 1 df,   p=<2e-16
#Modelo con MO
modelo_mo<-coxph( Surv(TIEMPOSG, SGSTATUS)~MO, data=datos)
summary(modelo_mo)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ MO, data = datos)
## 
##   n= 2096, number of events= 468 
## 
##          coef  exp(coef)   se(coef)      z Pr(>|z|)
## MO -0.0000736  0.9999264  0.0031069 -0.024    0.981
## 
##    exp(coef) exp(-coef) lower .95 upper .95
## MO    0.9999          1    0.9939     1.006
## 
## Concordance= 0.482  (se = 0.014 )
## Likelihood ratio test= 0  on 1 df,   p=1
## Wald test            = 0  on 1 df,   p=1
## Score (logrank) test = 0  on 1 df,   p=1
#Modelo con Blastos
modelo_blastos<- coxph( Surv(TIEMPOSG, SGSTATUS)~Blastos, data=datos)
summary(modelo_blastos)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Blastos, data = datos)
## 
##   n= 2083, number of events= 466 
##    (13 observations deleted due to missingness)
## 
##             coef exp(coef) se(coef)     z Pr(>|z|)    
## Blastos 0.007007  1.007031 0.001343 5.217 1.82e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##         exp(coef) exp(-coef) lower .95 upper .95
## Blastos     1.007      0.993     1.004      1.01
## 
## Concordance= 0.58  (se = 0.014 )
## Likelihood ratio test= 27.78  on 1 df,   p=1e-07
## Wald test            = 27.22  on 1 df,   p=2e-07
## Score (logrank) test = 27.64  on 1 df,   p=1e-07
#Modelo con TEL
modelo_tel<- coxph( Surv(TIEMPOSG, SGSTATUS)~TEL, data=datos)
summary(modelo_tel)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ TEL, data = datos)
## 
##   n= 1695, number of events= 391 
##    (401 observations deleted due to missingness)
## 
##         coef exp(coef) se(coef)      z Pr(>|z|)    
## TEL1 -0.7011    0.4960   0.1930 -3.633  0.00028 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      exp(coef) exp(-coef) lower .95 upper .95
## TEL1     0.496      2.016    0.3398    0.7241
## 
## Concordance= 0.53  (se = 0.008 )
## Likelihood ratio test= 16.15  on 1 df,   p=6e-05
## Wald test            = 13.2  on 1 df,   p=3e-04
## Score (logrank) test = 13.75  on 1 df,   p=2e-04
#Modelo con MLL
modelo_mll<- coxph( Surv(TIEMPOSG, SGSTATUS)~MLL, data=datos)
summary(modelo_mll)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ MLL, data = datos)
## 
##   n= 2087, number of events= 467 
##    (9 observations deleted due to missingness)
## 
##         coef exp(coef) se(coef)      z Pr(>|z|)
## MLL1 -0.1211    0.8859   0.4497 -0.269    0.788
## 
##      exp(coef) exp(-coef) lower .95 upper .95
## MLL1    0.8859      1.129     0.367     2.139
## 
## Concordance= 0.501  (se = 0.003 )
## Likelihood ratio test= 0.08  on 1 df,   p=0.8
## Wald test            = 0.07  on 1 df,   p=0.8
## Score (logrank) test = 0.07  on 1 df,   p=0.8
#Modelo con Estirpe
modelo_estirpe<- coxph( Surv(TIEMPOSG, SGSTATUS)~Estirpe, data=datos)
summary(modelo_estirpe)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Estirpe, data = datos)
## 
##   n= 2096, number of events= 468 
## 
##            coef exp(coef) se(coef)     z Pr(>|z|)    
## EstirpeT 0.6344    1.8858   0.1217 5.213 1.86e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##          exp(coef) exp(-coef) lower .95 upper .95
## EstirpeT     1.886     0.5303     1.486     2.394
## 
## Concordance= 0.544  (se = 0.009 )
## Likelihood ratio test= 23.62  on 1 df,   p=1e-06
## Wald test            = 27.17  on 1 df,   p=2e-07
## Score (logrank) test = 28.1  on 1 df,   p=1e-07
#Modelo con Ploidia
modelo_ploidia<- coxph( Surv(TIEMPOSG, SGSTATUS)~Ploidia, data=datos)
summary(modelo_ploidia)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Ploidia, data = datos)
## 
##   n= 2096, number of events= 468 
## 
##             coef exp(coef) se(coef)      z Pr(>|z|)    
## Ploidia2 -1.3654    0.2553   0.1869 -7.306 2.74e-13 ***
## Ploidia4  0.9572    2.6044   0.1369  6.990 2.75e-12 ***
## Ploidia5 -3.1259    0.0439   1.0084 -3.100  0.00194 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##          exp(coef) exp(-coef) lower .95 upper .95
## Ploidia2    0.2553      3.917  0.176982    0.3682
## Ploidia4    2.6044      0.384  1.991335    3.4061
## Ploidia5    0.0439     22.781  0.006082    0.3168
## 
## Concordance= 0.744  (se = 0.009 )
## Likelihood ratio test= 433.8  on 3 df,   p=<2e-16
## Wald test            = 284.4  on 3 df,   p=<2e-16
## Score (logrank) test = 433.4  on 3 df,   p=<2e-16
#Modelo con respuesta a la Prednisona
modelo_pred<- coxph( Surv(TIEMPOSG, SGSTATUS)~RTA_PRED, data=datos)
summary(modelo_pred)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ RTA_PRED, data = datos)
## 
##   n= 2091, number of events= 464 
##    (5 observations deleted due to missingness)
## 
##              coef exp(coef) se(coef)      z Pr(>|z|)    
## RTA_PRED1 -1.1487    0.3170   0.1111 -10.34   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## RTA_PRED1     0.317      3.154     0.255    0.3942
## 
## Concordance= 0.578  (se = 0.01 )
## Likelihood ratio test= 85.64  on 1 df,   p=<2e-16
## Wald test            = 107  on 1 df,   p=<2e-16
## Score (logrank) test = 119.1  on 1 df,   p=<2e-16
#Modelo con Sexo
modelo_sexo<- coxph( Surv(TIEMPOSG, SGSTATUS)~Sexo, data=datos)
summary(modelo_sexo)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Sexo, data = datos)
## 
##   n= 2096, number of events= 468 
## 
##          coef exp(coef) se(coef)     z Pr(>|z|)
## Sexo1 0.12922   1.13794  0.09398 1.375    0.169
## 
##       exp(coef) exp(-coef) lower .95 upper .95
## Sexo1     1.138     0.8788    0.9465     1.368
## 
## Concordance= 0.515  (se = 0.012 )
## Likelihood ratio test= 1.9  on 1 df,   p=0.2
## Wald test            = 1.89  on 1 df,   p=0.2
## Score (logrank) test = 1.89  on 1 df,   p=0.2
#Modelo con edad como VA categorica
modelo_edad_cat<- coxph( Surv(TIEMPOSG, SGSTATUS)~Edad_cat, data=datos)
summary(modelo_edad_cat)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Edad_cat, data = datos)
## 
##   n= 2096, number of events= 468 
## 
##              coef exp(coef) se(coef)     z Pr(>|z|)    
## Edad_cat2 0.42730   1.53311  0.09299 4.595 4.32e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## Edad_cat2     1.533     0.6523     1.278      1.84
## 
## Concordance= 0.555  (se = 0.012 )
## Likelihood ratio test= 21.27  on 1 df,   p=4e-06
## Wald test            = 21.12  on 1 df,   p=4e-06
## Score (logrank) test = 21.44  on 1 df,   p=4e-06
#Modelo con globulos blancos como VA categorica
modelo_gb_cat<- coxph( Surv(TIEMPOSG, SGSTATUS)~Blancos_cat, data=datos)
summary(modelo_gb_cat)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Blancos_cat, data = datos)
## 
##   n= 2096, number of events= 468 
## 
##                 coef exp(coef) se(coef)     z Pr(>|z|)    
## Blancos_cat2 0.70475   2.02333  0.09256 7.614 2.66e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Blancos_cat2     2.023     0.4942     1.688     2.426
## 
## Concordance= 0.592  (se = 0.012 )
## Likelihood ratio test= 56.43  on 1 df,   p=6e-14
## Wald test            = 57.97  on 1 df,   p=3e-14
## Score (logrank) test = 60.4  on 1 df,   p=8e-15
#Modelo con edad como VA continua
modelo_edad<- coxph( Surv(TIEMPOSG, SGSTATUS)~Edad, data=datos)
summary(modelo_edad)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Edad, data = datos)
## 
##   n= 2096, number of events= 468 
## 
##          coef exp(coef) se(coef)     z Pr(>|z|)    
## Edad 0.049639  1.050891 0.009922 5.003 5.65e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##      exp(coef) exp(-coef) lower .95 upper .95
## Edad     1.051     0.9516     1.031     1.072
## 
## Concordance= 0.557  (se = 0.015 )
## Likelihood ratio test= 23.94  on 1 df,   p=1e-06
## Wald test            = 25.03  on 1 df,   p=6e-07
## Score (logrank) test = 25.31  on 1 df,   p=5e-07
#Modelo con globulos blancos como VA continua
modelo_blancos<- coxph( Surv(TIEMPOSG, SGSTATUS)~Blancos, data=datos)
summary(modelo_blancos)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Blancos, data = datos)
## 
##   n= 2096, number of events= 468 
## 
##              coef exp(coef)  se(coef)     z Pr(>|z|)    
## Blancos 0.0030767 1.0030814 0.0002609 11.79   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##         exp(coef) exp(-coef) lower .95 upper .95
## Blancos     1.003     0.9969     1.003     1.004
## 
## Concordance= 0.615  (se = 0.014 )
## Likelihood ratio test= 82.27  on 1 df,   p=<2e-16
## Wald test            = 139.1  on 1 df,   p=<2e-16
## Score (logrank) test = 153.8  on 1 df,   p=<2e-16

#Test de Cox Mantel para comparacion de supervivencia en los tres grupos de ERM

summary(coxph( Surv(TIEMPOSG,SGSTATUS) ~ I(CAT_ERM=="2")+I(CAT_ERM=="3"), data=datos))
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ I(CAT_ERM == "2") + 
##     I(CAT_ERM == "3"), data = datos)
## 
##   n= 1742, number of events= 369 
##    (354 observations deleted due to missingness)
## 
##                         coef exp(coef) se(coef)     z Pr(>|z|)    
## I(CAT_ERM == "2")TRUE 0.5966    1.8160   0.1310 4.555 5.25e-06 ***
## I(CAT_ERM == "3")TRUE 1.2912    3.6371   0.1452 8.893  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                       exp(coef) exp(-coef) lower .95 upper .95
## I(CAT_ERM == "2")TRUE     1.816     0.5507     1.405     2.348
## I(CAT_ERM == "3")TRUE     3.637     0.2749     2.736     4.834
## 
## Concordance= 0.628  (se = 0.014 )
## Likelihood ratio test= 77.78  on 2 df,   p=<2e-16
## Wald test            = 80.19  on 2 df,   p=<2e-16
## Score (logrank) test = 87.6  on 2 df,   p=<2e-16
print(summary(coxph( Surv(TIEMPOSG,SGSTATUS) ~ I(CAT_ERM=="2")+I(CAT_ERM=="3"), data=datos)))
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ I(CAT_ERM == "2") + 
##     I(CAT_ERM == "3"), data = datos)
## 
##   n= 1742, number of events= 369 
##    (354 observations deleted due to missingness)
## 
##                         coef exp(coef) se(coef)     z Pr(>|z|)    
## I(CAT_ERM == "2")TRUE 0.5966    1.8160   0.1310 4.555 5.25e-06 ***
## I(CAT_ERM == "3")TRUE 1.2912    3.6371   0.1452 8.893  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                       exp(coef) exp(-coef) lower .95 upper .95
## I(CAT_ERM == "2")TRUE     1.816     0.5507     1.405     2.348
## I(CAT_ERM == "3")TRUE     3.637     0.2749     2.736     4.834
## 
## Concordance= 0.628  (se = 0.014 )
## Likelihood ratio test= 77.78  on 2 df,   p=<2e-16
## Wald test            = 80.19  on 2 df,   p=<2e-16
## Score (logrank) test = 87.6  on 2 df,   p=<2e-16

Tabla con HR de modelos univariados

datatable(outc, caption = "Resultados del analisis univariado", editable = "cell", extensions = "Buttons", 
          options = list(dom = "Bfrtip", 
                         buttons =c("copy", "csv", "pdf", "print")))
print(outc) %>%
  kbl()%>%
  kable_paper()
                      HR Low .95 Upp .95    Pv
CAT_ERM2 1.816 1.405 2.3480 0.000 CAT_ERM3 3.637 2.736 4.8340 0.000 SNC2 1.761 0.910 3.4070 0.093 SNC3 1.801 1.229 2.6400 0.003 Globulos Blancos 2.023 1.688 2.4260 0.000 Blastos en MO 1.000 0.994 1.0060 0.981 Blastos en SP 1.007 1.005 1.0100 0.000 Tel1 0.496 0.340 0.7240 0.000 MLL1 0.886 0.367 2.1390 0.788 Estirpe T 1.886 1.486 2.3940 0.000 Ploidia2 0.255 0.177 0.3680 0.000 Ploidia4 2.604 1.991 3.4060 0.000 Ploidia5 0.044 0.006 0.3160 0.002 Respuesta a Prednisona 0.317 0.255 0.3942 0.000 Sexo1 1.138 0.947 1.3680 0.169 Edad 1.531 1.278 1.8400 0.000 Down 2.916 1.917 4.4340 0.000
HR Low .95 Upp .95 Pv
CAT_ERM2 1.816 1.405 2.3480 0.000
CAT_ERM3 3.637 2.736 4.8340 0.000
SNC2 1.761 0.910 3.4070 0.093
SNC3 1.801 1.229 2.6400 0.003
Globulos Blancos 2.023 1.688 2.4260 0.000
Blastos en MO 1.000 0.994 1.0060 0.981
Blastos en SP 1.007 1.005 1.0100 0.000
Tel1 0.496 0.340 0.7240 0.000
MLL1 0.886 0.367 2.1390 0.788
Estirpe T 1.886 1.486 2.3940 0.000
Ploidia2 0.255 0.177 0.3680 0.000
Ploidia4 2.604 1.991 3.4060 0.000
Ploidia5 0.044 0.006 0.3160 0.002
Respuesta a Prednisona 0.317 0.255 0.3942 0.000
Sexo1 1.138 0.947 1.3680 0.169
Edad 1.531 1.278 1.8400 0.000
Down 2.916 1.917 4.4340 0.000

De los analisis univariados efectuados, se excluyen para el analisis multivariado aquellas variables con pv> 0.2, MLL y MO.

#Modelo multivariado

#Modelo multivariado sin MLL ni MO (dan pv>0.1) utilizando Edad y Globulos blancos como VA categoricas


#con edad y gb como variables categoricas
modelo_mult<- coxph(Surv(TIEMPOSG, SGSTATUS)~Sexo + Down + RTA_PRED + Estirpe+ Edad_cat + TEL+ Blancos_cat  + SNC+RTA_PRED +Ploidia + Blastos+ CAT_ERM, data=datos)
summary(modelo_mult)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Sexo + Down + RTA_PRED + 
##     Estirpe + Edad_cat + TEL + Blancos_cat + SNC + RTA_PRED + 
##     Ploidia + Blastos + CAT_ERM, data = datos)
## 
##   n= 1480, number of events= 322 
##    (616 observations deleted due to missingness)
## 
##                    coef  exp(coef)   se(coef)      z Pr(>|z|)    
## Sexo1         0.0218378  1.0220780  0.1155556  0.189  0.85011    
## Down1         1.1497799  3.1574980  0.2777192  4.140 3.47e-05 ***
## RTA_PRED1    -0.5089549  0.6011235  0.1590766 -3.199  0.00138 ** 
## EstirpeT      0.0468603  1.0479756  0.1636782  0.286  0.77465    
## Edad_cat2     0.0790463  1.0822544  0.1165434  0.678  0.49761    
## TEL1         -0.4917902  0.6115307  0.2141550 -2.296  0.02165 *  
## Blancos_cat2  0.3682409  1.4451901  0.1490434  2.471  0.01349 *  
## SNC2          0.4035746  1.4971670  0.4168909  0.968  0.33302    
## SNC3          0.5695412  1.7674559  0.2197318  2.592  0.00954 ** 
## Ploidia2     -1.3034923  0.2715817  0.2175331 -5.992 2.07e-09 ***
## Ploidia4      0.9800643  2.6646276  0.1535633  6.382 1.75e-10 ***
## Ploidia5     -2.0791775  0.1250330  1.0106309 -2.057  0.03966 *  
## Blastos      -0.0005152  0.9994850  0.0020302 -0.254  0.79968    
## CAT_ERM2      0.3756233  1.4558985  0.1438508  2.611  0.00902 ** 
## CAT_ERM3      0.7632108  2.1451529  0.1747163  4.368 1.25e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Sexo1           1.0221     0.9784   0.81493    1.2819
## Down1           3.1575     0.3167   1.83210    5.4417
## RTA_PRED1       0.6011     1.6636   0.44011    0.8211
## EstirpeT        1.0480     0.9542   0.76038    1.4444
## Edad_cat2       1.0823     0.9240   0.86125    1.3600
## TEL1            0.6115     1.6352   0.40191    0.9305
## Blancos_cat2    1.4452     0.6920   1.07909    1.9355
## SNC2            1.4972     0.6679   0.66132    3.3894
## SNC3            1.7675     0.5658   1.14898    2.7188
## Ploidia2        0.2716     3.6821   0.17731    0.4160
## Ploidia4        2.6646     0.3753   1.97207    3.6004
## Ploidia5        0.1250     7.9979   0.01725    0.9063
## Blastos         0.9995     1.0005   0.99552    1.0035
## CAT_ERM2        1.4559     0.6869   1.09821    1.9301
## CAT_ERM3        2.1452     0.4662   1.52314    3.0212
## 
## Concordance= 0.798  (se = 0.011 )
## Likelihood ratio test= 397.3  on 15 df,   p=<2e-16
## Wald test            = 323.8  on 15 df,   p=<2e-16
## Score (logrank) test = 433.3  on 15 df,   p=<2e-16
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
#VIF del modelo


library(car)
vif_modelo<- vif(modelo_mult)
## Warning in vif.default(modelo_mult): No intercept: vifs may not be sensible.
print(vif_modelo)
##                 GVIF Df GVIF^(1/(2*Df))
## Sexo        1.037140  1        1.018401
## Down        1.093849  1        1.045872
## RTA_PRED    1.453125  1        1.205456
## Estirpe     1.287930  1        1.134870
## Edad_cat    1.081776  1        1.040085
## TEL         1.056968  1        1.028089
## Blancos_cat 1.779789  1        1.334087
## SNC         1.086985  2        1.021071
## Ploidia     1.026765  3        1.004412
## Blastos     1.726685  1        1.314034
## CAT_ERM     1.349149  2        1.077742

En el analisis del VIF, se observa que los valores son menores a 5, con lo cual no existe problema de colinealidad entre las variables explicativas.

Seleccion de modelos

#Modelo multivariado eliminando las variables no significativas (Sexo, Edad, Estirpe,SNC y Blastos)
modelo1<-coxph( Surv(TIEMPOSG,SGSTATUS) ~ Down + RTA_PRED + TEL+ Blancos_cat+RTA_PRED +Ploidia+CAT_ERM, data=datos)
summary(modelo1)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Down + RTA_PRED + 
##     TEL + Blancos_cat + RTA_PRED + Ploidia + CAT_ERM, data = datos)
## 
##   n= 1492, number of events= 324 
##    (604 observations deleted due to missingness)
## 
##                 coef exp(coef) se(coef)      z Pr(>|z|)    
## Down1         1.1402    3.1275   0.2671  4.269 1.97e-05 ***
## RTA_PRED1    -0.5322    0.5873   0.1525 -3.490 0.000483 ***
## TEL1         -0.5378    0.5840   0.2089 -2.574 0.010048 *  
## Blancos_cat2  0.3504    1.4196   0.1186  2.955 0.003129 ** 
## Ploidia2     -1.2905    0.2751   0.2158 -5.980 2.23e-09 ***
## Ploidia4      0.9684    2.6337   0.1528  6.339 2.31e-10 ***
## Ploidia5     -2.1305    0.1188   1.0102 -2.109 0.034950 *  
## CAT_ERM2      0.3673    1.4438   0.1421  2.584 0.009765 ** 
## CAT_ERM3      0.7815    2.1847   0.1727  4.526 6.03e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Down1           3.1275     0.3197    1.8528    5.2791
## RTA_PRED1       0.5873     1.7027    0.4356    0.7919
## TEL1            0.5840     1.7123    0.3878    0.8796
## Blancos_cat2    1.4196     0.7044    1.1252    1.7911
## Ploidia2        0.2751     3.6346    0.1802    0.4200
## Ploidia4        2.6337     0.3797    1.9522    3.5530
## Ploidia5        0.1188     8.4193    0.0164    0.8603
## CAT_ERM2        1.4438     0.6926    1.0928    1.9076
## CAT_ERM3        2.1847     0.4577    1.5574    3.0646
## 
## Concordance= 0.796  (se = 0.011 )
## Likelihood ratio test= 389.5  on 9 df,   p=<2e-16
## Wald test            = 318.6  on 9 df,   p=<2e-16
## Score (logrank) test = 426.3  on 9 df,   p=<2e-16
#Modelo multivariado eliminando Sexo
modelo2<-coxph( Surv(TIEMPOSG,SGSTATUS) ~ Down  + Estirpe+ Edad_cat + TEL+ Blancos_cat  + SNC+RTA_PRED +Ploidia + Blastos+CAT_ERM, data=datos)
summary(modelo2)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Down + Estirpe + Edad_cat + 
##     TEL + Blancos_cat + SNC + RTA_PRED + Ploidia + Blastos + 
##     CAT_ERM, data = datos)
## 
##   n= 1480, number of events= 322 
##    (616 observations deleted due to missingness)
## 
##                    coef  exp(coef)   se(coef)      z Pr(>|z|)    
## Down1         1.1451578  3.1429371  0.2767197  4.138 3.50e-05 ***
## EstirpeT      0.0502630  1.0515476  0.1627324  0.309  0.75742    
## Edad_cat2     0.0792828  1.0825104  0.1165453  0.680  0.49633    
## TEL1         -0.4921581  0.6113057  0.2141752 -2.298  0.02157 *  
## Blancos_cat2  0.3673185  1.4438577  0.1489792  2.466  0.01368 *  
## SNC2          0.4074230  1.5029397  0.4164104  0.978  0.32787    
## SNC3          0.5677835  1.7643520  0.2195504  2.586  0.00971 ** 
## RTA_PRED1    -0.5105466  0.6001674  0.1588015 -3.215  0.00130 ** 
## Ploidia2     -1.3038005  0.2714980  0.2175276 -5.994 2.05e-09 ***
## Ploidia4      0.9805425  2.6659022  0.1535390  6.386 1.70e-10 ***
## Ploidia5     -2.0819336  0.1246889  1.0105274 -2.060  0.03938 *  
## Blastos      -0.0005078  0.9994924  0.0020295 -0.250  0.80244    
## CAT_ERM2      0.3764078  1.4570412  0.1437982  2.618  0.00885 ** 
## CAT_ERM3      0.7633816  2.1455192  0.1746841  4.370 1.24e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Down1           3.1429     0.3182   1.82722    5.4060
## EstirpeT        1.0515     0.9510   0.76438    1.4466
## Edad_cat2       1.0825     0.9238   0.86145    1.3603
## TEL1            0.6113     1.6358   0.40175    0.9302
## Blancos_cat2    1.4439     0.6926   1.07823    1.9335
## SNC2            1.5029     0.6654   0.66450    3.3993
## SNC3            1.7644     0.5668   1.14737    2.7131
## RTA_PRED1       0.6002     1.6662   0.43964    0.8193
## Ploidia2        0.2715     3.6833   0.17726    0.4158
## Ploidia4        2.6659     0.3751   1.97311    3.6019
## Ploidia5        0.1247     8.0200   0.01721    0.9036
## Blastos         0.9995     1.0005   0.99552    1.0035
## CAT_ERM2        1.4570     0.6863   1.09918    1.9314
## CAT_ERM3        2.1455     0.4661   1.52349    3.0215
## 
## Concordance= 0.798  (se = 0.011 )
## Likelihood ratio test= 397.2  on 14 df,   p=<2e-16
## Wald test            = 323.9  on 14 df,   p=<2e-16
## Score (logrank) test = 433.2  on 14 df,   p=<2e-16
#Modelo multivariado eliminando Estirpe
modelo3<-coxph( Surv(TIEMPOSG,SGSTATUS) ~ Sexo+ Down  + Edad_cat + TEL+ Blancos_cat  + SNC+RTA_PRED +Ploidia + Blastos+CAT_ERM, data=datos)
summary(modelo3)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Sexo + Down + Edad_cat + 
##     TEL + Blancos_cat + SNC + RTA_PRED + Ploidia + Blastos + 
##     CAT_ERM, data = datos)
## 
##   n= 1480, number of events= 322 
##    (616 observations deleted due to missingness)
## 
##                    coef  exp(coef)   se(coef)      z Pr(>|z|)    
## Sexo1         0.0254203  1.0257462  0.1148676  0.221 0.824858    
## Down1         1.1411225  3.1302801  0.2761926  4.132 3.60e-05 ***
## Edad_cat2     0.0831728  1.0867296  0.1156411  0.719 0.471998    
## TEL1         -0.4963256  0.6087634  0.2135307 -2.324 0.020105 *  
## Blancos_cat2  0.3779025  1.4592207  0.1451270  2.604 0.009216 ** 
## SNC2          0.4012447  1.4936828  0.4168387  0.963 0.335753    
## SNC3          0.5798485  1.7857679  0.2166488  2.676 0.007441 ** 
## RTA_PRED1    -0.5181346  0.5956306  0.1556336 -3.329 0.000871 ***
## Ploidia2     -1.3018167  0.2720371  0.2174513 -5.987 2.14e-09 ***
## Ploidia4      0.9795284  2.6631999  0.1535418  6.380 1.78e-10 ***
## Ploidia5     -2.0788620  0.1250725  1.0106314 -2.057 0.039687 *  
## Blastos      -0.0005538  0.9994464  0.0020255 -0.273 0.784551    
## CAT_ERM2      0.3752352  1.4553336  0.1438311  2.609 0.009084 ** 
## CAT_ERM3      0.7646356  2.1482115  0.1746344  4.378 1.20e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Sexo1           1.0257     0.9749   0.81896    1.2847
## Down1           3.1303     0.3195   1.82175    5.3787
## Edad_cat2       1.0867     0.9202   0.86634    1.3632
## TEL1            0.6088     1.6427   0.40058    0.9251
## Blancos_cat2    1.4592     0.6853   1.09797    1.9393
## SNC2            1.4937     0.6695   0.65985    3.3812
## SNC3            1.7858     0.5600   1.16792    2.7305
## RTA_PRED1       0.5956     1.6789   0.43904    0.8081
## Ploidia2        0.2720     3.6760   0.17764    0.4166
## Ploidia4        2.6632     0.3755   1.97110    3.5983
## Ploidia5        0.1251     7.9954   0.01725    0.9066
## Blastos         0.9994     1.0006   0.99549    1.0034
## CAT_ERM2        1.4553     0.6871   1.09783    1.9293
## CAT_ERM3        2.1482     0.4655   1.52556    3.0250
## 
## Concordance= 0.798  (se = 0.011 )
## Likelihood ratio test= 397.2  on 14 df,   p=<2e-16
## Wald test            = 323.8  on 14 df,   p=<2e-16
## Score (logrank) test = 433.1  on 14 df,   p=<2e-16
#Modelo multivariado eliminando Edad
modelo4<-coxph( Surv(TIEMPOSG,SGSTATUS) ~ Sexo + Down  + Estirpe + TEL+ Blancos_cat  + SNC+RTA_PRED +Ploidia + Blastos+ CAT_ERM, data=datos)
summary(modelo4)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Sexo + Down + Estirpe + 
##     TEL + Blancos_cat + SNC + RTA_PRED + Ploidia + Blastos + 
##     CAT_ERM, data = datos)
## 
##   n= 1480, number of events= 322 
##    (616 observations deleted due to missingness)
## 
##                    coef  exp(coef)   se(coef)      z Pr(>|z|)    
## Sexo1         0.0226349  1.0228930  0.1154256  0.196  0.84453    
## Down1         1.1718308  3.2278970  0.2755991  4.252 2.12e-05 ***
## EstirpeT      0.0607311  1.0626131  0.1622829  0.374  0.70823    
## TEL1         -0.5135302  0.5983795  0.2117149 -2.426  0.01528 *  
## Blancos_cat2  0.3685555  1.4456448  0.1487169  2.478  0.01320 *  
## SNC2          0.4072543  1.5026861  0.4166763  0.977  0.32838    
## SNC3          0.5657795  1.7608198  0.2195930  2.576  0.00998 ** 
## RTA_PRED1    -0.5004293  0.6062704  0.1585387 -3.157  0.00160 ** 
## Ploidia2     -1.3009271  0.2722793  0.2174983 -5.981 2.21e-09 ***
## Ploidia4      0.9876222  2.6848428  0.1531226  6.450 1.12e-10 ***
## Ploidia5     -2.0723988  0.1258834  1.0105702 -2.051  0.04029 *  
## Blastos      -0.0004993  0.9995008  0.0020269 -0.246  0.80540    
## CAT_ERM2      0.3783134  1.4598203  0.1437877  2.631  0.00851 ** 
## CAT_ERM3      0.7742492  2.1689631  0.1739567  4.451 8.55e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Sexo1           1.0229     0.9776   0.81579    1.2826
## Down1           3.2279     0.3098   1.88074    5.5400
## EstirpeT        1.0626     0.9411   0.77311    1.4605
## TEL1            0.5984     1.6712   0.39515    0.9061
## Blancos_cat2    1.4456     0.6917   1.08012    1.9349
## SNC2            1.5027     0.6655   0.66404    3.4005
## SNC3            1.7608     0.5679   1.14498    2.7079
## RTA_PRED1       0.6063     1.6494   0.44434    0.8272
## Ploidia2        0.2723     3.6727   0.17778    0.4170
## Ploidia4        2.6848     0.3725   1.98875    3.6246
## Ploidia5        0.1259     7.9439   0.01737    0.9124
## Blastos         0.9995     1.0005   0.99554    1.0035
## CAT_ERM2        1.4598     0.6850   1.10130    1.9350
## CAT_ERM3        2.1690     0.4610   1.54234    3.0502
## 
## Concordance= 0.797  (se = 0.011 )
## Likelihood ratio test= 396.8  on 14 df,   p=<2e-16
## Wald test            = 322.5  on 14 df,   p=<2e-16
## Score (logrank) test = 432.6  on 14 df,   p=<2e-16
#Modelo multivariado eliminando SNC
modelo5<-coxph( Surv(TIEMPOSG,SGSTATUS) ~ Sexo + Down +Edad_cat + Estirpe + TEL+ Blancos_cat  + Sexo+RTA_PRED +Ploidia + Blastos+ CAT_ERM, data=datos)
summary(modelo5)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Sexo + Down + Edad_cat + 
##     Estirpe + TEL + Blancos_cat + Sexo + RTA_PRED + Ploidia + 
##     Blastos + CAT_ERM, data = datos)
## 
##   n= 1480, number of events= 322 
##    (616 observations deleted due to missingness)
## 
##                    coef  exp(coef)   se(coef)      z Pr(>|z|)    
## Sexo1         0.0159680  1.0160962  0.1154188  0.138  0.88996    
## Down1         1.1363231  3.1152927  0.2772467  4.099 4.16e-05 ***
## Edad_cat2     0.0740977  1.0769120  0.1164118  0.637  0.52444    
## EstirpeT      0.1010669  1.1063506  0.1606465  0.629  0.52927    
## TEL1         -0.4962636  0.6088011  0.2130934 -2.329  0.01987 *  
## Blancos_cat2  0.3420055  1.4077681  0.1481737  2.308  0.02099 *  
## RTA_PRED1    -0.5140603  0.5980623  0.1580324 -3.253  0.00114 ** 
## Ploidia2     -1.3135302  0.2688692  0.2177047 -6.034 1.60e-09 ***
## Ploidia4      0.9628862  2.6192452  0.1533775  6.278 3.43e-10 ***
## Ploidia5     -2.1275802  0.1191252  1.0104217 -2.106  0.03524 *  
## Blastos      -0.0001017  0.9998983  0.0020149 -0.050  0.95976    
## CAT_ERM2      0.3613830  1.4353131  0.1435502  2.517  0.01182 *  
## CAT_ERM3      0.7627497  2.1441638  0.1740849  4.381 1.18e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Sexo1           1.0161     0.9842   0.81038    1.2740
## Down1           3.1153     0.3210   1.80928    5.3640
## Edad_cat2       1.0769     0.9286   0.85722    1.3529
## EstirpeT        1.1064     0.9039   0.80751    1.5158
## TEL1            0.6088     1.6426   0.40095    0.9244
## Blancos_cat2    1.4078     0.7103   1.05294    1.8822
## RTA_PRED1       0.5981     1.6721   0.43876    0.8152
## Ploidia2        0.2689     3.7193   0.17548    0.4120
## Ploidia4        2.6192     0.3818   1.93919    3.5378
## Ploidia5        0.1191     8.3945   0.01644    0.8631
## Blastos         0.9999     1.0001   0.99596    1.0039
## CAT_ERM2        1.4353     0.6967   1.08332    1.9017
## CAT_ERM3        2.1442     0.4664   1.52432    3.0161
## 
## Concordance= 0.798  (se = 0.011 )
## Likelihood ratio test= 390.7  on 13 df,   p=<2e-16
## Wald test            = 318.8  on 13 df,   p=<2e-16
## Score (logrank) test = 427.8  on 13 df,   p=<2e-16
#Modelo multivariado eliminando Blastos
modelo6<-coxph( Surv(TIEMPOSG,SGSTATUS) ~ Sexo + Down +Edad_cat  + Estirpe + TEL+ Blancos_cat  + Sexo+RTA_PRED +Ploidia + SNC+ CAT_ERM, data=datos)
summary(modelo6)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Sexo + Down + Edad_cat + 
##     Estirpe + TEL + Blancos_cat + Sexo + RTA_PRED + Ploidia + 
##     SNC + CAT_ERM, data = datos)
## 
##   n= 1492, number of events= 324 
##    (604 observations deleted due to missingness)
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)    
## Sexo1         0.03262   1.03316  0.11527  0.283  0.77717    
## Down1         1.16845   3.21701  0.27173  4.300 1.71e-05 ***
## Edad_cat2     0.07960   1.08285  0.11611  0.686  0.49299    
## EstirpeT      0.04624   1.04733  0.16336  0.283  0.77714    
## TEL1         -0.50002   0.60652  0.21345 -2.343  0.01915 *  
## Blancos_cat2  0.33786   1.40194  0.12204  2.768  0.00563 ** 
## RTA_PRED1    -0.50687   0.60238  0.15753 -3.218  0.00129 ** 
## Ploidia2     -1.28816   0.27578  0.21577 -5.970 2.37e-09 ***
## Ploidia4      0.97796   2.65903  0.15346  6.373 1.86e-10 ***
## Ploidia5     -2.08609   0.12417  1.01060 -2.064  0.03900 *  
## SNC2          0.40688   1.50212  0.41597  0.978  0.32800    
## SNC3          0.56203   1.75423  0.21818  2.576  0.01000 ** 
## CAT_ERM2      0.37808   1.45948  0.14257  2.652  0.00801 ** 
## CAT_ERM3      0.76758   2.15454  0.17399  4.412 1.03e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Sexo1           1.0332     0.9679   0.82423    1.2951
## Down1           3.2170     0.3108   1.88866    5.4796
## Edad_cat2       1.0829     0.9235   0.86246    1.3596
## EstirpeT        1.0473     0.9548   0.76037    1.4426
## TEL1            0.6065     1.6488   0.39917    0.9216
## Blancos_cat2    1.4019     0.7133   1.10370    1.7808
## RTA_PRED1       0.6024     1.6601   0.44236    0.8203
## Ploidia2        0.2758     3.6261   0.18067    0.4209
## Ploidia4        2.6590     0.3761   1.96833    3.5921
## Ploidia5        0.1242     8.0534   0.01713    0.9000
## SNC2            1.5021     0.6657   0.66471    3.3945
## SNC3            1.7542     0.5701   1.14384    2.6903
## CAT_ERM2        1.4595     0.6852   1.10367    1.9300
## CAT_ERM3        2.1545     0.4641   1.53199    3.0301
## 
## Concordance= 0.798  (se = 0.011 )
## Likelihood ratio test= 397  on 14 df,   p=<2e-16
## Wald test            = 324.5  on 14 df,   p=<2e-16
## Score (logrank) test = 432.9  on 14 df,   p=<2e-16
#Modelo multivariado eliminando Sexo y Blastos
modelo7<-coxph( Surv(TIEMPOSG,SGSTATUS) ~  Down +Edad_cat  + Estirpe + TEL+ Blancos_cat  + Sexo+RTA_PRED +Ploidia + SNC+ CAT_ERM, data=datos)
summary(modelo7)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Down + Edad_cat + 
##     Estirpe + TEL + Blancos_cat + Sexo + RTA_PRED + Ploidia + 
##     SNC + CAT_ERM, data = datos)
## 
##   n= 1492, number of events= 324 
##    (604 observations deleted due to missingness)
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)    
## Down1         1.16845   3.21701  0.27173  4.300 1.71e-05 ***
## Edad_cat2     0.07960   1.08285  0.11611  0.686  0.49299    
## EstirpeT      0.04624   1.04733  0.16336  0.283  0.77714    
## TEL1         -0.50002   0.60652  0.21345 -2.343  0.01915 *  
## Blancos_cat2  0.33786   1.40194  0.12204  2.768  0.00563 ** 
## Sexo1         0.03262   1.03316  0.11527  0.283  0.77717    
## RTA_PRED1    -0.50687   0.60238  0.15753 -3.218  0.00129 ** 
## Ploidia2     -1.28816   0.27578  0.21577 -5.970 2.37e-09 ***
## Ploidia4      0.97796   2.65903  0.15346  6.373 1.86e-10 ***
## Ploidia5     -2.08609   0.12417  1.01060 -2.064  0.03900 *  
## SNC2          0.40688   1.50212  0.41597  0.978  0.32800    
## SNC3          0.56203   1.75423  0.21818  2.576  0.01000 ** 
## CAT_ERM2      0.37808   1.45948  0.14257  2.652  0.00801 ** 
## CAT_ERM3      0.76758   2.15454  0.17399  4.412 1.03e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Down1           3.2170     0.3108   1.88866    5.4796
## Edad_cat2       1.0829     0.9235   0.86246    1.3596
## EstirpeT        1.0473     0.9548   0.76037    1.4426
## TEL1            0.6065     1.6488   0.39917    0.9216
## Blancos_cat2    1.4019     0.7133   1.10370    1.7808
## Sexo1           1.0332     0.9679   0.82423    1.2951
## RTA_PRED1       0.6024     1.6601   0.44236    0.8203
## Ploidia2        0.2758     3.6261   0.18067    0.4209
## Ploidia4        2.6590     0.3761   1.96833    3.5921
## Ploidia5        0.1242     8.0534   0.01713    0.9000
## SNC2            1.5021     0.6657   0.66471    3.3945
## SNC3            1.7542     0.5701   1.14384    2.6903
## CAT_ERM2        1.4595     0.6852   1.10367    1.9300
## CAT_ERM3        2.1545     0.4641   1.53199    3.0301
## 
## Concordance= 0.798  (se = 0.011 )
## Likelihood ratio test= 397  on 14 df,   p=<2e-16
## Wald test            = 324.5  on 14 df,   p=<2e-16
## Score (logrank) test = 432.9  on 14 df,   p=<2e-16
#Modelo multivariado eliminando Sexo y SNC
modelo8<-coxph( Surv(TIEMPOSG,SGSTATUS) ~ Down + RTA_PRED + Estirpe+ Edad_cat + TEL+ Blancos_cat  +RTA_PRED +Ploidia + Blastos+ CAT_ERM  , data=datos)
summary(modelo8)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Down + RTA_PRED + 
##     Estirpe + Edad_cat + TEL + Blancos_cat + RTA_PRED + Ploidia + 
##     Blastos + CAT_ERM, data = datos)
## 
##   n= 1480, number of events= 322 
##    (616 observations deleted due to missingness)
## 
##                    coef  exp(coef)   se(coef)      z Pr(>|z|)    
## Down1         1.133e+00  3.105e+00  2.763e-01  4.101 4.11e-05 ***
## RTA_PRED1    -5.151e-01  5.974e-01  1.578e-01 -3.264   0.0011 ** 
## EstirpeT      1.035e-01  1.109e+00  1.597e-01  0.648   0.5168    
## Edad_cat2     7.437e-02  1.077e+00  1.164e-01  0.639   0.5229    
## TEL1         -4.964e-01  6.087e-01  2.131e-01 -2.330   0.0198 *  
## Blancos_cat2  3.415e-01  1.407e+00  1.481e-01  2.305   0.0211 *  
## Ploidia2     -1.314e+00  2.688e-01  2.177e-01 -6.034 1.60e-09 ***
## Ploidia4      9.634e-01  2.621e+00  1.533e-01  6.283 3.33e-10 ***
## Ploidia5     -2.129e+00  1.189e-01  1.010e+00 -2.108   0.0351 *  
## Blastos      -9.785e-05  9.999e-01  2.015e-03 -0.049   0.9613    
## CAT_ERM2      3.621e-01  1.436e+00  1.435e-01  2.524   0.0116 *  
## CAT_ERM3      7.629e-01  2.145e+00  1.741e-01  4.383 1.17e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Down1           3.1049     0.3221   1.80676    5.3357
## RTA_PRED1       0.5974     1.6739   0.43848    0.8140
## EstirpeT        1.1091     0.9017   0.81101    1.5167
## Edad_cat2       1.0772     0.9283   0.85746    1.3533
## TEL1            0.6087     1.6429   0.40087    0.9243
## Blancos_cat2    1.4071     0.7107   1.05251    1.8812
## Ploidia2        0.2688     3.7196   0.17547    0.4119
## Ploidia4        2.6205     0.3816   1.94029    3.5392
## Ploidia5        0.1189     8.4106   0.01641    0.8613
## Blastos         0.9999     1.0001   0.99596    1.0039
## CAT_ERM2        1.4363     0.6962   1.08426    1.9027
## CAT_ERM3        2.1446     0.4663   1.52468    3.0165
## 
## Concordance= 0.798  (se = 0.011 )
## Likelihood ratio test= 390.6  on 12 df,   p=<2e-16
## Wald test            = 318.8  on 12 df,   p=<2e-16
## Score (logrank) test = 427.8  on 12 df,   p=<2e-16
#Modelo multivariado eliminando Edad y Blastos
modelo9<-coxph( Surv(TIEMPOSG,SGSTATUS) ~ Sexo + Down + RTA_PRED + Estirpe+ TEL+ Blancos_cat  + SNC+RTA_PRED +Ploidia +  CAT_ERM  , data=datos)
summary(modelo9)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Sexo + Down + RTA_PRED + 
##     Estirpe + TEL + Blancos_cat + SNC + RTA_PRED + Ploidia + 
##     CAT_ERM, data = datos)
## 
##   n= 1492, number of events= 324 
##    (604 observations deleted due to missingness)
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)    
## Sexo1         0.03354   1.03411  0.11514  0.291   0.7708    
## Down1         1.19008   3.28735  0.26976  4.412 1.03e-05 ***
## RTA_PRED1    -0.49853   0.60742  0.15700 -3.175   0.0015 ** 
## EstirpeT      0.06027   1.06213  0.16194  0.372   0.7097    
## TEL1         -0.52169   0.59352  0.21107 -2.472   0.0134 *  
## Blancos_cat2  0.33861   1.40300  0.12198  2.776   0.0055 ** 
## SNC2          0.41045   1.50750  0.41578  0.987   0.3236    
## SNC3          0.55823   1.74757  0.21804  2.560   0.0105 *  
## Ploidia2     -1.28589   0.27640  0.21574 -5.960 2.51e-09 ***
## Ploidia4      0.98546   2.67904  0.15304  6.439 1.20e-10 ***
## Ploidia5     -2.07942   0.12500  1.01054 -2.058   0.0396 *  
## CAT_ERM2      0.38046   1.46295  0.14254  2.669   0.0076 ** 
## CAT_ERM3      0.77847   2.17814  0.17325  4.493 7.01e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Sexo1           1.0341     0.9670   0.82520    1.2959
## Down1           3.2874     0.3042   1.93742    5.5779
## RTA_PRED1       0.6074     1.6463   0.44654    0.8263
## EstirpeT        1.0621     0.9415   0.77327    1.4589
## TEL1            0.5935     1.6849   0.39244    0.8976
## Blancos_cat2    1.4030     0.7128   1.10466    1.7819
## SNC2            1.5075     0.6634   0.66733    3.4054
## SNC3            1.7476     0.5722   1.13983    2.6794
## Ploidia2        0.2764     3.6179   0.18110    0.4219
## Ploidia4        2.6790     0.3733   1.98478    3.6162
## Ploidia5        0.1250     7.9998   0.01725    0.9059
## CAT_ERM2        1.4630     0.6835   1.10638    1.9344
## CAT_ERM3        2.1781     0.4591   1.55100    3.0589
## 
## Concordance= 0.797  (se = 0.011 )
## Likelihood ratio test= 396.5  on 13 df,   p=<2e-16
## Wald test            = 323.2  on 13 df,   p=<2e-16
## Score (logrank) test = 432.2  on 13 df,   p=<2e-16
#Modelo multivariado eliminando Sexo, SNC y Blastos
modelo10<-coxph( Surv(TIEMPOSG,SGSTATUS) ~  Down + RTA_PRED + Estirpe+ Edad_cat + TEL+ Blancos_cat  + RTA_PRED +Ploidia +  CAT_ERM  , data=datos)
summary(modelo10)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Down + RTA_PRED + 
##     Estirpe + Edad_cat + TEL + Blancos_cat + RTA_PRED + Ploidia + 
##     CAT_ERM, data = datos)
## 
##   n= 1492, number of events= 324 
##    (604 observations deleted due to missingness)
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)    
## Down1         1.13820   3.12116  0.27023  4.212 2.53e-05 ***
## RTA_PRED1    -0.51799   0.59572  0.15621 -3.316 0.000913 ***
## EstirpeT      0.10294   1.10842  0.15942  0.646 0.518487    
## Edad_cat2     0.07519   1.07809  0.11598  0.648 0.516788    
## TEL1         -0.50154   0.60560  0.21252 -2.360 0.018275 *  
## Blancos_cat2  0.32862   1.38905  0.12230  2.687 0.007207 ** 
## Ploidia2     -1.29732   0.27326  0.21591 -6.009 1.87e-09 ***
## Ploidia4      0.96059   2.61324  0.15323  6.269 3.64e-10 ***
## Ploidia5     -2.13580   0.11815  1.01030 -2.114 0.034513 *  
## CAT_ERM2      0.36711   1.44356  0.14219  2.582 0.009826 ** 
## CAT_ERM3      0.76861   2.15677  0.17338  4.433 9.29e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Down1           3.1212     0.3204   1.83780    5.3007
## RTA_PRED1       0.5957     1.6786   0.43860    0.8091
## EstirpeT        1.1084     0.9022   0.81097    1.5150
## Edad_cat2       1.0781     0.9276   0.85888    1.3532
## TEL1            0.6056     1.6513   0.39929    0.9185
## Blancos_cat2    1.3891     0.7199   1.09300    1.7653
## Ploidia2        0.2733     3.6595   0.17898    0.4172
## Ploidia4        2.6132     0.3827   1.93529    3.5287
## Ploidia5        0.1182     8.4638   0.01631    0.8559
## CAT_ERM2        1.4436     0.6927   1.09246    1.9075
## CAT_ERM3        2.1568     0.4637   1.53541    3.0296
## 
## Concordance= 0.798  (se = 0.011 )
## Likelihood ratio test= 390.4  on 11 df,   p=<2e-16
## Wald test            = 320  on 11 df,   p=<2e-16
## Score (logrank) test = 427.5  on 11 df,   p=<2e-16
#Modelo multivariado eliminando Sexo, Edad, Estirpe y Blastos
modelo11<-coxph( Surv(TIEMPOSG,SGSTATUS) ~   Down + RTA_PRED  + TEL+ Blancos_cat  + SNC+RTA_PRED +Ploidia +  CAT_ERM  , data=datos)
summary(modelo11)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Down + RTA_PRED + 
##     TEL + Blancos_cat + SNC + RTA_PRED + Ploidia + CAT_ERM, data = datos)
## 
##   n= 1492, number of events= 324 
##    (604 observations deleted due to missingness)
## 
##                 coef exp(coef) se(coef)      z Pr(>|z|)    
## Down1         1.1732    3.2325   0.2676  4.385 1.16e-05 ***
## RTA_PRED1    -0.5135    0.5984   0.1534 -3.347 0.000816 ***
## TEL1         -0.5310    0.5880   0.2099 -2.530 0.011422 *  
## Blancos_cat2  0.3491    1.4178   0.1185  2.947 0.003211 ** 
## SNC2          0.4151    1.5145   0.4154  0.999 0.317647    
## SNC3          0.5693    1.7671   0.2152  2.645 0.008160 ** 
## Ploidia2     -1.2838    0.2770   0.2156 -5.953 2.63e-09 ***
## Ploidia4      0.9861    2.6806   0.1530  6.445 1.16e-10 ***
## Ploidia5     -2.0840    0.1244   1.0104 -2.062 0.039166 *  
## CAT_ERM2      0.3810    1.4637   0.1425  2.674 0.007495 ** 
## CAT_ERM3      0.7814    2.1844   0.1731  4.515 6.33e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Down1           3.2325     0.3094   1.91327    5.4612
## RTA_PRED1       0.5984     1.6711   0.44302    0.8083
## TEL1            0.5880     1.7007   0.38967    0.8873
## Blancos_cat2    1.4178     0.7053   1.12401    1.7883
## SNC2            1.5145     0.6603   0.67097    3.4185
## SNC3            1.7671     0.5659   1.15895    2.6944
## Ploidia2        0.2770     3.6103   0.18151    0.4227
## Ploidia4        2.6806     0.3730   1.98610    3.6181
## Ploidia5        0.1244     8.0362   0.01717    0.9016
## CAT_ERM2        1.4637     0.6832   1.10709    1.9353
## CAT_ERM3        2.1844     0.4578   1.55609    3.0665
## 
## Concordance= 0.796  (se = 0.011 )
## Likelihood ratio test= 396.3  on 11 df,   p=<2e-16
## Wald test            = 323.3  on 11 df,   p=<2e-16
## Score (logrank) test = 432  on 11 df,   p=<2e-16
#Modelo multivariado eliminando Sexo, SNC, Estirpe y Blastos
modelo12<-coxph( Surv(TIEMPOSG,SGSTATUS) ~ Down + RTA_PRED + Edad_cat + TEL+ Blancos_cat  + RTA_PRED +Ploidia + CAT_ERM  , data=datos)
summary(modelo12)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Down + RTA_PRED + 
##     Edad_cat + TEL + Blancos_cat + RTA_PRED + Ploidia + CAT_ERM, 
##     data = datos)
## 
##   n= 1492, number of events= 324 
##    (604 observations deleted due to missingness)
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)    
## Down1         1.11923   3.06250  0.26861  4.167 3.09e-05 ***
## RTA_PRED1    -0.53783   0.58401  0.15276 -3.521  0.00043 ***
## Edad_cat2     0.08409   1.08773  0.11514  0.730  0.46519    
## TEL1         -0.51329   0.59853  0.21166 -2.425  0.01531 *  
## Blancos_cat2  0.34680   1.41454  0.11879  2.920  0.00351 ** 
## Ploidia2     -1.29375   0.27424  0.21583 -5.994 2.05e-09 ***
## Ploidia4      0.95979   2.61114  0.15323  6.264 3.76e-10 ***
## Ploidia5     -2.13754   0.11794  1.01029 -2.116  0.03437 *  
## CAT_ERM2      0.36572   1.44155  0.14216  2.573  0.01009 *  
## CAT_ERM3      0.77076   2.16141  0.17329  4.448 8.67e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Down1           3.0625     0.3265   1.80898    5.1846
## RTA_PRED1       0.5840     1.7123   0.43290    0.7879
## Edad_cat2       1.0877     0.9193   0.86798    1.3631
## TEL1            0.5985     1.6708   0.39529    0.9062
## Blancos_cat2    1.4145     0.7069   1.12073    1.7854
## Ploidia2        0.2742     3.6464   0.17964    0.4187
## Ploidia4        2.6111     0.3830   1.93375    3.5258
## Ploidia5        0.1179     8.4786   0.01628    0.8544
## CAT_ERM2        1.4415     0.6937   1.09100    1.9047
## CAT_ERM3        2.1614     0.4627   1.53898    3.0356
## 
## Concordance= 0.797  (se = 0.011 )
## Likelihood ratio test= 390  on 10 df,   p=<2e-16
## Wald test            = 319.9  on 10 df,   p=<2e-16
## Score (logrank) test = 427.1  on 10 df,   p=<2e-16
#Modelo multivariado eliminando Estirpe, Blastos y Sexo
modelo13<-coxph( Surv(TIEMPOSG,SGSTATUS) ~  Down + RTA_PRED + Edad_cat + TEL+ Blancos_cat  + SNC+RTA_PRED +Ploidia +  CAT_ERM  , data=datos)
summary(modelo13)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Down + RTA_PRED + 
##     Edad_cat + TEL + Blancos_cat + SNC + RTA_PRED + Ploidia + 
##     CAT_ERM, data = datos)
## 
##   n= 1492, number of events= 324 
##    (604 observations deleted due to missingness)
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)    
## Down1         1.15215   3.16498  0.26906  4.282 1.85e-05 ***
## RTA_PRED1    -0.51957   0.59478  0.15370 -3.380 0.000724 ***
## Edad_cat2     0.08459   1.08827  0.11520  0.734 0.462743    
## TEL1         -0.50586   0.60299  0.21276 -2.378 0.017426 *  
## Blancos_cat2  0.34567   1.41293  0.11863  2.914 0.003569 ** 
## SNC2          0.41133   1.50883  0.41551  0.990 0.322195    
## SNC3          0.57037   1.76892  0.21524  2.650 0.008051 ** 
## Ploidia2     -1.28672   0.27618  0.21568 -5.966 2.44e-09 ***
## Ploidia4      0.97817   2.65959  0.15342  6.376 1.82e-10 ***
## Ploidia5     -2.09064   0.12361  1.01049 -2.069 0.038553 *  
## CAT_ERM2      0.37865   1.46031  0.14251  2.657 0.007884 ** 
## CAT_ERM3      0.76926   2.15816  0.17385  4.425 9.65e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Down1           3.1650     0.3160   1.86786    5.3629
## RTA_PRED1       0.5948     1.6813   0.44007    0.8039
## Edad_cat2       1.0883     0.9189   0.86833    1.3639
## TEL1            0.6030     1.6584   0.39738    0.9150
## Blancos_cat2    1.4129     0.7077   1.11981    1.7828
## SNC2            1.5088     0.6628   0.66828    3.4066
## SNC3            1.7689     0.5653   1.16010    2.6972
## Ploidia2        0.2762     3.6209   0.18097    0.4215
## Ploidia4        2.6596     0.3760   1.96891    3.5926
## Ploidia5        0.1236     8.0901   0.01706    0.8957
## CAT_ERM2        1.4603     0.6848   1.10443    1.9309
## CAT_ERM3        2.1582     0.4634   1.53499    3.0343
## 
## Concordance= 0.797  (se = 0.011 )
## Likelihood ratio test= 396.8  on 12 df,   p=<2e-16
## Wald test            = 324.6  on 12 df,   p=<2e-16
## Score (logrank) test = 432.7  on 12 df,   p=<2e-16
#Modelo multivariado eliminando Estirpe y Blastos
modelo14<-coxph( Surv(TIEMPOSG,SGSTATUS) ~  Sexo + Down + RTA_PRED +  Edad_cat + TEL+ Blancos_cat  + SNC+RTA_PRED +Ploidia +  CAT_ERM  , data=datos)
summary(modelo14)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Sexo + Down + RTA_PRED + 
##     Edad_cat + TEL + Blancos_cat + SNC + RTA_PRED + Ploidia + 
##     CAT_ERM, data = datos)
## 
##   n= 1492, number of events= 324 
##    (604 observations deleted due to missingness)
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)    
## Sexo1         0.03615   1.03681  0.11459  0.315 0.752384    
## Down1         1.16112   3.19351  0.27052  4.292 1.77e-05 ***
## RTA_PRED1    -0.51562   0.59713  0.15431 -3.342 0.000833 ***
## Edad_cat2     0.08368   1.08728  0.11520  0.726 0.467632    
## TEL1         -0.50475   0.60366  0.21277 -2.372 0.017677 *  
## Blancos_cat2  0.34583   1.41316  0.11865  2.915 0.003561 ** 
## SNC2          0.40513   1.49950  0.41595  0.974 0.330060    
## SNC3          0.57187   1.77157  0.21530  2.656 0.007903 ** 
## Ploidia2     -1.28645   0.27625  0.21568 -5.965 2.45e-09 ***
## Ploidia4      0.97752   2.65785  0.15344  6.371 1.88e-10 ***
## Ploidia5     -2.08596   0.12419  1.01060 -2.064 0.039011 *  
## CAT_ERM2      0.37752   1.45866  0.14255  2.648 0.008091 ** 
## CAT_ERM3      0.76890   2.15740  0.17391  4.421 9.81e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Sexo1           1.0368     0.9645   0.82826    1.2979
## Down1           3.1935     0.3131   1.87933    5.4267
## RTA_PRED1       0.5971     1.6747   0.44129    0.8080
## Edad_cat2       1.0873     0.9197   0.86752    1.3627
## TEL1            0.6037     1.6566   0.39781    0.9160
## Blancos_cat2    1.4132     0.7076   1.11994    1.7832
## SNC2            1.4995     0.6669   0.66358    3.3885
## SNC3            1.7716     0.5645   1.16171    2.7016
## Ploidia2        0.2763     3.6199   0.18101    0.4216
## Ploidia4        2.6578     0.3762   1.96753    3.5904
## Ploidia5        0.1242     8.0523   0.01713    0.9001
## CAT_ERM2        1.4587     0.6856   1.10309    1.9288
## CAT_ERM3        2.1574     0.4635   1.53425    3.0336
## 
## Concordance= 0.798  (se = 0.011 )
## Likelihood ratio test= 396.9  on 13 df,   p=<2e-16
## Wald test            = 324.5  on 13 df,   p=<2e-16
## Score (logrank) test = 432.7  on 13 df,   p=<2e-16
#modelo multivariado eliminando SNC y Blastos
modelo15<-coxph( Surv(TIEMPOSG,SGSTATUS) ~  Sexo + Down + RTA_PRED + Estirpe+ Edad_cat + TEL+ Blancos_cat  + RTA_PRED +Ploidia +  CAT_ERM , data=datos)
summary(modelo15)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Sexo + Down + RTA_PRED + 
##     Estirpe + Edad_cat + TEL + Blancos_cat + RTA_PRED + Ploidia + 
##     CAT_ERM, data = datos)
## 
##   n= 1492, number of events= 324 
##    (604 observations deleted due to missingness)
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)    
## Sexo1         0.02749   1.02787  0.11515  0.239 0.811290    
## Down1         1.14409   3.13958  0.27129  4.217 2.47e-05 ***
## RTA_PRED1    -0.51602   0.59689  0.15647 -3.298 0.000974 ***
## EstirpeT      0.09869   1.10372  0.16037  0.615 0.538292    
## Edad_cat2     0.07468   1.07754  0.11599  0.644 0.519642    
## TEL1         -0.50132   0.60573  0.21250 -2.359 0.018316 *  
## Blancos_cat2  0.32926   1.38993  0.12233  2.692 0.007113 ** 
## Ploidia2     -1.29722   0.27329  0.21591 -6.008 1.88e-09 ***
## Ploidia4      0.95979   2.61114  0.15327  6.262 3.80e-10 ***
## Ploidia5     -2.13250   0.11854  1.01039 -2.111 0.034809 *  
## CAT_ERM2      0.36599   1.44194  0.14226  2.573 0.010089 *  
## CAT_ERM3      0.76837   2.15626  0.17341  4.431 9.39e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Sexo1           1.0279     0.9729   0.82021    1.2881
## Down1           3.1396     0.3185   1.84481    5.3431
## RTA_PRED1       0.5969     1.6753   0.43925    0.8111
## EstirpeT        1.1037     0.9060   0.80604    1.5113
## Edad_cat2       1.0775     0.9280   0.85843    1.3526
## TEL1            0.6057     1.6509   0.39940    0.9187
## Blancos_cat2    1.3899     0.7195   1.09362    1.7665
## Ploidia2        0.2733     3.6591   0.17900    0.4173
## Ploidia4        2.6111     0.3830   1.93359    3.5261
## Ploidia5        0.1185     8.4359   0.01636    0.8588
## CAT_ERM2        1.4419     0.6935   1.09109    1.9056
## CAT_ERM3        2.1563     0.4638   1.53494    3.0291
## 
## Concordance= 0.798  (se = 0.011 )
## Likelihood ratio test= 390.5  on 12 df,   p=<2e-16
## Wald test            = 319.9  on 12 df,   p=<2e-16
## Score (logrank) test = 427.5  on 12 df,   p=<2e-16
#Seleccion de modelo utilizando AIC
AIC(modelo1,modelo2, modelo3,modelo4,modelo5,modelo6,modelo7,modelo8,modelo9,modelo10,modelo11, modelo12, modelo13, modelo14, modelo15)
## Warning in AIC.default(modelo1, modelo2, modelo3, modelo4, modelo5, modelo6, :
## models are not all fitted to the same number of observations
##          df      AIC
## modelo1   9 4158.340
## modelo2  14 4130.160
## modelo3  14 4130.206
## modelo4  14 4130.585
## modelo5  13 4134.738
## modelo6  14 4160.813
## modelo7  14 4160.813
## modelo8  12 4132.758
## modelo9  13 4159.284
## modelo10 11 4161.394
## modelo11 11 4155.533
## modelo12 10 4159.805
## modelo13 12 4156.993
## modelo14 13 4158.893
## modelo15 12 4163.337
#El modelo 2 es aquel que tiene menor AIC (4130.160)

Del modelo seleccionado con menor AIC, no resultan significativas las variables Edad, Blastos y Estirpe. Por lo tanto, se excluyen del modelo final.

modelo_final<- coxph( Surv(TIEMPOSG,SGSTATUS) ~ Down  +   TEL+ Blancos_cat  + 
                        SNC+RTA_PRED +Ploidia + CAT_ERM, data=datos)
summary(modelo_final)
## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Down + TEL + Blancos_cat + 
##     SNC + RTA_PRED + Ploidia + CAT_ERM, data = datos)
## 
##   n= 1492, number of events= 324 
##    (604 observations deleted due to missingness)
## 
##                 coef exp(coef) se(coef)      z Pr(>|z|)    
## Down1         1.1732    3.2325   0.2676  4.385 1.16e-05 ***
## TEL1         -0.5310    0.5880   0.2099 -2.530 0.011422 *  
## Blancos_cat2  0.3491    1.4178   0.1185  2.947 0.003211 ** 
## SNC2          0.4151    1.5145   0.4154  0.999 0.317647    
## SNC3          0.5693    1.7671   0.2152  2.645 0.008160 ** 
## RTA_PRED1    -0.5135    0.5984   0.1534 -3.347 0.000816 ***
## Ploidia2     -1.2838    0.2770   0.2156 -5.953 2.63e-09 ***
## Ploidia4      0.9861    2.6806   0.1530  6.445 1.16e-10 ***
## Ploidia5     -2.0840    0.1244   1.0104 -2.062 0.039166 *  
## CAT_ERM2      0.3810    1.4637   0.1425  2.674 0.007495 ** 
## CAT_ERM3      0.7814    2.1844   0.1731  4.515 6.33e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Down1           3.2325     0.3094   1.91327    5.4612
## TEL1            0.5880     1.7007   0.38967    0.8873
## Blancos_cat2    1.4178     0.7053   1.12401    1.7883
## SNC2            1.5145     0.6603   0.67097    3.4185
## SNC3            1.7671     0.5659   1.15895    2.6944
## RTA_PRED1       0.5984     1.6711   0.44302    0.8083
## Ploidia2        0.2770     3.6103   0.18151    0.4227
## Ploidia4        2.6806     0.3730   1.98610    3.6181
## Ploidia5        0.1244     8.0362   0.01717    0.9016
## CAT_ERM2        1.4637     0.6832   1.10709    1.9353
## CAT_ERM3        2.1844     0.4578   1.55609    3.0665
## 
## Concordance= 0.796  (se = 0.011 )
## Likelihood ratio test= 396.3  on 11 df,   p=<2e-16
## Wald test            = 323.3  on 11 df,   p=<2e-16
## Score (logrank) test = 432  on 11 df,   p=<2e-16

Analisis de VIF del modelo seleccionado

vif_modelo_final<- vif(modelo_final)
## Warning in vif.default(modelo_final): No intercept: vifs may not be sensible.
print(vif_modelo_final)
##                 GVIF Df GVIF^(1/(2*Df))
## Down        1.015711  1        1.007825
## TEL         1.016145  1        1.008040
## Blancos_cat 1.131060  1        1.063513
## SNC         1.035485  2        1.008756
## RTA_PRED    1.353425  1        1.163368
## Ploidia     1.015883  3        1.002630
## CAT_ERM     1.320868  2        1.072049

Validacion de los supuestos de COX del modelo seleccionado

Riesgo proporcional

cox.zph(modelo_final)
##              chisq df     p
## Down         2.039  1 0.153
## TEL          2.917  1 0.088
## Blancos_cat  2.465  1 0.116
## SNC          3.004  2 0.223
## RTA_PRED     0.825  1 0.364
## Ploidia      3.240  3 0.356
## CAT_ERM      3.553  2 0.169
## GLOBAL      16.817 11 0.113
#Verificacion del supuesto de riesgo proporcional utilizando graficos:
require(rms) 
## Loading required package: rms
## Loading required package: SparseM
## 
## Attaching package: 'SparseM'
## The following object is masked from 'package:base':
## 
##     backsolve
## 
## Attaching package: 'rms'
## The following objects are masked from 'package:car':
## 
##     Predict, vif
require(car)

survlla1<- npsurv(Surv(TIEMPOSG,SGSTATUS)~CAT_ERM,data=datos)
survplot(survlla1, loglog=T, logt=F, xlim = c(0,12),
 xlab="Tiempo hasta la muerte", ylab = "Log(-Log (S(t))", label.curves = T, time.inc = 1,
levels.only = T, conf="none", type="kaplan-meier") 

#Sexo
survlla2<- npsurv(Surv(TIEMPOSG,SGSTATUS)~Sexo,data=datos)
survplot(survlla2, loglog=T, logt=F, xlim = c(0,12),
 xlab="Tiempo hasta la muerte", ylab = "Log(-Log (S(t))", label.curves = T, time.inc = 1,
levels.only = T, conf="none", type="kaplan-meier") 

#Down
survlla3<- npsurv(Surv(TIEMPOSG,SGSTATUS)~Down,data=datos)
survplot(survlla3, loglog=T, logt=F, xlim = c(0,12),
 xlab="Tiempo hasta la muerte", ylab = "Log(-Log (S(t))", label.curves = T, time.inc = 1,
levels.only = T, conf="none", type="kaplan-meier") 

#SNC
survlla4<- npsurv(Surv(TIEMPOSG,SGSTATUS)~SNC,data=datos)
survplot(survlla4, loglog=T, logt=F, xlim = c(0,12),
 xlab="Tiempo hasta la muerte", ylab = "Log(-Log (S(t))", label.curves = T, time.inc = 1,
levels.only = T, conf="none", type="kaplan-meier") 

#Ploidia

survlla5<- npsurv(Surv(TIEMPOSG,SGSTATUS)~Ploidia,data=datos)

#ver no da con ploidia


#Rta a la prednisona
survlla6<- npsurv(Surv(TIEMPOSG,SGSTATUS)~RTA_PRED,data=datos)
survplot(survlla6, loglog=T, logt=F, xlim = c(0,12),
 xlab="Tiempo hasta la muerte", ylab = "Log(-Log (S(t))", label.curves = T, time.inc = 1,
levels.only = T, conf="none", type="kaplan-meier") 

#Estirpe
survlla7<- npsurv(Surv(TIEMPOSG,SGSTATUS)~Estirpe,data=datos)
survplot(survlla7, loglog=T, logt=F, xlim = c(0,12),
 xlab="Tiempo hasta la muerte", ylab = "Log(-Log (S(t))", label.curves = T, time.inc = 1,
levels.only = T, conf="none", type="kaplan-meier") 

#TEL
survlla8<- npsurv(Surv(TIEMPOSG,SGSTATUS)~TEL,data=datos)
survplot(survlla8, loglog=T, logt=F, xlim = c(0,12),
 xlab="Tiempo hasta la muerte", ylab = "Log(-Log (S(t))", label.curves = T, time.inc = 1,
levels.only = T, conf="none", type="kaplan-meier") 

#MLL
survlla9<- npsurv(Surv(TIEMPOSG,SGSTATUS)~MLL,data=datos)
survplot(survlla9, loglog=T, logt=F, xlim = c(0,12),
 xlab="Tiempo hasta la muerte", ylab = "Log(-Log (S(t))", label.curves = T, time.inc = 1,
levels.only = T, conf="none", type="kaplan-meier") 

Se cumple supuesto de riesgo proporcional, en todos los casos, los pv obtenidos son mayores a 0.05 ( de forma global y por cada variable predictora) De esta manera, el modelo supone que el HR para cada variable Xj es el mismo cualquiera sea el tiempo t

Residuos Schoenfeld

library(ggfortify)
residuos_mfinal<-cox.zph(modelo_final)
ggcoxzph(residuos_mfinal)

#Residuos por variables predictoras:


#Blancos categorizada
ggcoxzph(residuos_mfinal,var= c("Blancos_cat"), font.main=10)

#Down
ggcoxzph(residuos_mfinal,var= c("Down"), font.main=10)

#TEL
ggcoxzph(residuos_mfinal,var= c("TEL"), font.main=10)

#SNC
ggcoxzph(residuos_mfinal,var= c("SNC"), font.main=10)

#Rta prednisona
ggcoxzph(residuos_mfinal,var= c("RTA_PRED"), font.main=10)

#Ploidia
ggcoxzph(residuos_mfinal,var= c("Ploidia"), font.main=10)

#Categorias de ERM
ggcoxzph(residuos_mfinal,var= c("CAT_ERM"), font.main=10)

#Residuos Schoenfeld para todas las variables:
ggcoxdiagnostics(modelo_final,type = "schoenfeld")
## `geom_smooth()` using formula 'y ~ x'

Modelo final de regresion de COX

#$$H\left(t\right)= \ho(t)*exp^(beta_{Down}Xdown*\beta_{Pred}Xpred*\beta_{Estirpe}Xestirpe*\beta_{Edad} Xedad*\beta_{TEL}Xtel*\beta_{Blancos}Xblancos*\beta_{SNC}Xsnc*\beta_{Ploidia}Xploidia*\ beta_{Blastos}Xblastos)*\beta_{ERM}Xerm)$$

H(t) = ho(t) x e ^ (Down Xdown x Rta pred Xrta pred x TEL Xtel x Blancos Xblancos x SNC Xsnc x Ploidia X ploidia x ERM X erm)

Forest plot del modelo seleccionado

ggforest(modelo_final, data = datos, main="Hazard Ratio de modelo final",fontsize = 0.6)

Tabla con HR del modelo final

## Call:
## coxph(formula = Surv(TIEMPOSG, SGSTATUS) ~ Down + TEL + Blancos_cat + 
##     SNC + RTA_PRED + Ploidia + CAT_ERM, data = datos)
## 
##   n= 1492, number of events= 324 
##    (604 observations deleted due to missingness)
## 
##                 coef exp(coef) se(coef)      z Pr(>|z|)    
## Down1         1.1732    3.2325   0.2676  4.385 1.16e-05 ***
## TEL1         -0.5310    0.5880   0.2099 -2.530 0.011422 *  
## Blancos_cat2  0.3491    1.4178   0.1185  2.947 0.003211 ** 
## SNC2          0.4151    1.5145   0.4154  0.999 0.317647    
## SNC3          0.5693    1.7671   0.2152  2.645 0.008160 ** 
## RTA_PRED1    -0.5135    0.5984   0.1534 -3.347 0.000816 ***
## Ploidia2     -1.2838    0.2770   0.2156 -5.953 2.63e-09 ***
## Ploidia4      0.9861    2.6806   0.1530  6.445 1.16e-10 ***
## Ploidia5     -2.0840    0.1244   1.0104 -2.062 0.039166 *  
## CAT_ERM2      0.3810    1.4637   0.1425  2.674 0.007495 ** 
## CAT_ERM3      0.7814    2.1844   0.1731  4.515 6.33e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Down1           3.2325     0.3094   1.91327    5.4612
## TEL1            0.5880     1.7007   0.38967    0.8873
## Blancos_cat2    1.4178     0.7053   1.12401    1.7883
## SNC2            1.5145     0.6603   0.67097    3.4185
## SNC3            1.7671     0.5659   1.15895    2.6944
## RTA_PRED1       0.5984     1.6711   0.44302    0.8083
## Ploidia2        0.2770     3.6103   0.18151    0.4227
## Ploidia4        2.6806     0.3730   1.98610    3.6181
## Ploidia5        0.1244     8.0362   0.01717    0.9016
## CAT_ERM2        1.4637     0.6832   1.10709    1.9353
## CAT_ERM3        2.1844     0.4578   1.55609    3.0665
## 
## Concordance= 0.796  (se = 0.011 )
## Likelihood ratio test= 396.3  on 11 df,   p=<2e-16
## Wald test            = 323.3  on 11 df,   p=<2e-16
## Score (logrank) test = 432  on 11 df,   p=<2e-16
## Registered S3 method overwritten by 'Publish':
##   method   from
##   print.ci coin
##     Variable Units Missing HazardRatio       CI.95   p-value 
##         Down     0       0         Ref                       
##                  1                3.23 [1.91;5.46]   < 0.001 
##          TEL     0     401         Ref                       
##                  1                0.59 [0.39;0.89]   0.01142 
##  Blancos_cat     1       0         Ref                       
##                  2                1.42 [1.12;1.79]   0.00321 
##          SNC     1       0         Ref                       
##                  2                1.51 [0.67;3.42]   0.31765 
##                  3                1.77 [1.16;2.69]   0.00816 
##     RTA_PRED     0       5         Ref                       
##                  1                0.60 [0.44;0.81]   < 0.001 
##      Ploidia     1       0         Ref                       
##                  2                0.28 [0.18;0.42]   < 0.001 
##                  4                2.68 [1.99;3.62]   < 0.001 
##                  5                0.12 [0.02;0.90]   0.03917 
##      CAT_ERM     1     354         Ref                       
##                  2                1.46 [1.11;1.94]   0.00750 
##                  3                2.18 [1.56;3.07]   < 0.001
print(tabla_final) %>%
  kbl(caption = "Tabla 3: Hazard Ratio para modelo multiple")%>%
  kable_paper()
##       Variable Units Missing HazardRatio       CI.95   p-value
## 1         Down     0       0         Ref                      
## 2                  1                3.23 [1.91;5.46]   < 0.001
## 3          TEL     0     401         Ref                      
## 4                  1                0.59 [0.39;0.89]   0.01142
## 5  Blancos_cat     1       0         Ref                      
## 6                  2                1.42 [1.12;1.79]   0.00321
## 7          SNC     1       0         Ref                      
## 8                  2                1.51 [0.67;3.42]   0.31765
## 9                  3                1.77 [1.16;2.69]   0.00816
## 10    RTA_PRED     0       5         Ref                      
## 11                 1                0.60 [0.44;0.81]   < 0.001
## 12     Ploidia     1       0         Ref                      
## 13                 2                0.28 [0.18;0.42]   < 0.001
## 14                 4                2.68 [1.99;3.62]   < 0.001
## 15                 5                0.12 [0.02;0.90]   0.03917
## 16     CAT_ERM     1     354         Ref                      
## 17                 2                1.46 [1.11;1.94]   0.00750
## 18                 3                2.18 [1.56;3.07]   < 0.001
Tabla 3: Hazard Ratio para modelo multiple
Variable Units Missing HazardRatio CI.95 p-value
Down 0 0 Ref
1 3.23 [1.91;5.46] < 0.001
TEL 0 401 Ref
1 0.59 [0.39;0.89] 0.01142
Blancos_cat 1 0 Ref
2 1.42 [1.12;1.79] 0.00321
SNC 1 0 Ref
2 1.51 [0.67;3.42] 0.31765
3 1.77 [1.16;2.69] 0.00816
RTA_PRED 0 5 Ref
1 0.60 [0.44;0.81] < 0.001
Ploidia 1 0 Ref
2 0.28 [0.18;0.42] < 0.001
4 2.68 [1.99;3.62] < 0.001
5 0.12 [0.02;0.90] 0.03917
CAT_ERM 1 354 Ref
2 1.46 [1.11;1.94] 0.00750
3 2.18 [1.56;3.07] < 0.001

#Analisis de sobrevida libre de evento

## Warning in .add_surv_median(p, fit, type = surv.median.line, fun = fun, : Median
## survival not reached.

## Call:
## survdiff(formula = Surv(TiempoEFS, EFSstatus) ~ CAT_ERM, data = datos_sle)
## 
## n=1742, 354 observations deleted due to missingness.
## 
##             N Observed Expected (O-E)^2/E (O-E)^2/V
## CAT_ERM=1 656       97    171.9     32.61     59.05
## CAT_ERM=2 806      218    195.3      2.64      5.25
## CAT_ERM=3 280      112     59.8     45.48     57.37
## 
##  Chisq= 87.6  on 2 degrees of freedom, p= <2e-16
## Warning: NAs introducidos por coerción
## Call:
## coxph(formula = Surv(TiempoEFS, EFSstatus) ~ I(CAT_ERM == "1") + 
##     I(CAT_ERM == "2") + I(CAT_ERM == "3"), data = datos_sle)
## 
##   n= 1742, number of events= 427 
##    (354 observations deleted due to missingness)
## 
##                          coef exp(coef) se(coef)      z Pr(>|z|)    
## I(CAT_ERM == "1")TRUE -1.2574    0.2844   0.1389 -9.050  < 2e-16 ***
## I(CAT_ERM == "2")TRUE -0.5542    0.5746   0.1163 -4.763 1.91e-06 ***
## I(CAT_ERM == "3")TRUE      NA        NA   0.0000     NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                       exp(coef) exp(-coef) lower .95 upper .95
## I(CAT_ERM == "1")TRUE    0.2844      3.516    0.2166    0.3734
## I(CAT_ERM == "2")TRUE    0.5746      1.740    0.4574    0.7217
## I(CAT_ERM == "3")TRUE        NA         NA        NA        NA
## 
## Concordance= 0.624  (se = 0.013 )
## Likelihood ratio test= 84.34  on 2 df,   p=<2e-16
## Wald test            = 82  on 2 df,   p=<2e-16
## Score (logrank) test = 88.97  on 2 df,   p=<2e-16
## Call:
## coxph(formula = Surv(TiempoEFS, EFSstatus) ~ Down + TEL + Blancos_cat + 
##     SNC + RTA_PRED + Ploidia + CAT_ERM, data = datos_sle)
## 
##   n= 1492, number of events= 374 
##    (604 observations deleted due to missingness)
## 
##                 coef exp(coef) se(coef)      z Pr(>|z|)    
## Down2         1.0357    2.8170   0.2672  3.876 0.000106 ***
## TEL1         -0.5619    0.5701   0.1894 -2.967 0.003010 ** 
## Blancos_cat2  0.3809    1.4635   0.1095  3.479 0.000503 ***
## SNC2          0.7090    2.0319   0.3408  2.080 0.037513 *  
## SNC3          0.3017    1.3522   0.2216  1.362 0.173259    
## RTA_PRED1    -0.3514    0.7037   0.1462 -2.403 0.016252 *  
## Ploidia2     -1.3087    0.2702   0.2003 -6.534 6.39e-11 ***
## Ploidia4      1.0155    2.7607   0.1409  7.209 5.64e-13 ***
## Ploidia5     -2.2169    0.1089   1.0087 -2.198 0.027965 *  
## CAT_ERM2      0.5427    1.7206   0.1342  4.045 5.23e-05 ***
## CAT_ERM3      0.8772    2.4042   0.1645  5.333 9.65e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##              exp(coef) exp(-coef) lower .95 upper .95
## Down2           2.8170     0.3550   1.66849    4.7560
## TEL1            0.5701     1.7541   0.39329    0.8264
## Blancos_cat2    1.4635     0.6833   1.18093    1.8138
## SNC2            2.0319     0.4921   1.04181    3.9630
## SNC3            1.3522     0.7395   0.87588    2.0876
## RTA_PRED1       0.7037     1.4211   0.52834    0.9372
## Ploidia2        0.2702     3.7013   0.18246    0.4001
## Ploidia4        2.7607     0.3622   2.09464    3.6384
## Ploidia5        0.1089     9.1787   0.01509    0.7867
## CAT_ERM2        1.7206     0.5812   1.32277    2.2381
## CAT_ERM3        2.4042     0.4159   1.74165    3.3187
## 
## Concordance= 0.805  (se = 0.011 )
## Likelihood ratio test= 453.9  on 11 df,   p=<2e-16
## Wald test            = 356.6  on 11 df,   p=<2e-16
## Score (logrank) test = 482.7  on 11 df,   p=<2e-16