# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("NFLX", "AAPL", "TSLA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol)%>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl%>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "NFLX" "TSLA"
# weights
weights <- c(.25, .25, .2)
weights
## [1] 0.25 0.25 0.20
w_tble <- tibble(symbols, weights)
w_tble
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 NFLX 0.25
## 3 TSLA 0.2
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tble,
rebalance_on ="months",
col_rename = "Returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date Returns
## <date> <dbl>
## 1 2013-01-31 0.126
## 2 2013-02-28 0.0111
## 3 2013-03-28 0.0191
## 4 2013-04-30 0.104
## 5 2013-05-31 0.136
## 6 2013-06-28 -0.0301
## 7 2013-07-31 0.114
## 8 2013-08-30 0.103
## 9 2013-09-30 0.0429
## 10 2013-10-31 -0.00445
## # … with 50 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = Returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 -0.195
# Assign a value for window
window = 12
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = Returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit()%>%
select(-Returns)
rolling_kurt_tbl %>%
ggplot(aes(x = date,
y = kurt)) +
geom_line(color = "cornflowerblue") +
scale_y_continuous(breaks = seq(-1, 4,0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5)) +
labs(x = NULL,
y = "Kurtosis",
title = paste0("Rolling " , window , " Month Kurtosis")) +
annotate(geom = "text",
x = as.Date("2016-07-01"), y = 3,
size = 5,color = "green",
label = str_glue("Downside risk increased after 2014
but quickly stabilized after 2015"))
Has the downside risk of your portfolio increased or decreased over time? Explain using the plot you created. You may also refer to the skewness of the returns distribution you plotted in the previous assignment.
Downside risk has not really increased or decreased over time. The only time downside risk increased was at the end of 2014.