load("C:/Users/Familia/Desktop/METODOS UNIDAD 2 (INDICADOR SINTETICO)/6-2.RData")
library(readr)
library(dplyr)
library(kableExtra)
#NOMBRES DE VARIABLES
colnames(X6_2)<-c("precio","financiacion","consumo","combustible","seguridad","confort","capacidad","prestaciones","modernidad","aerodinamica")
X6_2 %>%
kable(caption ="Matriz de información:" ,align = "c",digits = 6) %>%
kable_material(html_font = "sans-serif")
| precio | financiacion | consumo | combustible | seguridad | confort | capacidad | prestaciones | modernidad | aerodinamica |
|---|---|---|---|---|---|---|---|---|---|
| 4 | 1 | 4 | 3 | 3 | 2 | 4 | 4 | 4 | 4 |
| 5 | 5 | 4 | 4 | 3 | 3 | 4 | 1 | 1 | 3 |
| 2 | 1 | 3 | 1 | 4 | 2 | 1 | 5 | 4 | 5 |
| 1 | 1 | 1 | 1 | 4 | 4 | 2 | 5 | 5 | 4 |
| 1 | 1 | 2 | 1 | 5 | 5 | 4 | 3 | 3 | 2 |
| 5 | 5 | 5 | 5 | 3 | 3 | 4 | 2 | 2 | 1 |
| 4 | 5 | 4 | 4 | 2 | 2 | 5 | 1 | 1 | 1 |
| 3 | 2 | 3 | 1 | 4 | 4 | 2 | 5 | 5 | 5 |
| 4 | 4 | 4 | 3 | 4 | 4 | 3 | 1 | 1 | 1 |
| 5 | 5 | 5 | 5 | 2 | 2 | 3 | 2 | 2 | 2 |
| 2 | 2 | 2 | 1 | 5 | 4 | 4 | 3 | 4 | 3 |
| 4 | 4 | 5 | 5 | 4 | 5 | 5 | 2 | 1 | 2 |
| 3 | 2 | 2 | 1 | 4 | 5 | 4 | 4 | 3 | 3 |
| 5 | 5 | 4 | 4 | 5 | 4 | 4 | 1 | 2 | 2 |
| 4 | 3 | 3 | 1 | 4 | 4 | 5 | 3 | 4 | 4 |
| 5 | 5 | 4 | 4 | 4 | 5 | 4 | 2 | 1 | 1 |
| 4 | 4 | 5 | 2 | 4 | 5 | 5 | 4 | 4 | 2 |
| 5 | 5 | 4 | 4 | 2 | 2 | 1 | 2 | 2 | 3 |
| 3 | 3 | 2 | 2 | 4 | 4 | 5 | 4 | 5 | 4 |
| 5 | 5 | 4 | 4 | 4 | 5 | 4 | 3 | 2 | 1 |
cov(X6_2) %>%
kable(caption="Cálculo de V(X) Parcial 2 MAE",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
| precio | financiacion | consumo | combustible | seguridad | confort | capacidad | prestaciones | modernidad | aerodinamica | |
|---|---|---|---|---|---|---|---|---|---|---|
| precio | 1.80 | 1.92 | 1.32 | 1.73 | -0.62 | -0.31 | 0.36 | -1.21 | -1.27 | -0.90 |
| financiacion | 1.92 | 2.67 | 1.42 | 2.14 | -0.66 | -0.14 | 0.52 | -1.78 | -1.81 | -1.54 |
| consumo | 1.32 | 1.42 | 1.42 | 1.53 | -0.53 | -0.32 | 0.29 | -0.92 | -1.11 | -0.87 |
| combustible | 1.73 | 2.14 | 1.53 | 2.48 | -0.80 | -0.48 | 0.35 | -1.61 | -1.83 | -1.39 |
| seguridad | -0.62 | -0.66 | -0.53 | -0.80 | 0.85 | 0.80 | 0.21 | 0.37 | 0.46 | 0.15 |
| confort | -0.31 | -0.14 | -0.32 | -0.48 | 0.80 | 1.38 | 0.63 | 0.22 | 0.09 | -0.37 |
| capacidad | 0.36 | 0.52 | 0.29 | 0.35 | 0.21 | 0.63 | 1.61 | -0.53 | -0.34 | -0.71 |
| prestaciones | -1.21 | -1.78 | -0.92 | -1.61 | 0.37 | 0.22 | -0.53 | 1.92 | 1.81 | 1.37 |
| modernidad | -1.27 | -1.81 | -1.11 | -1.83 | 0.46 | 0.09 | -0.34 | 1.81 | 2.17 | 1.56 |
| aerodinamica | -0.90 | -1.54 | -0.87 | -1.39 | 0.15 | -0.37 | -0.71 | 1.37 | 1.56 | 1.82 |
library(dplyr)
library(kableExtra)
cor(X6_2) %>%
kable(caption="Cálculo de R(X) Parcial 2 MAE",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
| precio | financiacion | consumo | combustible | seguridad | confort | capacidad | prestaciones | modernidad | aerodinamica | |
|---|---|---|---|---|---|---|---|---|---|---|
| precio | 1.00 | 0.87 | 0.82 | 0.82 | -0.50 | -0.19 | 0.21 | -0.65 | -0.64 | -0.50 |
| financiacion | 0.87 | 1.00 | 0.73 | 0.83 | -0.44 | -0.07 | 0.25 | -0.78 | -0.75 | -0.70 |
| consumo | 0.82 | 0.73 | 1.00 | 0.81 | -0.48 | -0.23 | 0.19 | -0.56 | -0.63 | -0.54 |
| combustible | 0.82 | 0.83 | 0.81 | 1.00 | -0.55 | -0.26 | 0.17 | -0.74 | -0.79 | -0.65 |
| seguridad | -0.50 | -0.44 | -0.48 | -0.55 | 1.00 | 0.74 | 0.18 | 0.29 | 0.34 | 0.12 |
| confort | -0.19 | -0.07 | -0.23 | -0.26 | 0.74 | 1.00 | 0.42 | 0.13 | 0.05 | -0.24 |
| capacidad | 0.21 | 0.25 | 0.19 | 0.17 | 0.18 | 0.42 | 1.00 | -0.30 | -0.18 | -0.41 |
| prestaciones | -0.65 | -0.78 | -0.56 | -0.74 | 0.29 | 0.13 | -0.30 | 1.00 | 0.89 | 0.73 |
| modernidad | -0.64 | -0.75 | -0.63 | -0.79 | 0.34 | 0.05 | -0.18 | 0.89 | 1.00 | 0.78 |
| aerodinamica | -0.50 | -0.70 | -0.54 | -0.65 | 0.12 | -0.24 | -0.41 | 0.73 | 0.78 | 1.00 |
library(PerformanceAnalytics)
chart.Correlation(as.matrix(X6_2),histogram = TRUE,pch=12)
library(corrplot)
library(grDevices)
library(Hmisc)
matriz_R<-rcorr(as.matrix(X6_2))
corrplot(matriz_R$r,
p.mat = matriz_R$r,
type="upper",
tl.col="black",
tl.srt = 20,
pch.col = "blue",
insig = "p-value",
sig.level = -1,
col = terrain.colors(100))
library(factoextra)
library(stargazer)
library(ggplot2)
options(scipen = 99999)
PC_parcial<-princomp(x = X6_2,cor = TRUE,fix_sign = FALSE)
factoextra::get_eig(PC_parcial) %>% kable(caption="Resumen de PCA",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("hover"))
| eigenvalue | variance.percent | cumulative.variance.percent | |
|---|---|---|---|
| Dim.1 | 5.70 | 57.01 | 57.01 |
| Dim.2 | 2.07 | 20.69 | 77.70 |
| Dim.3 | 0.72 | 7.20 | 84.91 |
| Dim.4 | 0.55 | 5.48 | 90.39 |
| Dim.5 | 0.32 | 3.16 | 93.54 |
| Dim.6 | 0.27 | 2.71 | 96.25 |
| Dim.7 | 0.15 | 1.46 | 97.72 |
| Dim.8 | 0.13 | 1.28 | 99.00 |
| Dim.9 | 0.07 | 0.68 | 99.68 |
| Dim.10 | 0.03 | 0.32 | 100.00 |
fviz_eig(PC_parcial,
choice = "eigenvalue",
barcolor = "yellow",
barfill = "skyblue",
addlabels = TRUE,
)+labs(title = "Gráfico de Sedimentación",subtitle = "Usando princomp, con Autovalores")+
xlab(label = "Componentes")+
ylab(label = "Autovalores")+geom_hline(yintercept = 1)
#visualizado a travez del grafico de sedimentacion los factores que
deberian retenerse tienen que ser 2 ya que en su conjunto contienen o
explican el 77.70% de la varianza acumulada como se ve en el resumen de
PCA,cumpliendo con el criterio que sea superior al 75%.
library(dplyr)
library(factoextra)
library(kableExtra)
variables_pca_parcial<-get_pca_var(PC_parcial)
variables_pca_parcial$coord%>%
kable(caption="Correlación de X con las componentes, usando factoextra",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
| Dim.1 | Dim.2 | Dim.3 | Dim.4 | Dim.5 | Dim.6 | Dim.7 | Dim.8 | Dim.9 | Dim.10 | |
|---|---|---|---|---|---|---|---|---|---|---|
| precio | -0.88 | -0.10 | -0.27 | -0.25 | 0.21 | -0.07 | 0.02 | 0.05 | 0.18 | -0.02 |
| financiacion | -0.92 | 0.06 | -0.03 | -0.14 | 0.16 | -0.24 | -0.13 | -0.02 | -0.13 | 0.07 |
| consumo | -0.84 | -0.12 | -0.27 | -0.27 | -0.17 | 0.29 | -0.04 | 0.12 | -0.08 | -0.02 |
| combustible | -0.93 | -0.11 | -0.02 | -0.06 | -0.08 | 0.06 | 0.10 | -0.30 | -0.01 | -0.02 |
| seguridad | 0.53 | 0.72 | 0.15 | -0.22 | 0.19 | 0.26 | -0.10 | -0.08 | 0.03 | 0.05 |
| confort | 0.20 | 0.90 | 0.00 | -0.29 | -0.07 | -0.17 | 0.15 | 0.03 | -0.05 | -0.06 |
| capacidad | -0.28 | 0.67 | -0.54 | 0.42 | 0.02 | 0.04 | 0.03 | -0.01 | 0.00 | 0.03 |
| prestaciones | 0.86 | -0.16 | -0.28 | -0.25 | -0.26 | -0.09 | 0.04 | -0.04 | 0.05 | 0.10 |
| modernidad | 0.88 | -0.14 | -0.37 | -0.07 | 0.02 | -0.07 | -0.21 | -0.10 | -0.02 | -0.09 |
| aerodinamica | 0.77 | -0.45 | -0.23 | -0.08 | 0.31 | 0.08 | 0.19 | 0.00 | -0.09 | 0.01 |
library(corrplot)
corrplot(variables_pca_parcial$coord,is.corr = FALSE,method = "square",addCoef.col="black",number.cex = 0.75)
library(psych)
#Modelo de 2 Factores (Rotado)
numero_de_factores<-2
modelo_2factores_parcial<-principal(r = matriz_R$r,
nfactors = numero_de_factores,
covar = FALSE,
rotate = "varimax")
modelo_2factores_parcial
## Principal Components Analysis
## Call: principal(r = matriz_R$r, nfactors = numero_de_factores, rotate = "varimax",
## covar = FALSE)
## Standardized loadings (pattern matrix) based upon correlation matrix
## RC1 RC2 h2 u2 com
## precio 0.87 -0.18 0.78 0.22 1.1
## financiacion 0.93 -0.02 0.86 0.14 1.0
## consumo 0.83 -0.19 0.72 0.28 1.1
## combustible 0.92 -0.20 0.88 0.12 1.1
## seguridad -0.46 0.77 0.80 0.20 1.6
## confort -0.11 0.91 0.85 0.15 1.0
## capacidad 0.34 0.64 0.53 0.47 1.5
## prestaciones -0.87 -0.07 0.77 0.23 1.0
## modernidad -0.89 -0.05 0.79 0.21 1.0
## aerodinamica -0.80 -0.38 0.79 0.21 1.4
##
## RC1 RC2
## SS loadings 5.67 2.10
## Proportion Var 0.57 0.21
## Cumulative Var 0.57 0.78
## Proportion Explained 0.73 0.27
## Cumulative Proportion 0.73 1.00
##
## Mean item complexity = 1.2
## Test of the hypothesis that 2 components are sufficient.
##
## The root mean square of the residuals (RMSR) is 0.07
##
## Fit based upon off diagonal values = 0.98
correlaciones_modelo<-variables_pca_parcial$coord
correlaciones_modelo_rotada<-varimax(
correlaciones_modelo[,1:numero_de_factores])$loadings
corrplot(correlaciones_modelo_rotada[,1:numero_de_factores],
is.corr = FALSE,
method = "square",
addCoef.col="purple",
number.cex = 0.75)
#Al hacer uso de la rotacion “Varimax” las variables quedan
representadas en los factores del siguiente modo:
#Factor 1[precio,financiacion,consumo,combustible,prestaciones,modernidad,aerodinamica]
#Factor 2[seguridad,confort,capacidad]
#Pese a que “capacidad” no cumple el criterio de representacion en ambos factores queda mejor representada en el factor 2.
#Prueba de Barlett
library(psych)
options(scipen = 99999)
Barlett<-cortest.bartlett(X6_2)
print(Barlett)
## $chisq
## [1] 163.4656
##
## $p.value
## [1] 0.000000000000002362835
##
## $df
## [1] 45
#Prueba KMO
library(psych)
KMO<-KMO(X6_2)
print(KMO)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = X6_2)
## Overall MSA = 0.7
## MSA for each item =
## precio financiacion consumo combustible seguridad confort
## 0.82 0.74 0.84 0.93 0.55 0.32
## capacidad prestaciones modernidad aerodinamica
## 0.37 0.62 0.68 0.84
library(rela)
KMO_total<-paf(as.matrix(X6_2))$KMO
print(KMO_total)
## [1] 0.70012
#Las pruebas de Bartlett y KMO hechas en nuestro modelo cumplen con los criterios de cada una, dando a entender que si existe multicolinealidad en los datos de la matriz de informacion.