x = read.csv("C:/Users/User/Downloads/iris.csv",header=TRUE)
head(x)
##   Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm     Species
## 1  1           5.1          3.5           1.4          0.2 Iris-setosa
## 2  2           4.9          3.0           1.4          0.2 Iris-setosa
## 3  3           4.7          3.2           1.3          0.2 Iris-setosa
## 4  4           4.6          3.1           1.5          0.2 Iris-setosa
## 5  5           5.0          3.6           1.4          0.2 Iris-setosa
## 6  6           5.4          3.9           1.7          0.4 Iris-setosa
str(x)
## 'data.frame':    150 obs. of  6 variables:
##  $ Id           : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ SepalLengthCm: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##  $ SepalWidthCm : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
##  $ PetalLengthCm: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
##  $ PetalWidthCm : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##  $ Species      : chr  "Iris-setosa" "Iris-setosa" "Iris-setosa" "Iris-setosa" ...
head(x)
##   Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm     Species
## 1  1           5.1          3.5           1.4          0.2 Iris-setosa
## 2  2           4.9          3.0           1.4          0.2 Iris-setosa
## 3  3           4.7          3.2           1.3          0.2 Iris-setosa
## 4  4           4.6          3.1           1.5          0.2 Iris-setosa
## 5  5           5.0          3.6           1.4          0.2 Iris-setosa
## 6  6           5.4          3.9           1.7          0.4 Iris-setosa
x.num= x[,1:4]
summary(x)
##        Id         SepalLengthCm    SepalWidthCm   PetalLengthCm  
##  Min.   :  1.00   Min.   :4.300   Min.   :2.000   Min.   :1.000  
##  1st Qu.: 38.25   1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600  
##  Median : 75.50   Median :5.800   Median :3.000   Median :4.350  
##  Mean   : 75.50   Mean   :5.843   Mean   :3.054   Mean   :3.759  
##  3rd Qu.:112.75   3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100  
##  Max.   :150.00   Max.   :7.900   Max.   :4.400   Max.   :6.900  
##   PetalWidthCm     Species         
##  Min.   :0.100   Length:150        
##  1st Qu.:0.300   Class :character  
##  Median :1.300   Mode  :character  
##  Mean   :1.199                     
##  3rd Qu.:1.800                     
##  Max.   :2.500
var(x.num)
##                        Id SepalLengthCm SepalWidthCm PetalLengthCm
## Id            1887.500000   25.78288591  -7.49228188    67.6677852
## SepalLengthCm   25.782886    0.68569351  -0.03926846     1.2736823
## SepalWidthCm    -7.492282   -0.03926846   0.18800403    -0.3217128
## PetalLengthCm   67.667785    1.27368233  -0.32171275     3.1131794
#membuat pie chart untuk spesies
 pie(table(x$Species))

#mengatur pelatakan grafik
 par(mfrow=c(2,2),oma=c(1,1,1,1))
 #membuat histogram tiap atribut
 hist(x$SepalLengthCm,col="light pink")
 hist(x$SepalWidthCm,col="light yellow")
 hist(x$PetalLengthCm,col="light blue")
 hist(x$PetalWidthCm,col= "thistle2")

#atur peletakan grafik
 par(mfrow=c(2,2),mar=c(2,2,2,2))
 #membuat boxplot tiap atribut terhadap spesies
 boxplot(SepalLengthCm ~ Species, main = "Box Plot Sepal Length - Species", data = x, xlab = "Species", ylab = "Sepal.Length")

 boxplot(SepalWidthCm ~ Species, main = "Box Plot Sepal Width - Species", data = x, xlab = "Species", ylab = "Sepal.Width")

 boxplot(PetalLengthCm ~ Species, main = "Box Plot Petal Length - Species", data = x, xlab = "Species", ylab = "Petal.Length")

 boxplot(PetalLengthCm ~ Species, main = "Box Plot Petal Width - Species", data = x, xlab = "Species", ylab = "Petal.Width")

#membuat pairs plot tiap atribut terhadap spesies
 x.jitter <- apply(x.num,2,function(o){jitter(o)})
 x.jitter <- apply(x.num,2,function(o){jitter(o)})
 pairs(x.jitter,main="Pairs Plot of x Data",pch=21,bg = c("red", "green", "blue")[unclass(iris$Species)])