iris=read.csv("D:/iris.csv",header=TRUE)
head(iris)
## Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
## 1 1 5.1 3.5 1.4 0.2 Iris-setosa
## 2 2 4.9 3.0 1.4 0.2 Iris-setosa
## 3 3 4.7 3.2 1.3 0.2 Iris-setosa
## 4 4 4.6 3.1 1.5 0.2 Iris-setosa
## 5 5 5.0 3.6 1.4 0.2 Iris-setosa
## 6 6 5.4 3.9 1.7 0.4 Iris-setosa
summary(iris)
## Id SepalLengthCm SepalWidthCm PetalLengthCm
## Min. : 1.00 Min. :4.300 Min. :2.000 Min. :1.000
## 1st Qu.: 38.25 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
## Median : 75.50 Median :5.800 Median :3.000 Median :4.350
## Mean : 75.50 Mean :5.843 Mean :3.054 Mean :3.759
## 3rd Qu.:112.75 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
## Max. :150.00 Max. :7.900 Max. :4.400 Max. :6.900
## PetalWidthCm Species
## Min. :0.100 Length:150
## 1st Qu.:0.300 Class :character
## Median :1.300 Mode :character
## Mean :1.199
## 3rd Qu.:1.800
## Max. :2.500
#Modus
modus <- function(x){
uniqx <- unique (x)
uniqx[which.max(
tabulate(match(x,
uniqx)))]
}
modus(iris$SepalLengthCm)
## [1] 5
modus(iris$SepalWidthCm)
## [1] 3
modus(iris$PetalLengthCm)
## [1] 1.5
modus(iris$PetalWidthCm)
## [1] 0.2
#Rata-rata Geometri
mean.geom <- function(x){
exp(mean(log(x)))
}
mean.geom(iris$SepalLengthCm)
## [1] 5.78572
mean.geom(iris$SepalWidthCm)
## [1] 3.023582
mean.geom(iris$PetalLengthCm)
## [1] 3.239757
mean.geom(iris$PetalLengthCm)
## [1] 3.239757
#Rata-rata Harmoni
mean.harm <- function(x){
1/(mean(1/x))
}
mean.harm(iris$SepalLengthCm)
## [1] 5.728905
mean.harm(iris$SepalWidthCm)
## [1] 2.993137
mean.harm(iris$PetalLengthCm)
## [1] 2.696472
mean.harm(iris$PetalLengthCm)
## [1] 2.696472
#Nilai Skewness dan kurtosis
library(e1071)
skewness(iris$SepalLengthCm)
## [1] 0.3086407
skewness(iris$SepalWidthCm)
## [1] 0.3274013
skewness(iris$PetalLengthCm)
## [1] -0.2689994
skewness(iris$PetalWidthCm)
## [1] -0.102906
kurtosis(iris$SepalLengthCm)
## [1] -0.6058125
kurtosis(iris$SepalWidthCm)
## [1] 0.1983681
kurtosis(iris$PetalLengthCm)
## [1] -1.416683
kurtosis(iris$PetalWidthCm)
## [1] -1.357368
Diagram Kotak Garis
boxplot(iris$SepalLengthCm, main =
"SepalLengthCm", xlab = "SepalLength (cm)", col = "red" )
boxplot(iris$SepalWidthCm, main =
"SepalWidthCm", xlab = "SepalWidth (cm)", col = "orange")
boxplot(iris$PetalLengthCm, main =
"petalLengthCm", xlab = "PetalLength (cm)", col = "yellow")
boxplot(iris$PetalWidthCm, main =
"petalWidthCm", xlab = "PetalWidth (cm)", col = "green")
Histogram
hist(iris$SepalLengthCm, main = "SepalLengthCm", xlab ="SepalLength (Cm)", col = "magenta")
hist(iris$SepalWidthCm, main = "SepalWidthCm", xlab ="SepalWidth (Cm)", col = "chocolate")
hist(iris$PetalLengthCm, main = "PetalLengthCm", xlab ="PetalLength (Cm)", col = "Pink")
hist(iris$PetalWidthCm, main = "PetalWIdthCm", xlab ="PetalWidth (Cm)", col = "Darkgrey")
Diagram Pencar
par(mfrow=c(2,2))
plot(iris$SepalLengthCm, main = "SepalLengthCm", xlab ="SepalLength (Cm)", col = "magenta")
plot(iris$SepalWidthCm, main = "SepalWidthCm", xlab ="SepalWidth (Cm)", col = "chocolate")
plot(iris$PetalLengthCm, main = "PetalLengthCm", xlab ="PetalLength (Cm)", col = "Pink")
plot(iris$PetalWidthCm, main = "PetalWIdthCm", xlab ="PetalWidth (Cm)", col = "Darkgrey")
Diagram Batang
barplot(iris$SepalLengthCm, main = "SepalLengthCm", xlab ="SepalLength (Cm)", col = "magenta")
barplot(iris$SepalWidthCm, main = "SepalWidthCm", xlab ="SepalWidth (Cm)", col = "chocolate")
barplot(iris$PetalLengthCm, main = "PetalLengthCm", xlab ="PetalLength (Cm)", col = "Pink")
barplot(iris$PetalWidthCm, main = "PetalWIdthCm", xlab ="PetalWidth (Cm)", col = "Darkgrey")
#membuat pie chart untuk spesies
pie(table(iris$Species))