# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("AMZN", "MSFT", "HD", "WMT")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2022-10-26")
prices
## # A tibble: 9,892 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AMZN 2012-12-31 12.2 12.6 12.1 12.5 68380000 12.5
## 2 AMZN 2013-01-02 12.8 12.9 12.7 12.9 65420000 12.9
## 3 AMZN 2013-01-03 12.9 13.0 12.8 12.9 55018000 12.9
## 4 AMZN 2013-01-04 12.9 13.0 12.8 13.0 37484000 13.0
## 5 AMZN 2013-01-07 13.1 13.5 13.1 13.4 98200000 13.4
## 6 AMZN 2013-01-08 13.4 13.4 13.2 13.3 60214000 13.3
## 7 AMZN 2013-01-09 13.4 13.5 13.3 13.3 45312000 13.3
## 8 AMZN 2013-01-10 13.4 13.4 13.1 13.3 57268000 13.3
## 9 AMZN 2013-01-11 13.3 13.4 13.2 13.4 48266000 13.4
## 10 AMZN 2013-01-14 13.4 13.7 13.4 13.6 85500000 13.6
## # … with 9,882 more rows
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 472 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 AMZN 2013-01-31 0.0567
## 2 AMZN 2013-02-28 -0.00464
## 3 AMZN 2013-03-28 0.00837
## 4 AMZN 2013-04-30 -0.0488
## 5 AMZN 2013-05-31 0.0589
## 6 AMZN 2013-06-28 0.0311
## 7 AMZN 2013-07-31 0.0813
## 8 AMZN 2013-08-30 -0.0696
## 9 AMZN 2013-09-30 0.107
## 10 AMZN 2013-10-31 0.152
## # … with 462 more rows
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMZN" "HD" "MSFT" "WMT"
# weights
weights <- c(0.30, 0.30, 0.15, 0.25)
weights
## [1] 0.30 0.30 0.15 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 AMZN 0.3
## 2 HD 0.3
## 3 MSFT 0.15
## 4 WMT 0.25
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 118 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0510
## 2 2013-02-28 0.0117
## 3 2013-03-28 0.0295
## 4 2013-04-30 0.0317
## 5 2013-05-31 0.0397
## 6 2013-06-28 0.00350
## 7 2013-07-31 0.0295
## 8 2013-08-30 -0.0453
## 9 2013-09-30 0.0418
## 10 2013-10-31 0.0722
## # … with 108 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 0.0975
# Assign a value for window
window = 24
# Transform data: calculate 24 month rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
# Plot
rolling_kurt_tbl %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "purple") +
# Formatting
scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(x = NULL,
y = "Kurtosis",
title = paste0("Rolling", window, " Month Kurtosis")) +
annotate(geom = "text",
x = as.Date("2012-12-31"),
y = 3,
color = "blue",
label = str_glue("Kurtosis went down from 2015-2016, then went up until 2020 and slowly went down towards 2022."))
Has the downside risk of your portfolio increased or decreased over time? Explain using the plot you created. You may also refer to the skewness of the returns distribution you plotted in the previous assignment.
The downside risk of my portfolio has increased and decresed over time. It increased up to 2019, then started to decrease the years following 2019. This can also be interpreted with the negative skewness of my portfolio.