library(haven)
dat <- read_dta("ZAIR71FL.DTA")
View(dat)
names(dat)
##    [1] "caseid"    "v000"      "v001"      "v002"      "v003"      "v004"     
##    [7] "v005"      "v006"      "v007"      "v008"      "v008a"     "v009"     
##   [13] "v010"      "v011"      "v012"      "v013"      "v014"      "v015"     
##   [19] "v016"      "v017"      "v018"      "v019"      "v019a"     "v020"     
##   [25] "v021"      "v022"      "v023"      "v024"      "v025"      "v026"     
##   [31] "v027"      "v028"      "v029"      "v030"      "v031"      "v032"     
##   [37] "v034"      "v040"      "v042"      "v044"      "v045a"     "v045b"    
##   [43] "v045c"     "v046"      "v101"      "v102"      "v103"      "v104"     
##   [49] "v105"      "v105a"     "v106"      "v107"      "v113"      "v115"     
##   [55] "v116"      "v119"      "v120"      "v121"      "v122"      "v123"     
##   [61] "v124"      "v125"      "v127"      "v128"      "v129"      "v130"     
##   [67] "v131"      "v133"      "v134"      "v135"      "v136"      "v137"     
##   [73] "v138"      "v139"      "v140"      "v141"      "v149"      "v150"     
##   [79] "v151"      "v152"      "v153"      "awfactt"   "awfactu"   "awfactr"  
##   [85] "awfacte"   "awfactw"   "v155"      "v156"      "v157"      "v158"     
##   [91] "v159"      "v160"      "v161"      "v166"      "v167"      "v168"     
##   [97] "v169a"     "v169b"     "v170"      "v171a"     "v171b"     "v190"     
##  [103] "v191"      "v190a"     "v191a"     "ml101"     "bidx_01"   "bidx_02"  
##  [109] "bidx_03"   "bidx_04"   "bidx_05"   "bidx_06"   "bidx_07"   "bidx_08"  
##  [115] "bidx_09"   "bidx_10"   "bidx_11"   "bidx_12"   "bidx_13"   "bidx_14"  
##  [121] "bidx_15"   "bidx_16"   "bidx_17"   "bidx_18"   "bidx_19"   "bidx_20"  
##  [127] "bord_01"   "bord_02"   "bord_03"   "bord_04"   "bord_05"   "bord_06"  
##  [133] "bord_07"   "bord_08"   "bord_09"   "bord_10"   "bord_11"   "bord_12"  
##  [139] "bord_13"   "bord_14"   "bord_15"   "bord_16"   "bord_17"   "bord_18"  
##  [145] "bord_19"   "bord_20"   "b0_01"     "b0_02"     "b0_03"     "b0_04"    
##  [151] "b0_05"     "b0_06"     "b0_07"     "b0_08"     "b0_09"     "b0_10"    
##  [157] "b0_11"     "b0_12"     "b0_13"     "b0_14"     "b0_15"     "b0_16"    
##  [163] "b0_17"     "b0_18"     "b0_19"     "b0_20"     "b1_01"     "b1_02"    
##  [169] "b1_03"     "b1_04"     "b1_05"     "b1_06"     "b1_07"     "b1_08"    
##  [175] "b1_09"     "b1_10"     "b1_11"     "b1_12"     "b1_13"     "b1_14"    
##  [181] "b1_15"     "b1_16"     "b1_17"     "b1_18"     "b1_19"     "b1_20"    
##  [187] "b2_01"     "b2_02"     "b2_03"     "b2_04"     "b2_05"     "b2_06"    
##  [193] "b2_07"     "b2_08"     "b2_09"     "b2_10"     "b2_11"     "b2_12"    
##  [199] "b2_13"     "b2_14"     "b2_15"     "b2_16"     "b2_17"     "b2_18"    
##  [205] "b2_19"     "b2_20"     "b3_01"     "b3_02"     "b3_03"     "b3_04"    
##  [211] "b3_05"     "b3_06"     "b3_07"     "b3_08"     "b3_09"     "b3_10"    
##  [217] "b3_11"     "b3_12"     "b3_13"     "b3_14"     "b3_15"     "b3_16"    
##  [223] "b3_17"     "b3_18"     "b3_19"     "b3_20"     "b4_01"     "b4_02"    
##  [229] "b4_03"     "b4_04"     "b4_05"     "b4_06"     "b4_07"     "b4_08"    
##  [235] "b4_09"     "b4_10"     "b4_11"     "b4_12"     "b4_13"     "b4_14"    
##  [241] "b4_15"     "b4_16"     "b4_17"     "b4_18"     "b4_19"     "b4_20"    
##  [247] "b5_01"     "b5_02"     "b5_03"     "b5_04"     "b5_05"     "b5_06"    
##  [253] "b5_07"     "b5_08"     "b5_09"     "b5_10"     "b5_11"     "b5_12"    
##  [259] "b5_13"     "b5_14"     "b5_15"     "b5_16"     "b5_17"     "b5_18"    
##  [265] "b5_19"     "b5_20"     "b6_01"     "b6_02"     "b6_03"     "b6_04"    
##  [271] "b6_05"     "b6_06"     "b6_07"     "b6_08"     "b6_09"     "b6_10"    
##  [277] "b6_11"     "b6_12"     "b6_13"     "b6_14"     "b6_15"     "b6_16"    
##  [283] "b6_17"     "b6_18"     "b6_19"     "b6_20"     "b7_01"     "b7_02"    
##  [289] "b7_03"     "b7_04"     "b7_05"     "b7_06"     "b7_07"     "b7_08"    
##  [295] "b7_09"     "b7_10"     "b7_11"     "b7_12"     "b7_13"     "b7_14"    
##  [301] "b7_15"     "b7_16"     "b7_17"     "b7_18"     "b7_19"     "b7_20"    
##  [307] "b8_01"     "b8_02"     "b8_03"     "b8_04"     "b8_05"     "b8_06"    
##  [313] "b8_07"     "b8_08"     "b8_09"     "b8_10"     "b8_11"     "b8_12"    
##  [319] "b8_13"     "b8_14"     "b8_15"     "b8_16"     "b8_17"     "b8_18"    
##  [325] "b8_19"     "b8_20"     "b9_01"     "b9_02"     "b9_03"     "b9_04"    
##  [331] "b9_05"     "b9_06"     "b9_07"     "b9_08"     "b9_09"     "b9_10"    
##  [337] "b9_11"     "b9_12"     "b9_13"     "b9_14"     "b9_15"     "b9_16"    
##  [343] "b9_17"     "b9_18"     "b9_19"     "b9_20"     "b10_01"    "b10_02"   
##  [349] "b10_03"    "b10_04"    "b10_05"    "b10_06"    "b10_07"    "b10_08"   
##  [355] "b10_09"    "b10_10"    "b10_11"    "b10_12"    "b10_13"    "b10_14"   
##  [361] "b10_15"    "b10_16"    "b10_17"    "b10_18"    "b10_19"    "b10_20"   
##  [367] "b11_01"    "b11_02"    "b11_03"    "b11_04"    "b11_05"    "b11_06"   
##  [373] "b11_07"    "b11_08"    "b11_09"    "b11_10"    "b11_11"    "b11_12"   
##  [379] "b11_13"    "b11_14"    "b11_15"    "b11_16"    "b11_17"    "b11_18"   
##  [385] "b11_19"    "b11_20"    "b12_01"    "b12_02"    "b12_03"    "b12_04"   
##  [391] "b12_05"    "b12_06"    "b12_07"    "b12_08"    "b12_09"    "b12_10"   
##  [397] "b12_11"    "b12_12"    "b12_13"    "b12_14"    "b12_15"    "b12_16"   
##  [403] "b12_17"    "b12_18"    "b12_19"    "b12_20"    "b13_01"    "b13_02"   
##  [409] "b13_03"    "b13_04"    "b13_05"    "b13_06"    "b13_07"    "b13_08"   
##  [415] "b13_09"    "b13_10"    "b13_11"    "b13_12"    "b13_13"    "b13_14"   
##  [421] "b13_15"    "b13_16"    "b13_17"    "b13_18"    "b13_19"    "b13_20"   
##  [427] "b15_01"    "b15_02"    "b15_03"    "b15_04"    "b15_05"    "b15_06"   
##  [433] "b15_07"    "b15_08"    "b15_09"    "b15_10"    "b15_11"    "b15_12"   
##  [439] "b15_13"    "b15_14"    "b15_15"    "b15_16"    "b15_17"    "b15_18"   
##  [445] "b15_19"    "b15_20"    "b16_01"    "b16_02"    "b16_03"    "b16_04"   
##  [451] "b16_05"    "b16_06"    "b16_07"    "b16_08"    "b16_09"    "b16_10"   
##  [457] "b16_11"    "b16_12"    "b16_13"    "b16_14"    "b16_15"    "b16_16"   
##  [463] "b16_17"    "b16_18"    "b16_19"    "b16_20"    "b17_01"    "b17_02"   
##  [469] "b17_03"    "b17_04"    "b17_05"    "b17_06"    "b17_07"    "b17_08"   
##  [475] "b17_09"    "b17_10"    "b17_11"    "b17_12"    "b17_13"    "b17_14"   
##  [481] "b17_15"    "b17_16"    "b17_17"    "b17_18"    "b17_19"    "b17_20"   
##  [487] "b18_01"    "b18_02"    "b18_03"    "b18_04"    "b18_05"    "b18_06"   
##  [493] "b18_07"    "b18_08"    "b18_09"    "b18_10"    "b18_11"    "b18_12"   
##  [499] "b18_13"    "b18_14"    "b18_15"    "b18_16"    "b18_17"    "b18_18"   
##  [505] "b18_19"    "b18_20"    "b19_01"    "b19_02"    "b19_03"    "b19_04"   
##  [511] "b19_05"    "b19_06"    "b19_07"    "b19_08"    "b19_09"    "b19_10"   
##  [517] "b19_11"    "b19_12"    "b19_13"    "b19_14"    "b19_15"    "b19_16"   
##  [523] "b19_17"    "b19_18"    "b19_19"    "b19_20"    "b20_01"    "b20_02"   
##  [529] "b20_03"    "b20_04"    "b20_05"    "b20_06"    "b20_07"    "b20_08"   
##  [535] "b20_09"    "b20_10"    "b20_11"    "b20_12"    "b20_13"    "b20_14"   
##  [541] "b20_15"    "b20_16"    "b20_17"    "b20_18"    "b20_19"    "b20_20"   
##  [547] "v201"      "v202"      "v203"      "v204"      "v205"      "v206"     
##  [553] "v207"      "v208"      "v209"      "v210"      "v211"      "v212"     
##  [559] "v213"      "v214"      "v215"      "v216"      "v217"      "v218"     
##  [565] "v219"      "v220"      "v221"      "v222"      "v223"      "v224"     
##  [571] "v225"      "v226"      "v227"      "v228"      "v229"      "v230"     
##  [577] "v231"      "v232"      "v233"      "v234"      "v235"      "v237"     
##  [583] "v238"      "v239"      "v240"      "v241"      "v242"      "v243"     
##  [589] "v244"      "v301"      "v302"      "v302a"     "v304a_01"  "v304a_02" 
##  [595] "v304a_03"  "v304a_04"  "v304a_05"  "v304a_06"  "v304a_07"  "v304a_08" 
##  [601] "v304a_09"  "v304a_10"  "v304a_11"  "v304a_12"  "v304a_13"  "v304a_14" 
##  [607] "v304a_15"  "v304a_16"  "v304a_17"  "v304a_18"  "v304a_19"  "v304a_20" 
##  [613] "v304_01"   "v304_02"   "v304_03"   "v304_04"   "v304_05"   "v304_06"  
##  [619] "v304_07"   "v304_08"   "v304_09"   "v304_10"   "v304_11"   "v304_12"  
##  [625] "v304_13"   "v304_14"   "v304_15"   "v304_16"   "v304_17"   "v304_18"  
##  [631] "v304_19"   "v304_20"   "v305_01"   "v305_02"   "v305_03"   "v305_04"  
##  [637] "v305_05"   "v305_06"   "v305_07"   "v305_08"   "v305_09"   "v305_10"  
##  [643] "v305_11"   "v305_12"   "v305_13"   "v305_14"   "v305_15"   "v305_16"  
##  [649] "v305_17"   "v305_18"   "v305_19"   "v305_20"   "v307_01"   "v307_02"  
##  [655] "v307_03"   "v307_04"   "v307_05"   "v307_06"   "v307_07"   "v307_08"  
##  [661] "v307_09"   "v307_10"   "v307_11"   "v307_12"   "v307_13"   "v307_14"  
##  [667] "v307_15"   "v307_16"   "v307_17"   "v307_18"   "v307_19"   "v307_20"  
##  [673] "v310"      "v311"      "v312"      "v313"      "v315"      "v316"     
##  [679] "v317"      "v318"      "v319"      "v320"      "v321"      "v322"     
##  [685] "v323"      "v323a"     "v325a"     "v326"      "v327"      "v337"     
##  [691] "v359"      "v360"      "v361"      "v362"      "v363"      "v364"     
##  [697] "v367"      "v372"      "v372a"     "v375a"     "v376"      "v376a"    
##  [703] "v379"      "v380"      "v384a"     "v384b"     "v384c"     "v384d"    
##  [709] "v393"      "v393a"     "v394"      "v395"      "v3a00a"    "v3a00b"   
##  [715] "v3a00c"    "v3a00d"    "v3a00e"    "v3a00f"    "v3a00g"    "v3a00h"   
##  [721] "v3a00i"    "v3a00j"    "v3a00k"    "v3a00l"    "v3a00m"    "v3a00n"   
##  [727] "v3a00o"    "v3a00p"    "v3a00q"    "v3a00r"    "v3a00s"    "v3a00t"   
##  [733] "v3a00u"    "v3a00v"    "v3a00w"    "v3a00x"    "v3a00y"    "v3a00z"   
##  [739] "v3a01"     "v3a02"     "v3a03"     "v3a04"     "v3a05"     "v3a06"    
##  [745] "v3a07"     "v3a08a"    "v3a08b"    "v3a08c"    "v3a08d"    "v3a08e"   
##  [751] "v3a08f"    "v3a08g"    "v3a08h"    "v3a08i"    "v3a08j"    "v3a08k"   
##  [757] "v3a08l"    "v3a08m"    "v3a08n"    "v3a08o"    "v3a08p"    "v3a08q"   
##  [763] "v3a08r"    "v3a08s"    "v3a08t"    "v3a08u"    "v3a08v"    "v3a08w"   
##  [769] "v3a08aa"   "v3a08ab"   "v3a08ac"   "v3a08ad"   "v3a08x"    "v3a08z"   
##  [775] "v3a09a"    "v3a09b"    "midx_1"    "midx_2"    "midx_3"    "midx_4"   
##  [781] "midx_5"    "midx_6"    "m1_1"      "m1_2"      "m1_3"      "m1_4"     
##  [787] "m1_5"      "m1_6"      "m1a_1"     "m1a_2"     "m1a_3"     "m1a_4"    
##  [793] "m1a_5"     "m1a_6"     "m1b_1"     "m1b_2"     "m1b_3"     "m1b_4"    
##  [799] "m1b_5"     "m1b_6"     "m1c_1"     "m1c_2"     "m1c_3"     "m1c_4"    
##  [805] "m1c_5"     "m1c_6"     "m1d_1"     "m1d_2"     "m1d_3"     "m1d_4"    
##  [811] "m1d_5"     "m1d_6"     "m1e_1"     "m1e_2"     "m1e_3"     "m1e_4"    
##  [817] "m1e_5"     "m1e_6"     "m2a_1"     "m2a_2"     "m2a_3"     "m2a_4"    
##  [823] "m2a_5"     "m2a_6"     "m2b_1"     "m2b_2"     "m2b_3"     "m2b_4"    
##  [829] "m2b_5"     "m2b_6"     "m2c_1"     "m2c_2"     "m2c_3"     "m2c_4"    
##  [835] "m2c_5"     "m2c_6"     "m2d_1"     "m2d_2"     "m2d_3"     "m2d_4"    
##  [841] "m2d_5"     "m2d_6"     "m2e_1"     "m2e_2"     "m2e_3"     "m2e_4"    
##  [847] "m2e_5"     "m2e_6"     "m2f_1"     "m2f_2"     "m2f_3"     "m2f_4"    
##  [853] "m2f_5"     "m2f_6"     "m2g_1"     "m2g_2"     "m2g_3"     "m2g_4"    
##  [859] "m2g_5"     "m2g_6"     "m2h_1"     "m2h_2"     "m2h_3"     "m2h_4"    
##  [865] "m2h_5"     "m2h_6"     "m2i_1"     "m2i_2"     "m2i_3"     "m2i_4"    
##  [871] "m2i_5"     "m2i_6"     "m2j_1"     "m2j_2"     "m2j_3"     "m2j_4"    
##  [877] "m2j_5"     "m2j_6"     "m2k_1"     "m2k_2"     "m2k_3"     "m2k_4"    
##  [883] "m2k_5"     "m2k_6"     "m2l_1"     "m2l_2"     "m2l_3"     "m2l_4"    
##  [889] "m2l_5"     "m2l_6"     "m2m_1"     "m2m_2"     "m2m_3"     "m2m_4"    
##  [895] "m2m_5"     "m2m_6"     "m2n_1"     "m2n_2"     "m2n_3"     "m2n_4"    
##  [901] "m2n_5"     "m2n_6"     "m3a_1"     "m3a_2"     "m3a_3"     "m3a_4"    
##  [907] "m3a_5"     "m3a_6"     "m3b_1"     "m3b_2"     "m3b_3"     "m3b_4"    
##  [913] "m3b_5"     "m3b_6"     "m3c_1"     "m3c_2"     "m3c_3"     "m3c_4"    
##  [919] "m3c_5"     "m3c_6"     "m3d_1"     "m3d_2"     "m3d_3"     "m3d_4"    
##  [925] "m3d_5"     "m3d_6"     "m3e_1"     "m3e_2"     "m3e_3"     "m3e_4"    
##  [931] "m3e_5"     "m3e_6"     "m3f_1"     "m3f_2"     "m3f_3"     "m3f_4"    
##  [937] "m3f_5"     "m3f_6"     "m3g_1"     "m3g_2"     "m3g_3"     "m3g_4"    
##  [943] "m3g_5"     "m3g_6"     "m3h_1"     "m3h_2"     "m3h_3"     "m3h_4"    
##  [949] "m3h_5"     "m3h_6"     "m3i_1"     "m3i_2"     "m3i_3"     "m3i_4"    
##  [955] "m3i_5"     "m3i_6"     "m3j_1"     "m3j_2"     "m3j_3"     "m3j_4"    
##  [961] "m3j_5"     "m3j_6"     "m3k_1"     "m3k_2"     "m3k_3"     "m3k_4"    
##  [967] "m3k_5"     "m3k_6"     "m3l_1"     "m3l_2"     "m3l_3"     "m3l_4"    
##  [973] "m3l_5"     "m3l_6"     "m3m_1"     "m3m_2"     "m3m_3"     "m3m_4"    
##  [979] "m3m_5"     "m3m_6"     "m3n_1"     "m3n_2"     "m3n_3"     "m3n_4"    
##  [985] "m3n_5"     "m3n_6"     "m4_1"      "m4_2"      "m4_3"      "m4_4"     
##  [991] "m4_5"      "m4_6"      "m5_1"      "m5_2"      "m5_3"      "m5_4"     
##  [997] "m5_5"      "m5_6"      "m6_1"      "m6_2"      "m6_3"      "m6_4"     
## [1003] "m6_5"      "m6_6"      "m7_1"      "m7_2"      "m7_3"      "m7_4"     
## [1009] "m7_5"      "m7_6"      "m8_1"      "m8_2"      "m8_3"      "m8_4"     
## [1015] "m8_5"      "m8_6"      "m9_1"      "m9_2"      "m9_3"      "m9_4"     
## [1021] "m9_5"      "m9_6"      "m10_1"     "m10_2"     "m10_3"     "m10_4"    
## [1027] "m10_5"     "m10_6"     "m11_1"     "m11_2"     "m11_3"     "m11_4"    
## [1033] "m11_5"     "m11_6"     "m13_1"     "m13_2"     "m13_3"     "m13_4"    
## [1039] "m13_5"     "m13_6"     "m14_1"     "m14_2"     "m14_3"     "m14_4"    
## [1045] "m14_5"     "m14_6"     "m15_1"     "m15_2"     "m15_3"     "m15_4"    
## [1051] "m15_5"     "m15_6"     "m17_1"     "m17_2"     "m17_3"     "m17_4"    
## [1057] "m17_5"     "m17_6"     "m17a_1"    "m17a_2"    "m17a_3"    "m17a_4"   
## [1063] "m17a_5"    "m17a_6"    "m18_1"     "m18_2"     "m18_3"     "m18_4"    
## [1069] "m18_5"     "m18_6"     "m19_1"     "m19_2"     "m19_3"     "m19_4"    
## [1075] "m19_5"     "m19_6"     "m19a_1"    "m19a_2"    "m19a_3"    "m19a_4"   
## [1081] "m19a_5"    "m19a_6"    "m27_1"     "m27_2"     "m27_3"     "m27_4"    
## [1087] "m27_5"     "m27_6"     "m28_1"     "m28_2"     "m28_3"     "m28_4"    
## [1093] "m28_5"     "m28_6"     "m29_1"     "m29_2"     "m29_3"     "m29_4"    
## [1099] "m29_5"     "m29_6"     "m34_1"     "m34_2"     "m34_3"     "m34_4"    
## [1105] "m34_5"     "m34_6"     "m35_1"     "m35_2"     "m35_3"     "m35_4"    
## [1111] "m35_5"     "m35_6"     "m36_1"     "m36_2"     "m36_3"     "m36_4"    
## [1117] "m36_5"     "m36_6"     "m38_1"     "m38_2"     "m38_3"     "m38_4"    
## [1123] "m38_5"     "m38_6"     "m39a_1"    "m39a_2"    "m39a_3"    "m39a_4"   
## [1129] "m39a_5"    "m39a_6"    "m39_1"     "m39_2"     "m39_3"     "m39_4"    
## [1135] "m39_5"     "m39_6"     "m42a_1"    "m42a_2"    "m42a_3"    "m42a_4"   
## [1141] "m42a_5"    "m42a_6"    "m42b_1"    "m42b_2"    "m42b_3"    "m42b_4"   
## [1147] "m42b_5"    "m42b_6"    "m42c_1"    "m42c_2"    "m42c_3"    "m42c_4"   
## [1153] "m42c_5"    "m42c_6"    "m42d_1"    "m42d_2"    "m42d_3"    "m42d_4"   
## [1159] "m42d_5"    "m42d_6"    "m42e_1"    "m42e_2"    "m42e_3"    "m42e_4"   
## [1165] "m42e_5"    "m42e_6"    "m43_1"     "m43_2"     "m43_3"     "m43_4"    
## [1171] "m43_5"     "m43_6"     "m44_1"     "m44_2"     "m44_3"     "m44_4"    
## [1177] "m44_5"     "m44_6"     "m45_1"     "m45_2"     "m45_3"     "m45_4"    
## [1183] "m45_5"     "m45_6"     "m46_1"     "m46_2"     "m46_3"     "m46_4"    
## [1189] "m46_5"     "m46_6"     "m47_1"     "m47_2"     "m47_3"     "m47_4"    
## [1195] "m47_5"     "m47_6"     "m48_1"     "m48_2"     "m48_3"     "m48_4"    
## [1201] "m48_5"     "m48_6"     "m49a_1"    "m49a_2"    "m49a_3"    "m49a_4"   
## [1207] "m49a_5"    "m49a_6"    "m49b_1"    "m49b_2"    "m49b_3"    "m49b_4"   
## [1213] "m49b_5"    "m49b_6"    "m49c_1"    "m49c_2"    "m49c_3"    "m49c_4"   
## [1219] "m49c_5"    "m49c_6"    "m49d_1"    "m49d_2"    "m49d_3"    "m49d_4"   
## [1225] "m49d_5"    "m49d_6"    "m49e_1"    "m49e_2"    "m49e_3"    "m49e_4"   
## [1231] "m49e_5"    "m49e_6"    "m49f_1"    "m49f_2"    "m49f_3"    "m49f_4"   
## [1237] "m49f_5"    "m49f_6"    "m49g_1"    "m49g_2"    "m49g_3"    "m49g_4"   
## [1243] "m49g_5"    "m49g_6"    "m49x_1"    "m49x_2"    "m49x_3"    "m49x_4"   
## [1249] "m49x_5"    "m49x_6"    "m49z_1"    "m49z_2"    "m49z_3"    "m49z_4"   
## [1255] "m49z_5"    "m49z_6"    "m49y_1"    "m49y_2"    "m49y_3"    "m49y_4"   
## [1261] "m49y_5"    "m49y_6"    "m54_1"     "m54_2"     "m54_3"     "m54_4"    
## [1267] "m54_5"     "m54_6"     "m55_1"     "m55_2"     "m55_3"     "m55_4"    
## [1273] "m55_5"     "m55_6"     "m55a_1"    "m55a_2"    "m55a_3"    "m55a_4"   
## [1279] "m55a_5"    "m55a_6"    "m55b_1"    "m55b_2"    "m55b_3"    "m55b_4"   
## [1285] "m55b_5"    "m55b_6"    "m55c_1"    "m55c_2"    "m55c_3"    "m55c_4"   
## [1291] "m55c_5"    "m55c_6"    "m55d_1"    "m55d_2"    "m55d_3"    "m55d_4"   
## [1297] "m55d_5"    "m55d_6"    "m55e_1"    "m55e_2"    "m55e_3"    "m55e_4"   
## [1303] "m55e_5"    "m55e_6"    "m55f_1"    "m55f_2"    "m55f_3"    "m55f_4"   
## [1309] "m55f_5"    "m55f_6"    "m55g_1"    "m55g_2"    "m55g_3"    "m55g_4"   
## [1315] "m55g_5"    "m55g_6"    "m55h_1"    "m55h_2"    "m55h_3"    "m55h_4"   
## [1321] "m55h_5"    "m55h_6"    "m55i_1"    "m55i_2"    "m55i_3"    "m55i_4"   
## [1327] "m55i_5"    "m55i_6"    "m55j_1"    "m55j_2"    "m55j_3"    "m55j_4"   
## [1333] "m55j_5"    "m55j_6"    "m55k_1"    "m55k_2"    "m55k_3"    "m55k_4"   
## [1339] "m55k_5"    "m55k_6"    "m55l_1"    "m55l_2"    "m55l_3"    "m55l_4"   
## [1345] "m55l_5"    "m55l_6"    "m55m_1"    "m55m_2"    "m55m_3"    "m55m_4"   
## [1351] "m55m_5"    "m55m_6"    "m55n_1"    "m55n_2"    "m55n_3"    "m55n_4"   
## [1357] "m55n_5"    "m55n_6"    "m55o_1"    "m55o_2"    "m55o_3"    "m55o_4"   
## [1363] "m55o_5"    "m55o_6"    "m55x_1"    "m55x_2"    "m55x_3"    "m55x_4"   
## [1369] "m55x_5"    "m55x_6"    "m55z_1"    "m55z_2"    "m55z_3"    "m55z_4"   
## [1375] "m55z_5"    "m55z_6"    "m57a_1"    "m57a_2"    "m57a_3"    "m57a_4"   
## [1381] "m57a_5"    "m57a_6"    "m57b_1"    "m57b_2"    "m57b_3"    "m57b_4"   
## [1387] "m57b_5"    "m57b_6"    "m57c_1"    "m57c_2"    "m57c_3"    "m57c_4"   
## [1393] "m57c_5"    "m57c_6"    "m57d_1"    "m57d_2"    "m57d_3"    "m57d_4"   
## [1399] "m57d_5"    "m57d_6"    "m57e_1"    "m57e_2"    "m57e_3"    "m57e_4"   
## [1405] "m57e_5"    "m57e_6"    "m57f_1"    "m57f_2"    "m57f_3"    "m57f_4"   
## [1411] "m57f_5"    "m57f_6"    "m57g_1"    "m57g_2"    "m57g_3"    "m57g_4"   
## [1417] "m57g_5"    "m57g_6"    "m57h_1"    "m57h_2"    "m57h_3"    "m57h_4"   
## [1423] "m57h_5"    "m57h_6"    "m57i_1"    "m57i_2"    "m57i_3"    "m57i_4"   
## [1429] "m57i_5"    "m57i_6"    "m57j_1"    "m57j_2"    "m57j_3"    "m57j_4"   
## [1435] "m57j_5"    "m57j_6"    "m57k_1"    "m57k_2"    "m57k_3"    "m57k_4"   
## [1441] "m57k_5"    "m57k_6"    "m57l_1"    "m57l_2"    "m57l_3"    "m57l_4"   
## [1447] "m57l_5"    "m57l_6"    "m57m_1"    "m57m_2"    "m57m_3"    "m57m_4"   
## [1453] "m57m_5"    "m57m_6"    "m57n_1"    "m57n_2"    "m57n_3"    "m57n_4"   
## [1459] "m57n_5"    "m57n_6"    "m57o_1"    "m57o_2"    "m57o_3"    "m57o_4"   
## [1465] "m57o_5"    "m57o_6"    "m57p_1"    "m57p_2"    "m57p_3"    "m57p_4"   
## [1471] "m57p_5"    "m57p_6"    "m57q_1"    "m57q_2"    "m57q_3"    "m57q_4"   
## [1477] "m57q_5"    "m57q_6"    "m57r_1"    "m57r_2"    "m57r_3"    "m57r_4"   
## [1483] "m57r_5"    "m57r_6"    "m57s_1"    "m57s_2"    "m57s_3"    "m57s_4"   
## [1489] "m57s_5"    "m57s_6"    "m57t_1"    "m57t_2"    "m57t_3"    "m57t_4"   
## [1495] "m57t_5"    "m57t_6"    "m57u_1"    "m57u_2"    "m57u_3"    "m57u_4"   
## [1501] "m57u_5"    "m57u_6"    "m57v_1"    "m57v_2"    "m57v_3"    "m57v_4"   
## [1507] "m57v_5"    "m57v_6"    "m57x_1"    "m57x_2"    "m57x_3"    "m57x_4"   
## [1513] "m57x_5"    "m57x_6"    "m60_1"     "m60_2"     "m60_3"     "m60_4"    
## [1519] "m60_5"     "m60_6"     "m61_1"     "m61_2"     "m61_3"     "m61_4"    
## [1525] "m61_5"     "m61_6"     "m62_1"     "m62_2"     "m62_3"     "m62_4"    
## [1531] "m62_5"     "m62_6"     "m63_1"     "m63_2"     "m63_3"     "m63_4"    
## [1537] "m63_5"     "m63_6"     "m64_1"     "m64_2"     "m64_3"     "m64_4"    
## [1543] "m64_5"     "m64_6"     "m65a_1"    "m65a_2"    "m65a_3"    "m65a_4"   
## [1549] "m65a_5"    "m65a_6"    "m65b_1"    "m65b_2"    "m65b_3"    "m65b_4"   
## [1555] "m65b_5"    "m65b_6"    "m65c_1"    "m65c_2"    "m65c_3"    "m65c_4"   
## [1561] "m65c_5"    "m65c_6"    "m65d_1"    "m65d_2"    "m65d_3"    "m65d_4"   
## [1567] "m65d_5"    "m65d_6"    "m65e_1"    "m65e_2"    "m65e_3"    "m65e_4"   
## [1573] "m65e_5"    "m65e_6"    "m65f_1"    "m65f_2"    "m65f_3"    "m65f_4"   
## [1579] "m65f_5"    "m65f_6"    "m65g_1"    "m65g_2"    "m65g_3"    "m65g_4"   
## [1585] "m65g_5"    "m65g_6"    "m65h_1"    "m65h_2"    "m65h_3"    "m65h_4"   
## [1591] "m65h_5"    "m65h_6"    "m65i_1"    "m65i_2"    "m65i_3"    "m65i_4"   
## [1597] "m65i_5"    "m65i_6"    "m65j_1"    "m65j_2"    "m65j_3"    "m65j_4"   
## [1603] "m65j_5"    "m65j_6"    "m65k_1"    "m65k_2"    "m65k_3"    "m65k_4"   
## [1609] "m65k_5"    "m65k_6"    "m65l_1"    "m65l_2"    "m65l_3"    "m65l_4"   
## [1615] "m65l_5"    "m65l_6"    "m65x_1"    "m65x_2"    "m65x_3"    "m65x_4"   
## [1621] "m65x_5"    "m65x_6"    "m66_1"     "m66_2"     "m66_3"     "m66_4"    
## [1627] "m66_5"     "m66_6"     "m67_1"     "m67_2"     "m67_3"     "m67_4"    
## [1633] "m67_5"     "m67_6"     "m68_1"     "m68_2"     "m68_3"     "m68_4"    
## [1639] "m68_5"     "m68_6"     "m69_1"     "m69_2"     "m69_3"     "m69_4"    
## [1645] "m69_5"     "m69_6"     "m70_1"     "m70_2"     "m70_3"     "m70_4"    
## [1651] "m70_5"     "m70_6"     "m71_1"     "m71_2"     "m71_3"     "m71_4"    
## [1657] "m71_5"     "m71_6"     "m72_1"     "m72_2"     "m72_3"     "m72_4"    
## [1663] "m72_5"     "m72_6"     "m73_1"     "m73_2"     "m73_3"     "m73_4"    
## [1669] "m73_5"     "m73_6"     "m74_1"     "m74_2"     "m74_3"     "m74_4"    
## [1675] "m74_5"     "m74_6"     "m75_1"     "m75_2"     "m75_3"     "m75_4"    
## [1681] "m75_5"     "m75_6"     "m76_1"     "m76_2"     "m76_3"     "m76_4"    
## [1687] "m76_5"     "m76_6"     "m77_1"     "m77_2"     "m77_3"     "m77_4"    
## [1693] "m77_5"     "m77_6"     "m78a_1"    "m78a_2"    "m78a_3"    "m78a_4"   
## [1699] "m78a_5"    "m78a_6"    "m78b_1"    "m78b_2"    "m78b_3"    "m78b_4"   
## [1705] "m78b_5"    "m78b_6"    "m78c_1"    "m78c_2"    "m78c_3"    "m78c_4"   
## [1711] "m78c_5"    "m78c_6"    "m78d_1"    "m78d_2"    "m78d_3"    "m78d_4"   
## [1717] "m78d_5"    "m78d_6"    "m78e_1"    "m78e_2"    "m78e_3"    "m78e_4"   
## [1723] "m78e_5"    "m78e_6"    "m78f_1"    "m78f_2"    "m78f_3"    "m78f_4"   
## [1729] "m78f_5"    "m78f_6"    "m78g_1"    "m78g_2"    "m78g_3"    "m78g_4"   
## [1735] "m78g_5"    "m78g_6"    "m78h_1"    "m78h_2"    "m78h_3"    "m78h_4"   
## [1741] "m78h_5"    "m78h_6"    "m78i_1"    "m78i_2"    "m78i_3"    "m78i_4"   
## [1747] "m78i_5"    "m78i_6"    "m78j_1"    "m78j_2"    "m78j_3"    "m78j_4"   
## [1753] "m78j_5"    "m78j_6"    "v401"      "v404"      "v405"      "v406"     
## [1759] "v407"      "v408"      "v409"      "v409a"     "v410"      "v410a"    
## [1765] "v411"      "v411a"     "v412"      "v412a"     "v412b"     "v412c"    
## [1771] "v413"      "v413a"     "v413b"     "v413c"     "v413d"     "v414a"    
## [1777] "v414b"     "v414c"     "v414d"     "v414e"     "v414f"     "v414g"    
## [1783] "v414h"     "v414i"     "v414j"     "v414k"     "v414l"     "v414m"    
## [1789] "v414n"     "v414o"     "v414p"     "v414q"     "v414r"     "v414s"    
## [1795] "v414t"     "v414u"     "v414v"     "v414w"     "v415"      "v416"     
## [1801] "v417"      "v418"      "v418a"     "v419"      "v420"      "v421"     
## [1807] "v426"      "v437"      "v438"      "v439"      "v440"      "v441"     
## [1813] "v442"      "v443"      "v444"      "v444a"     "v445"      "v446"     
## [1819] "v447"      "v447a"     "v452a"     "v452b"     "v452c"     "v453"     
## [1825] "v454"      "v455"      "v456"      "v457"      "v458"      "v459"     
## [1831] "v460"      "v461"      "v462"      "v463a"     "v463b"     "v463c"    
## [1837] "v463d"     "v463e"     "v463f"     "v463g"     "v463h"     "v463i"    
## [1843] "v463j"     "v463k"     "v463l"     "v463x"     "v463z"     "v463aa"   
## [1849] "v463ab"    "v464"      "v465"      "v466"      "v467a"     "v467b"    
## [1855] "v467c"     "v467d"     "v467e"     "v467f"     "v467g"     "v467h"    
## [1861] "v467i"     "v467j"     "v467k"     "v467l"     "v467m"     "v468"     
## [1867] "v469e"     "v469f"     "v469x"     "v471a"     "v471b"     "v471c"    
## [1873] "v471d"     "v471e"     "v471f"     "v471g"     "v472a"     "v472b"    
## [1879] "v472c"     "v472d"     "v472e"     "v472f"     "v472g"     "v472h"    
## [1885] "v472i"     "v472j"     "v472k"     "v472l"     "v472m"     "v472n"    
## [1891] "v472o"     "v472p"     "v472q"     "v472r"     "v472s"     "v472t"    
## [1897] "v472u"     "v473a"     "v473b"     "v474"      "v474a"     "v474b"    
## [1903] "v474c"     "v474d"     "v474e"     "v474f"     "v474g"     "v474h"    
## [1909] "v474i"     "v474j"     "v474x"     "v474z"     "v475"      "v476"     
## [1915] "v477"      "v478"      "v479"      "v480"      "v481"      "v481a"    
## [1921] "v481b"     "v481c"     "v481d"     "v481e"     "v481f"     "v481g"    
## [1927] "v481h"     "v481x"     "v482a"     "v482b"     "v482c"     "hidx_1"   
## [1933] "hidx_2"    "hidx_3"    "hidx_4"    "hidx_5"    "hidx_6"    "h1_1"     
## [1939] "h1_2"      "h1_3"      "h1_4"      "h1_5"      "h1_6"      "h1a_1"    
## [1945] "h1a_2"     "h1a_3"     "h1a_4"     "h1a_5"     "h1a_6"     "h2_1"     
## [1951] "h2_2"      "h2_3"      "h2_4"      "h2_5"      "h2_6"      "h2d_1"    
## [1957] "h2d_2"     "h2d_3"     "h2d_4"     "h2d_5"     "h2d_6"     "h2m_1"    
## [1963] "h2m_2"     "h2m_3"     "h2m_4"     "h2m_5"     "h2m_6"     "h2y_1"    
## [1969] "h2y_2"     "h2y_3"     "h2y_4"     "h2y_5"     "h2y_6"     "h3_1"     
## [1975] "h3_2"      "h3_3"      "h3_4"      "h3_5"      "h3_6"      "h3d_1"    
## [1981] "h3d_2"     "h3d_3"     "h3d_4"     "h3d_5"     "h3d_6"     "h3m_1"    
## [1987] "h3m_2"     "h3m_3"     "h3m_4"     "h3m_5"     "h3m_6"     "h3y_1"    
## [1993] "h3y_2"     "h3y_3"     "h3y_4"     "h3y_5"     "h3y_6"     "h4_1"     
## [1999] "h4_2"      "h4_3"      "h4_4"      "h4_5"      "h4_6"      "h4d_1"    
## [2005] "h4d_2"     "h4d_3"     "h4d_4"     "h4d_5"     "h4d_6"     "h4m_1"    
## [2011] "h4m_2"     "h4m_3"     "h4m_4"     "h4m_5"     "h4m_6"     "h4y_1"    
## [2017] "h4y_2"     "h4y_3"     "h4y_4"     "h4y_5"     "h4y_6"     "h5_1"     
## [2023] "h5_2"      "h5_3"      "h5_4"      "h5_5"      "h5_6"      "h5d_1"    
## [2029] "h5d_2"     "h5d_3"     "h5d_4"     "h5d_5"     "h5d_6"     "h5m_1"    
## [2035] "h5m_2"     "h5m_3"     "h5m_4"     "h5m_5"     "h5m_6"     "h5y_1"    
## [2041] "h5y_2"     "h5y_3"     "h5y_4"     "h5y_5"     "h5y_6"     "h6_1"     
## [2047] "h6_2"      "h6_3"      "h6_4"      "h6_5"      "h6_6"      "h6d_1"    
## [2053] "h6d_2"     "h6d_3"     "h6d_4"     "h6d_5"     "h6d_6"     "h6m_1"    
## [2059] "h6m_2"     "h6m_3"     "h6m_4"     "h6m_5"     "h6m_6"     "h6y_1"    
## [2065] "h6y_2"     "h6y_3"     "h6y_4"     "h6y_5"     "h6y_6"     "h7_1"     
## [2071] "h7_2"      "h7_3"      "h7_4"      "h7_5"      "h7_6"      "h7d_1"    
## [2077] "h7d_2"     "h7d_3"     "h7d_4"     "h7d_5"     "h7d_6"     "h7m_1"    
## [2083] "h7m_2"     "h7m_3"     "h7m_4"     "h7m_5"     "h7m_6"     "h7y_1"    
## [2089] "h7y_2"     "h7y_3"     "h7y_4"     "h7y_5"     "h7y_6"     "h8_1"     
## [2095] "h8_2"      "h8_3"      "h8_4"      "h8_5"      "h8_6"      "h8d_1"    
## [2101] "h8d_2"     "h8d_3"     "h8d_4"     "h8d_5"     "h8d_6"     "h8m_1"    
## [2107] "h8m_2"     "h8m_3"     "h8m_4"     "h8m_5"     "h8m_6"     "h8y_1"    
## [2113] "h8y_2"     "h8y_3"     "h8y_4"     "h8y_5"     "h8y_6"     "h9_1"     
## [2119] "h9_2"      "h9_3"      "h9_4"      "h9_5"      "h9_6"      "h9d_1"    
## [2125] "h9d_2"     "h9d_3"     "h9d_4"     "h9d_5"     "h9d_6"     "h9m_1"    
## [2131] "h9m_2"     "h9m_3"     "h9m_4"     "h9m_5"     "h9m_6"     "h9y_1"    
## [2137] "h9y_2"     "h9y_3"     "h9y_4"     "h9y_5"     "h9y_6"     "h9a_1"    
## [2143] "h9a_2"     "h9a_3"     "h9a_4"     "h9a_5"     "h9a_6"     "h9ad_1"   
## [2149] "h9ad_2"    "h9ad_3"    "h9ad_4"    "h9ad_5"    "h9ad_6"    "h9am_1"   
## [2155] "h9am_2"    "h9am_3"    "h9am_4"    "h9am_5"    "h9am_6"    "h9ay_1"   
## [2161] "h9ay_2"    "h9ay_3"    "h9ay_4"    "h9ay_5"    "h9ay_6"    "h0_1"     
## [2167] "h0_2"      "h0_3"      "h0_4"      "h0_5"      "h0_6"      "h0d_1"    
## [2173] "h0d_2"     "h0d_3"     "h0d_4"     "h0d_5"     "h0d_6"     "h0m_1"    
## [2179] "h0m_2"     "h0m_3"     "h0m_4"     "h0m_5"     "h0m_6"     "h0y_1"    
## [2185] "h0y_2"     "h0y_3"     "h0y_4"     "h0y_5"     "h0y_6"     "h10_1"    
## [2191] "h10_2"     "h10_3"     "h10_4"     "h10_5"     "h10_6"     "h33_1"    
## [2197] "h33_2"     "h33_3"     "h33_4"     "h33_5"     "h33_6"     "h33d_1"   
## [2203] "h33d_2"    "h33d_3"    "h33d_4"    "h33d_5"    "h33d_6"    "h33m_1"   
## [2209] "h33m_2"    "h33m_3"    "h33m_4"    "h33m_5"    "h33m_6"    "h33y_1"   
## [2215] "h33y_2"    "h33y_3"    "h33y_4"    "h33y_5"    "h33y_6"    "h35_1"    
## [2221] "h35_2"     "h35_3"     "h35_4"     "h35_5"     "h35_6"     "h36a_1"   
## [2227] "h36a_2"    "h36a_3"    "h36a_4"    "h36a_5"    "h36a_6"    "h36b_1"   
## [2233] "h36b_2"    "h36b_3"    "h36b_4"    "h36b_5"    "h36b_6"    "h36c_1"   
## [2239] "h36c_2"    "h36c_3"    "h36c_4"    "h36c_5"    "h36c_6"    "h36d_1"   
## [2245] "h36d_2"    "h36d_3"    "h36d_4"    "h36d_5"    "h36d_6"    "h36e_1"   
## [2251] "h36e_2"    "h36e_3"    "h36e_4"    "h36e_5"    "h36e_6"    "h36f_1"   
## [2257] "h36f_2"    "h36f_3"    "h36f_4"    "h36f_5"    "h36f_6"    "h40_1"    
## [2263] "h40_2"     "h40_3"     "h40_4"     "h40_5"     "h40_6"     "h40d_1"   
## [2269] "h40d_2"    "h40d_3"    "h40d_4"    "h40d_5"    "h40d_6"    "h40m_1"   
## [2275] "h40m_2"    "h40m_3"    "h40m_4"    "h40m_5"    "h40m_6"    "h40y_1"   
## [2281] "h40y_2"    "h40y_3"    "h40y_4"    "h40y_5"    "h40y_6"    "h41a_1"   
## [2287] "h41a_2"    "h41a_3"    "h41a_4"    "h41a_5"    "h41a_6"    "h41b_1"   
## [2293] "h41b_2"    "h41b_3"    "h41b_4"    "h41b_5"    "h41b_6"    "h50_1"    
## [2299] "h50_2"     "h50_3"     "h50_4"     "h50_5"     "h50_6"     "h50d_1"   
## [2305] "h50d_2"    "h50d_3"    "h50d_4"    "h50d_5"    "h50d_6"    "h50m_1"   
## [2311] "h50m_2"    "h50m_3"    "h50m_4"    "h50m_5"    "h50m_6"    "h50y_1"   
## [2317] "h50y_2"    "h50y_3"    "h50y_4"    "h50y_5"    "h50y_6"    "h51_1"    
## [2323] "h51_2"     "h51_3"     "h51_4"     "h51_5"     "h51_6"     "h51d_1"   
## [2329] "h51d_2"    "h51d_3"    "h51d_4"    "h51d_5"    "h51d_6"    "h51m_1"   
## [2335] "h51m_2"    "h51m_3"    "h51m_4"    "h51m_5"    "h51m_6"    "h51y_1"   
## [2341] "h51y_2"    "h51y_3"    "h51y_4"    "h51y_5"    "h51y_6"    "h52_1"    
## [2347] "h52_2"     "h52_3"     "h52_4"     "h52_5"     "h52_6"     "h52d_1"   
## [2353] "h52d_2"    "h52d_3"    "h52d_4"    "h52d_5"    "h52d_6"    "h52m_1"   
## [2359] "h52m_2"    "h52m_3"    "h52m_4"    "h52m_5"    "h52m_6"    "h52y_1"   
## [2365] "h52y_2"    "h52y_3"    "h52y_4"    "h52y_5"    "h52y_6"    "h53_1"    
## [2371] "h53_2"     "h53_3"     "h53_4"     "h53_5"     "h53_6"     "h53d_1"   
## [2377] "h53d_2"    "h53d_3"    "h53d_4"    "h53d_5"    "h53d_6"    "h53m_1"   
## [2383] "h53m_2"    "h53m_3"    "h53m_4"    "h53m_5"    "h53m_6"    "h53y_1"   
## [2389] "h53y_2"    "h53y_3"    "h53y_4"    "h53y_5"    "h53y_6"    "h54_1"    
## [2395] "h54_2"     "h54_3"     "h54_4"     "h54_5"     "h54_6"     "h54d_1"   
## [2401] "h54d_2"    "h54d_3"    "h54d_4"    "h54d_5"    "h54d_6"    "h54m_1"   
## [2407] "h54m_2"    "h54m_3"    "h54m_4"    "h54m_5"    "h54m_6"    "h54y_1"   
## [2413] "h54y_2"    "h54y_3"    "h54y_4"    "h54y_5"    "h54y_6"    "h55_1"    
## [2419] "h55_2"     "h55_3"     "h55_4"     "h55_5"     "h55_6"     "h55d_1"   
## [2425] "h55d_2"    "h55d_3"    "h55d_4"    "h55d_5"    "h55d_6"    "h55m_1"   
## [2431] "h55m_2"    "h55m_3"    "h55m_4"    "h55m_5"    "h55m_6"    "h55y_1"   
## [2437] "h55y_2"    "h55y_3"    "h55y_4"    "h55y_5"    "h55y_6"    "h56_1"    
## [2443] "h56_2"     "h56_3"     "h56_4"     "h56_5"     "h56_6"     "h56d_1"   
## [2449] "h56d_2"    "h56d_3"    "h56d_4"    "h56d_5"    "h56d_6"    "h56m_1"   
## [2455] "h56m_2"    "h56m_3"    "h56m_4"    "h56m_5"    "h56m_6"    "h56y_1"   
## [2461] "h56y_2"    "h56y_3"    "h56y_4"    "h56y_5"    "h56y_6"    "h57_1"    
## [2467] "h57_2"     "h57_3"     "h57_4"     "h57_5"     "h57_6"     "h57d_1"   
## [2473] "h57d_2"    "h57d_3"    "h57d_4"    "h57d_5"    "h57d_6"    "h57m_1"   
## [2479] "h57m_2"    "h57m_3"    "h57m_4"    "h57m_5"    "h57m_6"    "h57y_1"   
## [2485] "h57y_2"    "h57y_3"    "h57y_4"    "h57y_5"    "h57y_6"    "h58_1"    
## [2491] "h58_2"     "h58_3"     "h58_4"     "h58_5"     "h58_6"     "h58d_1"   
## [2497] "h58d_2"    "h58d_3"    "h58d_4"    "h58d_5"    "h58d_6"    "h58m_1"   
## [2503] "h58m_2"    "h58m_3"    "h58m_4"    "h58m_5"    "h58m_6"    "h58y_1"   
## [2509] "h58y_2"    "h58y_3"    "h58y_4"    "h58y_5"    "h58y_6"    "h59_1"    
## [2515] "h59_2"     "h59_3"     "h59_4"     "h59_5"     "h59_6"     "h59d_1"   
## [2521] "h59d_2"    "h59d_3"    "h59d_4"    "h59d_5"    "h59d_6"    "h59m_1"   
## [2527] "h59m_2"    "h59m_3"    "h59m_4"    "h59m_5"    "h59m_6"    "h59y_1"   
## [2533] "h59y_2"    "h59y_3"    "h59y_4"    "h59y_5"    "h59y_6"    "h60_1"    
## [2539] "h60_2"     "h60_3"     "h60_4"     "h60_5"     "h60_6"     "h60d_1"   
## [2545] "h60d_2"    "h60d_3"    "h60d_4"    "h60d_5"    "h60d_6"    "h60m_1"   
## [2551] "h60m_2"    "h60m_3"    "h60m_4"    "h60m_5"    "h60m_6"    "h60y_1"   
## [2557] "h60y_2"    "h60y_3"    "h60y_4"    "h60y_5"    "h60y_6"    "h61_1"    
## [2563] "h61_2"     "h61_3"     "h61_4"     "h61_5"     "h61_6"     "h61d_1"   
## [2569] "h61d_2"    "h61d_3"    "h61d_4"    "h61d_5"    "h61d_6"    "h61m_1"   
## [2575] "h61m_2"    "h61m_3"    "h61m_4"    "h61m_5"    "h61m_6"    "h61y_1"   
## [2581] "h61y_2"    "h61y_3"    "h61y_4"    "h61y_5"    "h61y_6"    "h62_1"    
## [2587] "h62_2"     "h62_3"     "h62_4"     "h62_5"     "h62_6"     "h62d_1"   
## [2593] "h62d_2"    "h62d_3"    "h62d_4"    "h62d_5"    "h62d_6"    "h62m_1"   
## [2599] "h62m_2"    "h62m_3"    "h62m_4"    "h62m_5"    "h62m_6"    "h62y_1"   
## [2605] "h62y_2"    "h62y_3"    "h62y_4"    "h62y_5"    "h62y_6"    "h63_1"    
## [2611] "h63_2"     "h63_3"     "h63_4"     "h63_5"     "h63_6"     "h63d_1"   
## [2617] "h63d_2"    "h63d_3"    "h63d_4"    "h63d_5"    "h63d_6"    "h63m_1"   
## [2623] "h63m_2"    "h63m_3"    "h63m_4"    "h63m_5"    "h63m_6"    "h63y_1"   
## [2629] "h63y_2"    "h63y_3"    "h63y_4"    "h63y_5"    "h63y_6"    "h64_1"    
## [2635] "h64_2"     "h64_3"     "h64_4"     "h64_5"     "h64_6"     "h64d_1"   
## [2641] "h64d_2"    "h64d_3"    "h64d_4"    "h64d_5"    "h64d_6"    "h64m_1"   
## [2647] "h64m_2"    "h64m_3"    "h64m_4"    "h64m_5"    "h64m_6"    "h64y_1"   
## [2653] "h64y_2"    "h64y_3"    "h64y_4"    "h64y_5"    "h64y_6"    "h65_1"    
## [2659] "h65_2"     "h65_3"     "h65_4"     "h65_5"     "h65_6"     "h65d_1"   
## [2665] "h65d_2"    "h65d_3"    "h65d_4"    "h65d_5"    "h65d_6"    "h65m_1"   
## [2671] "h65m_2"    "h65m_3"    "h65m_4"    "h65m_5"    "h65m_6"    "h65y_1"   
## [2677] "h65y_2"    "h65y_3"    "h65y_4"    "h65y_5"    "h65y_6"    "h66_1"    
## [2683] "h66_2"     "h66_3"     "h66_4"     "h66_5"     "h66_6"     "h66d_1"   
## [2689] "h66d_2"    "h66d_3"    "h66d_4"    "h66d_5"    "h66d_6"    "h66m_1"   
## [2695] "h66m_2"    "h66m_3"    "h66m_4"    "h66m_5"    "h66m_6"    "h66y_1"   
## [2701] "h66y_2"    "h66y_3"    "h66y_4"    "h66y_5"    "h66y_6"    "h80a_1"   
## [2707] "h80a_2"    "h80a_3"    "h80a_4"    "h80a_5"    "h80a_6"    "h80b_1"   
## [2713] "h80b_2"    "h80b_3"    "h80b_4"    "h80b_5"    "h80b_6"    "h80c_1"   
## [2719] "h80c_2"    "h80c_3"    "h80c_4"    "h80c_5"    "h80c_6"    "h80d_1"   
## [2725] "h80d_2"    "h80d_3"    "h80d_4"    "h80d_5"    "h80d_6"    "h80e_1"   
## [2731] "h80e_2"    "h80e_3"    "h80e_4"    "h80e_5"    "h80e_6"    "h80f_1"   
## [2737] "h80f_2"    "h80f_3"    "h80f_4"    "h80f_5"    "h80f_6"    "h80g_1"   
## [2743] "h80g_2"    "h80g_3"    "h80g_4"    "h80g_5"    "h80g_6"    "hidxa_1"  
## [2749] "hidxa_2"   "hidxa_3"   "hidxa_4"   "hidxa_5"   "hidxa_6"   "h11_1"    
## [2755] "h11_2"     "h11_3"     "h11_4"     "h11_5"     "h11_6"     "h11b_1"   
## [2761] "h11b_2"    "h11b_3"    "h11b_4"    "h11b_5"    "h11b_6"    "h12a_1"   
## [2767] "h12a_2"    "h12a_3"    "h12a_4"    "h12a_5"    "h12a_6"    "h12b_1"   
## [2773] "h12b_2"    "h12b_3"    "h12b_4"    "h12b_5"    "h12b_6"    "h12c_1"   
## [2779] "h12c_2"    "h12c_3"    "h12c_4"    "h12c_5"    "h12c_6"    "h12d_1"   
## [2785] "h12d_2"    "h12d_3"    "h12d_4"    "h12d_5"    "h12d_6"    "h12e_1"   
## [2791] "h12e_2"    "h12e_3"    "h12e_4"    "h12e_5"    "h12e_6"    "h12f_1"   
## [2797] "h12f_2"    "h12f_3"    "h12f_4"    "h12f_5"    "h12f_6"    "h12g_1"   
## [2803] "h12g_2"    "h12g_3"    "h12g_4"    "h12g_5"    "h12g_6"    "h12h_1"   
## [2809] "h12h_2"    "h12h_3"    "h12h_4"    "h12h_5"    "h12h_6"    "h12i_1"   
## [2815] "h12i_2"    "h12i_3"    "h12i_4"    "h12i_5"    "h12i_6"    "h12j_1"   
## [2821] "h12j_2"    "h12j_3"    "h12j_4"    "h12j_5"    "h12j_6"    "h12k_1"   
## [2827] "h12k_2"    "h12k_3"    "h12k_4"    "h12k_5"    "h12k_6"    "h12l_1"   
## [2833] "h12l_2"    "h12l_3"    "h12l_4"    "h12l_5"    "h12l_6"    "h12m_1"   
## [2839] "h12m_2"    "h12m_3"    "h12m_4"    "h12m_5"    "h12m_6"    "h12n_1"   
## [2845] "h12n_2"    "h12n_3"    "h12n_4"    "h12n_5"    "h12n_6"    "h12o_1"   
## [2851] "h12o_2"    "h12o_3"    "h12o_4"    "h12o_5"    "h12o_6"    "h12p_1"   
## [2857] "h12p_2"    "h12p_3"    "h12p_4"    "h12p_5"    "h12p_6"    "h12q_1"   
## [2863] "h12q_2"    "h12q_3"    "h12q_4"    "h12q_5"    "h12q_6"    "h12r_1"   
## [2869] "h12r_2"    "h12r_3"    "h12r_4"    "h12r_5"    "h12r_6"    "h12s_1"   
## [2875] "h12s_2"    "h12s_3"    "h12s_4"    "h12s_5"    "h12s_6"    "h12t_1"   
## [2881] "h12t_2"    "h12t_3"    "h12t_4"    "h12t_5"    "h12t_6"    "h12u_1"   
## [2887] "h12u_2"    "h12u_3"    "h12u_4"    "h12u_5"    "h12u_6"    "h12v_1"   
## [2893] "h12v_2"    "h12v_3"    "h12v_4"    "h12v_5"    "h12v_6"    "h12w_1"   
## [2899] "h12w_2"    "h12w_3"    "h12w_4"    "h12w_5"    "h12w_6"    "h12x_1"   
## [2905] "h12x_2"    "h12x_3"    "h12x_4"    "h12x_5"    "h12x_6"    "h12y_1"   
## [2911] "h12y_2"    "h12y_3"    "h12y_4"    "h12y_5"    "h12y_6"    "h12z_1"   
## [2917] "h12z_2"    "h12z_3"    "h12z_4"    "h12z_5"    "h12z_6"    "h13_1"    
## [2923] "h13_2"     "h13_3"     "h13_4"     "h13_5"     "h13_6"     "h13b_1"   
## [2929] "h13b_2"    "h13b_3"    "h13b_4"    "h13b_5"    "h13b_6"    "h14_1"    
## [2935] "h14_2"     "h14_3"     "h14_4"     "h14_5"     "h14_6"     "h15_1"    
## [2941] "h15_2"     "h15_3"     "h15_4"     "h15_5"     "h15_6"     "h15a_1"   
## [2947] "h15a_2"    "h15a_3"    "h15a_4"    "h15a_5"    "h15a_6"    "h15b_1"   
## [2953] "h15b_2"    "h15b_3"    "h15b_4"    "h15b_5"    "h15b_6"    "h15c_1"   
## [2959] "h15c_2"    "h15c_3"    "h15c_4"    "h15c_5"    "h15c_6"    "h15d_1"   
## [2965] "h15d_2"    "h15d_3"    "h15d_4"    "h15d_5"    "h15d_6"    "h15e_1"   
## [2971] "h15e_2"    "h15e_3"    "h15e_4"    "h15e_5"    "h15e_6"    "h15f_1"   
## [2977] "h15f_2"    "h15f_3"    "h15f_4"    "h15f_5"    "h15f_6"    "h15g_1"   
## [2983] "h15g_2"    "h15g_3"    "h15g_4"    "h15g_5"    "h15g_6"    "h15h_1"   
## [2989] "h15h_2"    "h15h_3"    "h15h_4"    "h15h_5"    "h15h_6"    "h15i_1"   
## [2995] "h15i_2"    "h15i_3"    "h15i_4"    "h15i_5"    "h15i_6"    "h15j_1"   
## [3001] "h15j_2"    "h15j_3"    "h15j_4"    "h15j_5"    "h15j_6"    "h15k_1"   
## [3007] "h15k_2"    "h15k_3"    "h15k_4"    "h15k_5"    "h15k_6"    "h15l_1"   
## [3013] "h15l_2"    "h15l_3"    "h15l_4"    "h15l_5"    "h15l_6"    "h15m_1"   
## [3019] "h15m_2"    "h15m_3"    "h15m_4"    "h15m_5"    "h15m_6"    "h20_1"    
## [3025] "h20_2"     "h20_3"     "h20_4"     "h20_5"     "h20_6"     "h21a_1"   
## [3031] "h21a_2"    "h21a_3"    "h21a_4"    "h21a_5"    "h21a_6"    "h21_1"    
## [3037] "h21_2"     "h21_3"     "h21_4"     "h21_5"     "h21_6"     "h22_1"    
## [3043] "h22_2"     "h22_3"     "h22_4"     "h22_5"     "h22_6"     "h31_1"    
## [3049] "h31_2"     "h31_3"     "h31_4"     "h31_5"     "h31_6"     "h31b_1"   
## [3055] "h31b_2"    "h31b_3"    "h31b_4"    "h31b_5"    "h31b_6"    "h31c_1"   
## [3061] "h31c_2"    "h31c_3"    "h31c_4"    "h31c_5"    "h31c_6"    "h31d_1"   
## [3067] "h31d_2"    "h31d_3"    "h31d_4"    "h31d_5"    "h31d_6"    "h31e_1"   
## [3073] "h31e_2"    "h31e_3"    "h31e_4"    "h31e_5"    "h31e_6"    "h32a_1"   
## [3079] "h32a_2"    "h32a_3"    "h32a_4"    "h32a_5"    "h32a_6"    "h32b_1"   
## [3085] "h32b_2"    "h32b_3"    "h32b_4"    "h32b_5"    "h32b_6"    "h32c_1"   
## [3091] "h32c_2"    "h32c_3"    "h32c_4"    "h32c_5"    "h32c_6"    "h32d_1"   
## [3097] "h32d_2"    "h32d_3"    "h32d_4"    "h32d_5"    "h32d_6"    "h32e_1"   
## [3103] "h32e_2"    "h32e_3"    "h32e_4"    "h32e_5"    "h32e_6"    "h32f_1"   
## [3109] "h32f_2"    "h32f_3"    "h32f_4"    "h32f_5"    "h32f_6"    "h32g_1"   
## [3115] "h32g_2"    "h32g_3"    "h32g_4"    "h32g_5"    "h32g_6"    "h32h_1"   
## [3121] "h32h_2"    "h32h_3"    "h32h_4"    "h32h_5"    "h32h_6"    "h32i_1"   
## [3127] "h32i_2"    "h32i_3"    "h32i_4"    "h32i_5"    "h32i_6"    "h32j_1"   
## [3133] "h32j_2"    "h32j_3"    "h32j_4"    "h32j_5"    "h32j_6"    "h32k_1"   
## [3139] "h32k_2"    "h32k_3"    "h32k_4"    "h32k_5"    "h32k_6"    "h32l_1"   
## [3145] "h32l_2"    "h32l_3"    "h32l_4"    "h32l_5"    "h32l_6"    "h32m_1"   
## [3151] "h32m_2"    "h32m_3"    "h32m_4"    "h32m_5"    "h32m_6"    "h32n_1"   
## [3157] "h32n_2"    "h32n_3"    "h32n_4"    "h32n_5"    "h32n_6"    "h32o_1"   
## [3163] "h32o_2"    "h32o_3"    "h32o_4"    "h32o_5"    "h32o_6"    "h32p_1"   
## [3169] "h32p_2"    "h32p_3"    "h32p_4"    "h32p_5"    "h32p_6"    "h32q_1"   
## [3175] "h32q_2"    "h32q_3"    "h32q_4"    "h32q_5"    "h32q_6"    "h32r_1"   
## [3181] "h32r_2"    "h32r_3"    "h32r_4"    "h32r_5"    "h32r_6"    "h32s_1"   
## [3187] "h32s_2"    "h32s_3"    "h32s_4"    "h32s_5"    "h32s_6"    "h32t_1"   
## [3193] "h32t_2"    "h32t_3"    "h32t_4"    "h32t_5"    "h32t_6"    "h32u_1"   
## [3199] "h32u_2"    "h32u_3"    "h32u_4"    "h32u_5"    "h32u_6"    "h32v_1"   
## [3205] "h32v_2"    "h32v_3"    "h32v_4"    "h32v_5"    "h32v_6"    "h32w_1"   
## [3211] "h32w_2"    "h32w_3"    "h32w_4"    "h32w_5"    "h32w_6"    "h32x_1"   
## [3217] "h32x_2"    "h32x_3"    "h32x_4"    "h32x_5"    "h32x_6"    "h32y_1"   
## [3223] "h32y_2"    "h32y_3"    "h32y_4"    "h32y_5"    "h32y_6"    "h32z_1"   
## [3229] "h32z_2"    "h32z_3"    "h32z_4"    "h32z_5"    "h32z_6"    "h34_1"    
## [3235] "h34_2"     "h34_3"     "h34_4"     "h34_5"     "h34_6"     "h37a_1"   
## [3241] "h37a_2"    "h37a_3"    "h37a_4"    "h37a_5"    "h37a_6"    "h37b_1"   
## [3247] "h37b_2"    "h37b_3"    "h37b_4"    "h37b_5"    "h37b_6"    "h37c_1"   
## [3253] "h37c_2"    "h37c_3"    "h37c_4"    "h37c_5"    "h37c_6"    "h37d_1"   
## [3259] "h37d_2"    "h37d_3"    "h37d_4"    "h37d_5"    "h37d_6"    "h37da_1"  
## [3265] "h37da_2"   "h37da_3"   "h37da_4"   "h37da_5"   "h37da_6"   "h37e_1"   
## [3271] "h37e_2"    "h37e_3"    "h37e_4"    "h37e_5"    "h37e_6"    "h37aa_1"  
## [3277] "h37aa_2"   "h37aa_3"   "h37aa_4"   "h37aa_5"   "h37aa_6"   "h37ab_1"  
## [3283] "h37ab_2"   "h37ab_3"   "h37ab_4"   "h37ab_5"   "h37ab_6"   "h37f_1"   
## [3289] "h37f_2"    "h37f_3"    "h37f_4"    "h37f_5"    "h37f_6"    "h37g_1"   
## [3295] "h37g_2"    "h37g_3"    "h37g_4"    "h37g_5"    "h37g_6"    "h37h_1"   
## [3301] "h37h_2"    "h37h_3"    "h37h_4"    "h37h_5"    "h37h_6"    "h37i_1"   
## [3307] "h37i_2"    "h37i_3"    "h37i_4"    "h37i_5"    "h37i_6"    "h37j_1"   
## [3313] "h37j_2"    "h37j_3"    "h37j_4"    "h37j_5"    "h37j_6"    "h37k_1"   
## [3319] "h37k_2"    "h37k_3"    "h37k_4"    "h37k_5"    "h37k_6"    "h37l_1"   
## [3325] "h37l_2"    "h37l_3"    "h37l_4"    "h37l_5"    "h37l_6"    "h37m_1"   
## [3331] "h37m_2"    "h37m_3"    "h37m_4"    "h37m_5"    "h37m_6"    "h37n_1"   
## [3337] "h37n_2"    "h37n_3"    "h37n_4"    "h37n_5"    "h37n_6"    "h37o_1"   
## [3343] "h37o_2"    "h37o_3"    "h37o_4"    "h37o_5"    "h37o_6"    "h37p_1"   
## [3349] "h37p_2"    "h37p_3"    "h37p_4"    "h37p_5"    "h37p_6"    "h37x_1"   
## [3355] "h37x_2"    "h37x_3"    "h37x_4"    "h37x_5"    "h37x_6"    "h37y_1"   
## [3361] "h37y_2"    "h37y_3"    "h37y_4"    "h37y_5"    "h37y_6"    "h37z_1"   
## [3367] "h37z_2"    "h37z_3"    "h37z_4"    "h37z_5"    "h37z_6"    "h38_1"    
## [3373] "h38_2"     "h38_3"     "h38_4"     "h38_5"     "h38_6"     "h39_1"    
## [3379] "h39_2"     "h39_3"     "h39_4"     "h39_5"     "h39_6"     "h42_1"    
## [3385] "h42_2"     "h42_3"     "h42_4"     "h42_5"     "h42_6"     "h43_1"    
## [3391] "h43_2"     "h43_3"     "h43_4"     "h43_5"     "h43_6"     "h44a_1"   
## [3397] "h44a_2"    "h44a_3"    "h44a_4"    "h44a_5"    "h44a_6"    "h44b_1"   
## [3403] "h44b_2"    "h44b_3"    "h44b_4"    "h44b_5"    "h44b_6"    "h44c_1"   
## [3409] "h44c_2"    "h44c_3"    "h44c_4"    "h44c_5"    "h44c_6"    "h45_1"    
## [3415] "h45_2"     "h45_3"     "h45_4"     "h45_5"     "h45_6"     "h46a_1"   
## [3421] "h46a_2"    "h46a_3"    "h46a_4"    "h46a_5"    "h46a_6"    "h46b_1"   
## [3427] "h46b_2"    "h46b_3"    "h46b_4"    "h46b_5"    "h46b_6"    "h47_1"    
## [3433] "h47_2"     "h47_3"     "h47_4"     "h47_5"     "h47_6"     "hwidx_1"  
## [3439] "hwidx_2"   "hwidx_3"   "hwidx_4"   "hwidx_5"   "hwidx_6"   "hw1_1"    
## [3445] "hw1_2"     "hw1_3"     "hw1_4"     "hw1_5"     "hw1_6"     "hw2_1"    
## [3451] "hw2_2"     "hw2_3"     "hw2_4"     "hw2_5"     "hw2_6"     "hw3_1"    
## [3457] "hw3_2"     "hw3_3"     "hw3_4"     "hw3_5"     "hw3_6"     "hw4_1"    
## [3463] "hw4_2"     "hw4_3"     "hw4_4"     "hw4_5"     "hw4_6"     "hw5_1"    
## [3469] "hw5_2"     "hw5_3"     "hw5_4"     "hw5_5"     "hw5_6"     "hw6_1"    
## [3475] "hw6_2"     "hw6_3"     "hw6_4"     "hw6_5"     "hw6_6"     "hw7_1"    
## [3481] "hw7_2"     "hw7_3"     "hw7_4"     "hw7_5"     "hw7_6"     "hw8_1"    
## [3487] "hw8_2"     "hw8_3"     "hw8_4"     "hw8_5"     "hw8_6"     "hw9_1"    
## [3493] "hw9_2"     "hw9_3"     "hw9_4"     "hw9_5"     "hw9_6"     "hw10_1"   
## [3499] "hw10_2"    "hw10_3"    "hw10_4"    "hw10_5"    "hw10_6"    "hw11_1"   
## [3505] "hw11_2"    "hw11_3"    "hw11_4"    "hw11_5"    "hw11_6"    "hw12_1"   
## [3511] "hw12_2"    "hw12_3"    "hw12_4"    "hw12_5"    "hw12_6"    "hw13_1"   
## [3517] "hw13_2"    "hw13_3"    "hw13_4"    "hw13_5"    "hw13_6"    "hw15_1"   
## [3523] "hw15_2"    "hw15_3"    "hw15_4"    "hw15_5"    "hw15_6"    "hw16_1"   
## [3529] "hw16_2"    "hw16_3"    "hw16_4"    "hw16_5"    "hw16_6"    "hw17_1"   
## [3535] "hw17_2"    "hw17_3"    "hw17_4"    "hw17_5"    "hw17_6"    "hw18_1"   
## [3541] "hw18_2"    "hw18_3"    "hw18_4"    "hw18_5"    "hw18_6"    "hw19_1"   
## [3547] "hw19_2"    "hw19_3"    "hw19_4"    "hw19_5"    "hw19_6"    "hw51_1"   
## [3553] "hw51_2"    "hw51_3"    "hw51_4"    "hw51_5"    "hw51_6"    "hw52_1"   
## [3559] "hw52_2"    "hw52_3"    "hw52_4"    "hw52_5"    "hw52_6"    "hw53_1"   
## [3565] "hw53_2"    "hw53_3"    "hw53_4"    "hw53_5"    "hw53_6"    "hw55_1"   
## [3571] "hw55_2"    "hw55_3"    "hw55_4"    "hw55_5"    "hw55_6"    "hw56_1"   
## [3577] "hw56_2"    "hw56_3"    "hw56_4"    "hw56_5"    "hw56_6"    "hw57_1"   
## [3583] "hw57_2"    "hw57_3"    "hw57_4"    "hw57_5"    "hw57_6"    "hw58_1"   
## [3589] "hw58_2"    "hw58_3"    "hw58_4"    "hw58_5"    "hw58_6"    "hw70_1"   
## [3595] "hw70_2"    "hw70_3"    "hw70_4"    "hw70_5"    "hw70_6"    "hw71_1"   
## [3601] "hw71_2"    "hw71_3"    "hw71_4"    "hw71_5"    "hw71_6"    "hw72_1"   
## [3607] "hw72_2"    "hw72_3"    "hw72_4"    "hw72_5"    "hw72_6"    "hw73_1"   
## [3613] "hw73_2"    "hw73_3"    "hw73_4"    "hw73_5"    "hw73_6"    "v501"     
## [3619] "v502"      "v503"      "v504"      "v505"      "v506"      "v507"     
## [3625] "v508"      "v509"      "v510"      "v511"      "v512"      "v513"     
## [3631] "v525"      "v527"      "v528"      "v529"      "v530"      "v531"     
## [3637] "v532"      "v535"      "v536"      "v537"      "v538"      "v539"     
## [3643] "v540"      "v541"      "v602"      "v603"      "v604"      "v605"     
## [3649] "v613"      "v614"      "v616"      "v621"      "v623"      "v624"     
## [3655] "v625"      "v626"      "v625a"     "v626a"     "v627"      "v628"     
## [3661] "v629"      "v631"      "v632"      "v632a"     "v633a"     "v633b"    
## [3667] "v633c"     "v633d"     "v633e"     "v633f"     "v633g"     "v634"     
## [3673] "v701"      "v702"      "v704"      "v704a"     "v705"      "v714"     
## [3679] "v714a"     "v715"      "v716"      "v717"      "v719"      "v721"     
## [3685] "v729"      "v730"      "v731"      "v732"      "v739"      "v740"     
## [3691] "v741"      "v743a"     "v743b"     "v743c"     "v743d"     "v743e"    
## [3697] "v743f"     "v744a"     "v744b"     "v744c"     "v744d"     "v744e"    
## [3703] "v745a"     "v745b"     "v745c"     "v745d"     "v746"      "v750"     
## [3709] "v751"      "v754bp"    "v754cp"    "v754dp"    "v754jp"    "v754wp"   
## [3715] "v756"      "v761"      "v761b"     "v761c"     "v762"      "v762a"    
## [3721] "v762aa"    "v762ab"    "v762ac"    "v762ad"    "v762ae"    "v762af"   
## [3727] "v762ag"    "v762ah"    "v762ai"    "v762aj"    "v762ak"    "v762al"   
## [3733] "v762am"    "v762an"    "v762ao"    "v762ap"    "v762aq"    "v762ar"   
## [3739] "v762as"    "v762at"    "v762au"    "v762av"    "v762aw"    "v762ax"   
## [3745] "v762az"    "v762ba"    "v762bb"    "v762bc"    "v762bd"    "v762be"   
## [3751] "v762bf"    "v762bg"    "v762bh"    "v762bi"    "v762bj"    "v762bk"   
## [3757] "v762bl"    "v762bm"    "v762bn"    "v762bo"    "v762bp"    "v762bq"   
## [3763] "v762br"    "v762bs"    "v762bt"    "v762bu"    "v762bv"    "v762bw"   
## [3769] "v762bx"    "v762bz"    "v763a"     "v763b"     "v763c"     "v763d"    
## [3775] "v763e"     "v763f"     "v763g"     "v766a"     "v766b"     "v767a"    
## [3781] "v767b"     "v767c"     "v768a"     "v768b"     "v768c"     "v769"     
## [3787] "v769a"     "v770"      "v770a"     "v770b"     "v770c"     "v770d"    
## [3793] "v770e"     "v770f"     "v770g"     "v770h"     "v770i"     "v770j"    
## [3799] "v770k"     "v770l"     "v770m"     "v770n"     "v770o"     "v770p"    
## [3805] "v770q"     "v770r"     "v770s"     "v770t"     "v770u"     "v770v"    
## [3811] "v770w"     "v770x"     "v774a"     "v774b"     "v774c"     "v775"     
## [3817] "v777"      "v777a"     "v778"      "v779"      "v780"      "v781"     
## [3823] "v783"      "v784a"     "v784b"     "v784c"     "v784d"     "v784e"    
## [3829] "v784f"     "v784g"     "v784h"     "v784i"     "v784j"     "v784k"    
## [3835] "v784l"     "v784m"     "v784n"     "v784o"     "v784p"     "v784q"    
## [3841] "v784r"     "v784s"     "v784t"     "v784u"     "v784v"     "v784x"    
## [3847] "v785"      "v791a"     "v820"      "v821a"     "v821b"     "v821c"    
## [3853] "v822"      "v823"      "v824"      "v825"      "v826"      "v826a"    
## [3859] "v827"      "v828"      "v829"      "v830"      "v831"      "v832b"    
## [3865] "v832c"     "v833a"     "v833b"     "v833c"     "v834a"     "v834b"    
## [3871] "v834c"     "v835a"     "v835b"     "v835c"     "v836"      "v837"     
## [3877] "v838a"     "v838b"     "v838c"     "v839"      "v839a"     "v840"     
## [3883] "v840a"     "v841"      "v841a"     "v842"      "v843"      "v844"     
## [3889] "v845"      "v846"      "v847"      "v848"      "v849"      "v850a"    
## [3895] "v850b"     "v851a"     "v851b"     "v851c"     "v851d"     "v851e"    
## [3901] "v851f"     "v851g"     "v851h"     "v851i"     "v851j"     "v851k"    
## [3907] "v851l"     "v852a"     "v852b"     "v852c"     "v853a"     "v853b"    
## [3913] "v853c"     "v854a"     "v854b"     "v855"      "v856"      "v857a"    
## [3919] "v857b"     "v857c"     "v857d"     "v858"      "v801"      "v802"     
## [3925] "v803"      "v804"      "v805"      "v806"      "v811"      "v812"     
## [3931] "v813"      "v814"      "v815a"     "v815b"     "v815c"     "vcol_1"   
## [3937] "vcol_2"    "vcol_3"    "vcol_4"    "vcol_5"    "vcol_6"    "vcol_7"   
## [3943] "vcol_8"    "vcol_9"    "vcal_1"    "vcal_2"    "vcal_3"    "vcal_4"   
## [3949] "vcal_5"    "vcal_6"    "vcal_7"    "vcal_8"    "vcal_9"    "mmidx_01" 
## [3955] "mmidx_02"  "mmidx_03"  "mmidx_04"  "mmidx_05"  "mmidx_06"  "mmidx_07" 
## [3961] "mmidx_08"  "mmidx_09"  "mmidx_10"  "mmidx_11"  "mmidx_12"  "mmidx_13" 
## [3967] "mmidx_14"  "mmidx_15"  "mmidx_16"  "mmidx_17"  "mmidx_18"  "mmidx_19" 
## [3973] "mmidx_20"  "mm1_01"    "mm1_02"    "mm1_03"    "mm1_04"    "mm1_05"   
## [3979] "mm1_06"    "mm1_07"    "mm1_08"    "mm1_09"    "mm1_10"    "mm1_11"   
## [3985] "mm1_12"    "mm1_13"    "mm1_14"    "mm1_15"    "mm1_16"    "mm1_17"   
## [3991] "mm1_18"    "mm1_19"    "mm1_20"    "mm2_01"    "mm2_02"    "mm2_03"   
## [3997] "mm2_04"    "mm2_05"    "mm2_06"    "mm2_07"    "mm2_08"    "mm2_09"   
## [4003] "mm2_10"    "mm2_11"    "mm2_12"    "mm2_13"    "mm2_14"    "mm2_15"   
## [4009] "mm2_16"    "mm2_17"    "mm2_18"    "mm2_19"    "mm2_20"    "mm3_01"   
## [4015] "mm3_02"    "mm3_03"    "mm3_04"    "mm3_05"    "mm3_06"    "mm3_07"   
## [4021] "mm3_08"    "mm3_09"    "mm3_10"    "mm3_11"    "mm3_12"    "mm3_13"   
## [4027] "mm3_14"    "mm3_15"    "mm3_16"    "mm3_17"    "mm3_18"    "mm3_19"   
## [4033] "mm3_20"    "mm4_01"    "mm4_02"    "mm4_03"    "mm4_04"    "mm4_05"   
## [4039] "mm4_06"    "mm4_07"    "mm4_08"    "mm4_09"    "mm4_10"    "mm4_11"   
## [4045] "mm4_12"    "mm4_13"    "mm4_14"    "mm4_15"    "mm4_16"    "mm4_17"   
## [4051] "mm4_18"    "mm4_19"    "mm4_20"    "mm5_01"    "mm5_02"    "mm5_03"   
## [4057] "mm5_04"    "mm5_05"    "mm5_06"    "mm5_07"    "mm5_08"    "mm5_09"   
## [4063] "mm5_10"    "mm5_11"    "mm5_12"    "mm5_13"    "mm5_14"    "mm5_15"   
## [4069] "mm5_16"    "mm5_17"    "mm5_18"    "mm5_19"    "mm5_20"    "mm6_01"   
## [4075] "mm6_02"    "mm6_03"    "mm6_04"    "mm6_05"    "mm6_06"    "mm6_07"   
## [4081] "mm6_08"    "mm6_09"    "mm6_10"    "mm6_11"    "mm6_12"    "mm6_13"   
## [4087] "mm6_14"    "mm6_15"    "mm6_16"    "mm6_17"    "mm6_18"    "mm6_19"   
## [4093] "mm6_20"    "mm7_01"    "mm7_02"    "mm7_03"    "mm7_04"    "mm7_05"   
## [4099] "mm7_06"    "mm7_07"    "mm7_08"    "mm7_09"    "mm7_10"    "mm7_11"   
## [4105] "mm7_12"    "mm7_13"    "mm7_14"    "mm7_15"    "mm7_16"    "mm7_17"   
## [4111] "mm7_18"    "mm7_19"    "mm7_20"    "mm8_01"    "mm8_02"    "mm8_03"   
## [4117] "mm8_04"    "mm8_05"    "mm8_06"    "mm8_07"    "mm8_08"    "mm8_09"   
## [4123] "mm8_10"    "mm8_11"    "mm8_12"    "mm8_13"    "mm8_14"    "mm8_15"   
## [4129] "mm8_16"    "mm8_17"    "mm8_18"    "mm8_19"    "mm8_20"    "mm9_01"   
## [4135] "mm9_02"    "mm9_03"    "mm9_04"    "mm9_05"    "mm9_06"    "mm9_07"   
## [4141] "mm9_08"    "mm9_09"    "mm9_10"    "mm9_11"    "mm9_12"    "mm9_13"   
## [4147] "mm9_14"    "mm9_15"    "mm9_16"    "mm9_17"    "mm9_18"    "mm9_19"   
## [4153] "mm9_20"    "mm10_01"   "mm10_02"   "mm10_03"   "mm10_04"   "mm10_05"  
## [4159] "mm10_06"   "mm10_07"   "mm10_08"   "mm10_09"   "mm10_10"   "mm10_11"  
## [4165] "mm10_12"   "mm10_13"   "mm10_14"   "mm10_15"   "mm10_16"   "mm10_17"  
## [4171] "mm10_18"   "mm10_19"   "mm10_20"   "mm11_01"   "mm11_02"   "mm11_03"  
## [4177] "mm11_04"   "mm11_05"   "mm11_06"   "mm11_07"   "mm11_08"   "mm11_09"  
## [4183] "mm11_10"   "mm11_11"   "mm11_12"   "mm11_13"   "mm11_14"   "mm11_15"  
## [4189] "mm11_16"   "mm11_17"   "mm11_18"   "mm11_19"   "mm11_20"   "mm12_01"  
## [4195] "mm12_02"   "mm12_03"   "mm12_04"   "mm12_05"   "mm12_06"   "mm12_07"  
## [4201] "mm12_08"   "mm12_09"   "mm12_10"   "mm12_11"   "mm12_12"   "mm12_13"  
## [4207] "mm12_14"   "mm12_15"   "mm12_16"   "mm12_17"   "mm12_18"   "mm12_19"  
## [4213] "mm12_20"   "mm13_01"   "mm13_02"   "mm13_03"   "mm13_04"   "mm13_05"  
## [4219] "mm13_06"   "mm13_07"   "mm13_08"   "mm13_09"   "mm13_10"   "mm13_11"  
## [4225] "mm13_12"   "mm13_13"   "mm13_14"   "mm13_15"   "mm13_16"   "mm13_17"  
## [4231] "mm13_18"   "mm13_19"   "mm13_20"   "mm14_01"   "mm14_02"   "mm14_03"  
## [4237] "mm14_04"   "mm14_05"   "mm14_06"   "mm14_07"   "mm14_08"   "mm14_09"  
## [4243] "mm14_10"   "mm14_11"   "mm14_12"   "mm14_13"   "mm14_14"   "mm14_15"  
## [4249] "mm14_16"   "mm14_17"   "mm14_18"   "mm14_19"   "mm14_20"   "mm15_01"  
## [4255] "mm15_02"   "mm15_03"   "mm15_04"   "mm15_05"   "mm15_06"   "mm15_07"  
## [4261] "mm15_08"   "mm15_09"   "mm15_10"   "mm15_11"   "mm15_12"   "mm15_13"  
## [4267] "mm15_14"   "mm15_15"   "mm15_16"   "mm15_17"   "mm15_18"   "mm15_19"  
## [4273] "mm15_20"   "mm16_01"   "mm16_02"   "mm16_03"   "mm16_04"   "mm16_05"  
## [4279] "mm16_06"   "mm16_07"   "mm16_08"   "mm16_09"   "mm16_10"   "mm16_11"  
## [4285] "mm16_12"   "mm16_13"   "mm16_14"   "mm16_15"   "mm16_16"   "mm16_17"  
## [4291] "mm16_18"   "mm16_19"   "mm16_20"   "mmc1"      "mmc2"      "mmc3"     
## [4297] "mmc4_1"    "mmc4_2"    "mmc4_3"    "mmc4_4"    "mmc4_5"    "mmc4_6"   
## [4303] "mmc5"      "d005"      "d101a"     "d101b"     "d101c"     "d101d"    
## [4309] "d101e"     "d101f"     "d101g"     "d101h"     "d101i"     "d101j"    
## [4315] "d102"      "d103a"     "d103b"     "d103c"     "d103d"     "d103e"    
## [4321] "d103f"     "d104"      "d105a"     "d105b"     "d105c"     "d105d"    
## [4327] "d105e"     "d105f"     "d105g"     "d105h"     "d105i"     "d105j"    
## [4333] "d105k"     "d105l"     "d105m"     "d105n"     "d106"      "d107"     
## [4339] "d108"      "d109"      "d110a"     "d110b"     "d110c"     "d110d"    
## [4345] "d110e"     "d110f"     "d110g"     "d110h"     "d111"      "d112"     
## [4351] "d112a"     "d113"      "d114"      "d115b"     "d115c"     "d115d"    
## [4357] "d115e"     "d115f"     "d115g"     "d115h"     "d115i"     "d115j"    
## [4363] "d115k"     "d115l"     "d115m"     "d115n"     "d115o"     "d115p"    
## [4369] "d115q"     "d115r"     "d115s"     "d115t"     "d115u"     "d115v"    
## [4375] "d115w"     "d115x"     "d115y"     "d115xa"    "d115xb"    "d115xc"   
## [4381] "d115xd"    "d115xe"    "d115xf"    "d115xg"    "d115xh"    "d115xi"   
## [4387] "d115xj"    "d115xk"    "d116"      "d117a"     "d118a"     "d118b"    
## [4393] "d118c"     "d118d"     "d118e"     "d118f"     "d118g"     "d118h"    
## [4399] "d118i"     "d118j"     "d118k"     "d118l"     "d118m"     "d118n"    
## [4405] "d118o"     "d118p"     "d118q"     "d118r"     "d118s"     "d118t"    
## [4411] "d118u"     "d118v"     "d118w"     "d118x"     "d118y"     "d118xa"   
## [4417] "d118xb"    "d118xc"    "d118xd"    "d118xe"    "d118xf"    "d118xg"   
## [4423] "d118xh"    "d118xi"    "d118xj"    "d118xk"    "d119a"     "d119b"    
## [4429] "d119c"     "d119d"     "d119e"     "d119f"     "d119g"     "d119h"    
## [4435] "d119i"     "d119j"     "d119k"     "d119l"     "d119m"     "d119n"    
## [4441] "d119o"     "d119p"     "d119q"     "d119r"     "d119s"     "d119t"    
## [4447] "d119u"     "d119v"     "d119w"     "d119x"     "d119y"     "d119xa"   
## [4453] "d119xb"    "d119xc"    "d119xd"    "d119xe"    "d119xf"    "d119xg"   
## [4459] "d119xh"    "d119xi"    "d119xj"    "d119xk"    "d120"      "d121"     
## [4465] "d122a"     "d122b"     "d122c"     "d123"      "d124"      "d125"     
## [4471] "d126"      "d127"      "d128"      "d129"      "d130a"     "d130b"    
## [4477] "d130c"     "sqtype"    "s105d"     "s109"      "s236b"     "s236c"    
## [4483] "s236d"     "s648c"     "s653b"     "s653c"     "s701a"     "s701b"    
## [4489] "s815d"     "s815e"     "s905"      "s934a"     "s934b"     "s1502a"   
## [4495] "s1512a"    "s1512b"    "s1514a"    "s1515c"    "s1515e"    "s1516b"   
## [4501] "s1520a"    "s1522c"    "s1522d"    "s1523"     "idx92_01"  "idx92_02" 
## [4507] "idx92_03"  "idx92_04"  "idx92_05"  "idx92_06"  "idx92_07"  "idx92_08" 
## [4513] "idx92_09"  "idx92_10"  "idx92_11"  "idx92_12"  "idx92_13"  "idx92_14" 
## [4519] "idx92_15"  "idx92_16"  "idx92_17"  "idx92_18"  "idx92_19"  "idx92_20" 
## [4525] "s220a_01"  "s220a_02"  "s220a_03"  "s220a_04"  "s220a_05"  "s220a_06" 
## [4531] "s220a_07"  "s220a_08"  "s220a_09"  "s220a_10"  "s220a_11"  "s220a_12" 
## [4537] "s220a_13"  "s220a_14"  "s220a_15"  "s220a_16"  "s220a_17"  "s220a_18" 
## [4543] "s220a_19"  "s220a_20"  "idx94_1"   "idx94_2"   "idx94_3"   "idx94_4"  
## [4549] "idx94_5"   "idx94_6"   "s413d_1"   "s413d_2"   "s413d_3"   "s413d_4"  
## [4555] "s413d_5"   "s413d_6"   "s413e_1"   "s413e_2"   "s413e_3"   "s413e_4"  
## [4561] "s413e_5"   "s413e_6"   "s431a_1"   "s431a_2"   "s431a_3"   "s431a_4"  
## [4567] "s431a_5"   "s431a_6"   "s431b_1"   "s431b_2"   "s431b_3"   "s431b_4"  
## [4573] "s431b_5"   "s431b_6"   "idx95_1"   "idx95_2"   "idx95_3"   "idx95_4"  
## [4579] "idx95_5"   "idx95_6"   "s505a_1"   "s505a_2"   "s505a_3"   "s505a_4"  
## [4585] "s505a_5"   "s505a_6"   "s505b_1"   "s505b_2"   "s505b_3"   "s505b_4"  
## [4591] "s505b_5"   "s505b_6"   "s506_1"    "s506_2"    "s506_3"    "s506_4"   
## [4597] "s506_5"    "s506_6"    "s507a_1"   "s507a_2"   "s507a_3"   "s507a_4"  
## [4603] "s507a_5"   "s507a_6"   "s508p4_1"  "s508p4_2"  "s508p4_3"  "s508p4_4" 
## [4609] "s508p4_5"  "s508p4_6"  "s508p4d_1" "s508p4d_2" "s508p4d_3" "s508p4d_4"
## [4615] "s508p4d_5" "s508p4d_6" "s508p4m_1" "s508p4m_2" "s508p4m_3" "s508p4m_4"
## [4621] "s508p4m_5" "s508p4m_6" "s508p4y_1" "s508p4y_2" "s508p4y_3" "s508p4y_4"
## [4627] "s508p4y_5" "s508p4y_6" "s525_1"    "s525_2"    "s525_3"    "s525_4"   
## [4633] "s525_5"    "s525_6"    "s526a_1"   "s526a_2"   "s526a_3"   "s526a_4"  
## [4639] "s526a_5"   "s526a_6"   "s526b_1"   "s526b_2"   "s526b_3"   "s526b_4"  
## [4645] "s526b_5"   "s526b_6"   "s526c_1"   "s526c_2"   "s526c_3"   "s526c_4"  
## [4651] "s526c_5"   "s526c_6"   "s526d_1"   "s526d_2"   "s526d_3"   "s526d_4"  
## [4657] "s526d_5"   "s526d_6"   "s526e_1"   "s526e_2"   "s526e_3"   "s526e_4"  
## [4663] "s526e_5"   "s526e_6"   "s526f_1"   "s526f_2"   "s526f_3"   "s526f_4"  
## [4669] "s526f_5"   "s526f_6"   "s526g_1"   "s526g_2"   "s526g_3"   "s526g_4"  
## [4675] "s526g_5"   "s526g_6"   "s526h_1"   "s526h_2"   "s526h_3"   "s526h_4"  
## [4681] "s526h_5"   "s526h_6"   "s526x_1"   "s526x_2"   "s526x_3"   "s526x_4"  
## [4687] "s526x_5"   "s526x_6"   "s526z_1"   "s526z_2"   "s526z_3"   "s526z_4"  
## [4693] "s526z_5"   "s526z_6"
dat<-zap_labels(dat)
sub<-dat %>%
  filter(bidx_01==1&b0_01==0)%>%
  transmute(CASEID=caseid, 
                 int.cmc=v008,
                 fbir.cmc=b3_01,
                 sbir.cmc=b3_02,
                 marr.cmc=v509,
                 rural=v025,
                 educ=v106,
                 age = v012,
                 agec=cut(v012, breaks = seq(15,50,5), include.lowest=T),
                 partneredu=v701,
                 partnerage=v730,
                 weight=v005/1000000,
                 psu=v021,
                 strata=v022)%>%
  select(CASEID, int.cmc, fbir.cmc, sbir.cmc, marr.cmc, rural, educ, age, agec, partneredu, partnerage, weight, psu, strata)%>%
  mutate(agefb = (age - (int.cmc - fbir.cmc)/12))%>%
  mutate(secbi = ifelse(is.na(sbir.cmc)==T,
                   int.cmc - fbir.cmc, 
                   fbir.cmc - sbir.cmc),
         b2event = ifelse(is.na(sbir.cmc)==T,0,1))

##person-period model ##You must form a person-period data set
pp<-survSplit(Surv(secbi, b2event)~. , 
              data = sub[sub$secbi>0,],
              cut=seq(0,240, 12), 
              episode="year_birth")
pp$year <- pp$year_birth-1
pp<-pp[order(pp$CASEID, pp$year_birth),]
knitr::kable(head(pp[, c("CASEID", "secbi", "b2event", "year", "educ", "agefb", "rural", "partneredu")], n=20))
CASEID secbi b2event year educ agefb rural partneredu
1 13 2 12 0 1 1 24.66667 1 1
1 13 2 24 0 2 1 24.66667 1 1
1 13 2 36 0 3 1 24.66667 1 1
1 13 2 48 0 4 1 24.66667 1 1
1 13 2 60 0 5 1 24.66667 1 1
1 13 2 72 0 6 1 24.66667 1 1
1 13 2 84 0 7 1 24.66667 1 1
1 13 2 96 0 8 1 24.66667 1 1
1 13 2 108 0 9 1 24.66667 1 1
1 13 2 120 0 10 1 24.66667 1 1
1 13 2 132 0 11 1 24.66667 1 1
1 13 2 144 0 12 1 24.66667 1 1
1 13 2 156 0 13 1 24.66667 1 1
1 13 2 168 0 14 1 24.66667 1 1
1 13 2 180 0 15 1 24.66667 1 1
1 13 2 192 0 16 1 24.66667 1 1
1 13 2 196 0 17 1 24.66667 1 1
1 36 2 12 0 1 2 22.75000 1 2
1 36 2 24 0 2 2 22.75000 1 2
1 36 2 36 0 3 2 22.75000 1 2
options(survey.lonely.psu = "adjust")
des<-survey::svydesign(ids=~psu,
               strata=~strata,
               data=pp,
               weight=~weight )

##basic log models 
fit.0<-svyglm(b2event~as.factor(year)-1,
              design=des,
              family=binomial(link="cloglog"))
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
summary(fit.0)
## 
## Call:
## svyglm(formula = b2event ~ as.factor(year) - 1, design = des, 
##     family = binomial(link = "cloglog"))
## 
## Survey design:
## survey::svydesign(ids = ~psu, strata = ~strata, data = pp, weight = ~weight)
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## as.factor(year)1  -4.73285    0.16969 -27.891  < 2e-16 ***
## as.factor(year)2  -2.59301    0.06627 -39.126  < 2e-16 ***
## as.factor(year)3  -2.05019    0.05698 -35.982  < 2e-16 ***
## as.factor(year)4  -1.94422    0.05018 -38.746  < 2e-16 ***
## as.factor(year)5  -1.85472    0.05608 -33.072  < 2e-16 ***
## as.factor(year)6  -1.77539    0.05706 -31.115  < 2e-16 ***
## as.factor(year)7  -1.69999    0.06850 -24.819  < 2e-16 ***
## as.factor(year)8  -2.00585    0.08490 -23.625  < 2e-16 ***
## as.factor(year)9  -2.00025    0.09480 -21.099  < 2e-16 ***
## as.factor(year)10 -2.06047    0.11273 -18.278  < 2e-16 ***
## as.factor(year)11 -1.96067    0.11481 -17.078  < 2e-16 ***
## as.factor(year)12 -2.15754    0.13221 -16.319  < 2e-16 ***
## as.factor(year)13 -2.23079    0.17452 -12.782  < 2e-16 ***
## as.factor(year)14 -2.26038    0.17878 -12.644  < 2e-16 ***
## as.factor(year)15 -2.33106    0.20768 -11.225  < 2e-16 ***
## as.factor(year)16 -2.41583    0.19583 -12.336  < 2e-16 ***
## as.factor(year)17 -2.65901    0.31435  -8.459  < 2e-16 ***
## as.factor(year)18 -2.78069    0.34502  -8.060 3.54e-15 ***
## as.factor(year)19 -3.92030    0.47573  -8.241 9.06e-16 ***
## as.factor(year)20 -2.98481    0.38224  -7.809 2.24e-14 ***
## as.factor(year)21 -3.10096    0.51659  -6.003 3.18e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1.000026)
## 
## Number of Fisher Scoring iterations: 7
##Interaction models

fit.1<-svyglm(b2event~as.factor(year)-1+rural+as.factor(partneredu)+partnerage,
              design=des,
              family=binomial(link="cloglog"))
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
summary(fit.1)
## 
## Call:
## svyglm(formula = b2event ~ as.factor(year) - 1 + rural + as.factor(partneredu) + 
##     partnerage, design = des, family = binomial(link = "cloglog"))
## 
## Survey design:
## survey::svydesign(ids = ~psu, strata = ~strata, data = pp, weight = ~weight)
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## as.factor(year)1       -4.908192   0.399056 -12.300  < 2e-16 ***
## as.factor(year)2       -2.732109   0.312194  -8.751  < 2e-16 ***
## as.factor(year)3       -2.037476   0.295256  -6.901 1.28e-11 ***
## as.factor(year)4       -1.947793   0.285902  -6.813 2.28e-11 ***
## as.factor(year)5       -1.868783   0.294278  -6.350 4.16e-10 ***
## as.factor(year)6       -1.738694   0.292766  -5.939 4.79e-09 ***
## as.factor(year)7       -1.621521   0.293016  -5.534 4.63e-08 ***
## as.factor(year)8       -1.946245   0.308604  -6.307 5.43e-10 ***
## as.factor(year)9       -1.855534   0.315975  -5.872 7.02e-09 ***
## as.factor(year)10      -1.981299   0.333192  -5.946 4.59e-09 ***
## as.factor(year)11      -1.857938   0.341823  -5.435 7.88e-08 ***
## as.factor(year)12      -2.226836   0.353793  -6.294 5.86e-10 ***
## as.factor(year)13      -2.110471   0.409274  -5.157 3.39e-07 ***
## as.factor(year)14      -2.200178   0.343422  -6.407 2.95e-10 ***
## as.factor(year)15      -2.306683   0.429086  -5.376 1.08e-07 ***
## as.factor(year)16      -2.455384   0.447310  -5.489 5.90e-08 ***
## as.factor(year)17      -2.546821   0.585627  -4.349 1.60e-05 ***
## as.factor(year)18      -3.173675   0.590285  -5.377 1.08e-07 ***
## as.factor(year)19      -3.872114   0.660841  -5.859 7.56e-09 ***
## as.factor(year)20      -4.127426   0.783516  -5.268 1.91e-07 ***
## as.factor(year)21      -4.360893   0.928015  -4.699 3.22e-06 ***
## rural                   0.196898   0.061649   3.194  0.00148 ** 
## as.factor(partneredu)1  0.179323   0.177747   1.009  0.31343    
## as.factor(partneredu)2  0.061896   0.176883   0.350  0.72651    
## as.factor(partneredu)3  0.134403   0.191122   0.703  0.48218    
## as.factor(partneredu)8  0.134713   0.553534   0.243  0.80780    
## partnerage             -0.004413   0.003421  -1.290  0.19761    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1.071103)
## 
## Number of Fisher Scoring iterations: 7
fit.2<-svyglm(b2event~as.factor(year)-1+rural+as.factor(partneredu)+partnerage+as.factor(partneredu)*partnerage,
              design=des,
              family=binomial(link="cloglog"))
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
summary(fit.2)
## 
## Call:
## svyglm(formula = b2event ~ as.factor(year) - 1 + rural + as.factor(partneredu) + 
##     partnerage + as.factor(partneredu) * partnerage, design = des, 
##     family = binomial(link = "cloglog"))
## 
## Survey design:
## survey::svydesign(ids = ~psu, strata = ~strata, data = pp, weight = ~weight)
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)    
## as.factor(year)1                  -5.211298   0.895990  -5.816 9.69e-09 ***
## as.factor(year)2                  -3.035063   0.853590  -3.556 0.000406 ***
## as.factor(year)3                  -2.339763   0.851119  -2.749 0.006153 ** 
## as.factor(year)4                  -2.249733   0.832703  -2.702 0.007089 ** 
## as.factor(year)5                  -2.169545   0.843421  -2.572 0.010336 *  
## as.factor(year)6                  -2.038948   0.845055  -2.413 0.016123 *  
## as.factor(year)7                  -1.921595   0.846153  -2.271 0.023494 *  
## as.factor(year)8                  -2.247050   0.851107  -2.640 0.008498 ** 
## as.factor(year)9                  -2.157354   0.854865  -2.524 0.011867 *  
## as.factor(year)10                 -2.284000   0.863921  -2.644 0.008408 ** 
## as.factor(year)11                 -2.159901   0.866946  -2.491 0.012987 *  
## as.factor(year)12                 -2.527163   0.870275  -2.904 0.003818 ** 
## as.factor(year)13                 -2.411031   0.918692  -2.624 0.008896 ** 
## as.factor(year)14                 -2.501753   0.754035  -3.318 0.000961 ***
## as.factor(year)15                 -2.607626   0.909052  -2.869 0.004266 ** 
## as.factor(year)16                 -2.755735   0.905528  -3.043 0.002441 ** 
## as.factor(year)17                 -2.846917   0.988815  -2.879 0.004127 ** 
## as.factor(year)18                 -3.473739   0.982299  -3.536 0.000436 ***
## as.factor(year)19                 -4.171728   1.022707  -4.079 5.12e-05 ***
## as.factor(year)20                 -4.424442   1.114850  -3.969 8.08e-05 ***
## as.factor(year)21                 -4.657207   1.217147  -3.826 0.000143 ***
## rural                              0.192480   0.061079   3.151 0.001704 ** 
## as.factor(partneredu)1             0.765521   0.947176   0.808 0.419280    
## as.factor(partneredu)2             0.397319   0.843362   0.471 0.637728    
## as.factor(partneredu)3             0.227167   0.917789   0.248 0.804592    
## as.factor(partneredu)8            -0.557761   2.316804  -0.241 0.809833    
## partnerage                         0.001954   0.015663   0.125 0.900774    
## as.factor(partneredu)1:partnerage -0.012307   0.018015  -0.683 0.494770    
## as.factor(partneredu)2:partnerage -0.007065   0.016125  -0.438 0.661428    
## as.factor(partneredu)3:partnerage -0.001226   0.018164  -0.067 0.946214    
## as.factor(partneredu)8:partnerage  0.016968   0.044267   0.383 0.701618    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1.070974)
## 
## Number of Fisher Scoring iterations: 7
#Plot the hazard function on the probability scale
haz<-1/(1+exp(-coef(fit.0)))
time<-seq(1,21,1)
plot(haz~time, type="l", ylab="h(t)")
title(main="Discrete Time Hazard Function for second birth")

### Plot the survival function estimate
St<-NA
time<-1:length(haz)
St[1]<-1-haz[1]
for(i in 2:length(haz)){
  St[i]<-St[i-1]* (1-haz[i])
}
St<-c(1, St)
time<-c(0, time)
plot(y=St,x=time, type="l",
     main="Survival function for second birth interval")

## The first of the three models before time specifications were added tested the event birth number 2 with years, followed by the addition of rural, partners age and education, then with the latter variables plus an interaction term of partners age*education. Consistently across the core two models, partners age and education this includes the interaction term, had no significance on whether there was a risk of a second birth.

## In terms of having the rural indicator, living in an area that was rural compared to urban increased the risk of a second birth by at least 54%. This was seen in both models where rural was present as a variable.

## Lastly, the role of age had been considered in all three models, with the results indicating that each additional year of age resulted in a much decreased risk of a second birth. In this case, the peak chances were lowest 1 to 2 years prior the 1st birth with them having about a .008 to .005 percent chance of experiencing another birth, the second peak of which occurred typically from the years 18 to 21 where they had as high as .005% to .001% chances of having a second birth. The ages in between were largely consistent for risk of a second birth.
##Fit the discrete time hazard model to your outcome
##Consider both the general model and other time specifications
##Include all main effects in the model
##Test for an interaction between at least two of the predictors
## Basic discrete time model
#Linear term for time
fit.0<-svyglm(b2event~1,
              design=des ,
              family=binomial(link="cloglog"))
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
summary(fit.0)
## 
## Call:
## svyglm(formula = b2event ~ 1, design = des, family = binomial(link = "cloglog"))
## 
## Survey design:
## survey::svydesign(ids = ~psu, strata = ~strata, data = pp, weight = ~weight)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.22706    0.01918  -116.1   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1.000026)
## 
## Number of Fisher Scoring iterations: 5
1/(1+exp(-coef(fit.0)))
## (Intercept) 
##  0.09734632
1/(1+exp(-coef(fit.1)))
##       as.factor(year)1       as.factor(year)2       as.factor(year)3 
##            0.007331681            0.061105051            0.115323942 
##       as.factor(year)4       as.factor(year)5       as.factor(year)6 
##            0.124794221            0.133682655            0.149478921 
##       as.factor(year)7       as.factor(year)8       as.factor(year)9 
##            0.164995152            0.124963396            0.135224491 
##      as.factor(year)10      as.factor(year)11      as.factor(year)12 
##            0.121180391            0.134943553            0.097366339 
##      as.factor(year)13      as.factor(year)14      as.factor(year)15 
##            0.108083238            0.099734481            0.090570954 
##      as.factor(year)16      as.factor(year)17      as.factor(year)18 
##            0.079045733            0.072640310            0.040168476 
##      as.factor(year)19      as.factor(year)20      as.factor(year)21 
##            0.020389925            0.015868469            0.012606040 
##                  rural as.factor(partneredu)1 as.factor(partneredu)2 
##            0.549065973            0.544711031            0.515469028 
## as.factor(partneredu)3 as.factor(partneredu)8             partnerage 
##            0.533550158            0.533627326            0.498896841
1/(1+exp(-coef(fit.2)))
##                  as.factor(year)1                  as.factor(year)2 
##                       0.005424999                       0.045866744 
##                  as.factor(year)3                  as.factor(year)4 
##                       0.087882880                       0.095372533 
##                  as.factor(year)5                  as.factor(year)6 
##                       0.102518919                       0.115173935 
##                  as.factor(year)7                  as.factor(year)8 
##                       0.127683780                       0.095604263 
##                  as.factor(year)9                 as.factor(year)10 
##                       0.103646047                       0.092456750 
##                 as.factor(year)11                 as.factor(year)12 
##                       0.103409597                       0.073975768 
##                 as.factor(year)13                 as.factor(year)14 
##                       0.082335382                       0.075735405 
##                 as.factor(year)15                 as.factor(year)16 
##                       0.068649251                       0.059763596 
##                 as.factor(year)17                 as.factor(year)18 
##                       0.054840909                       0.030068743 
##                 as.factor(year)19                 as.factor(year)20 
##                       0.015191245                       0.011839049 
##                 as.factor(year)21                             rural 
##                       0.009403671                       0.547971991 
##            as.factor(partneredu)1            as.factor(partneredu)2 
##                       0.682551285                       0.598043247 
##            as.factor(partneredu)3            as.factor(partneredu)8 
##                       0.556548736                       0.364065783 
##                        partnerage as.factor(partneredu)1:partnerage 
##                       0.500488417                       0.496923284 
## as.factor(partneredu)2:partnerage as.factor(partneredu)3:partnerage 
##                       0.498233727                       0.499693538 
## as.factor(partneredu)8:partnerage 
##                       0.504241965
#Linear term for time
fit.l<-svyglm(b2event~year,
              design=des ,
              family=binomial(link="cloglog"))
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
summary(fit.l)
## 
## Call:
## svyglm(formula = b2event ~ year, design = des, family = binomial(link = "cloglog"))
## 
## Survey design:
## survey::svydesign(ids = ~psu, strata = ~strata, data = pp, weight = ~weight)
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.416650   0.028047 -86.164  < 2e-16 ***
## year         0.033726   0.004761   7.084 3.47e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.9952062)
## 
## Number of Fisher Scoring iterations: 5
fit.s<-svyglm(b2event~year+I(year^2),
              design=des ,
              family=binomial(link="cloglog"))
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
summary(fit.s)
## 
## Call:
## svyglm(formula = b2event ~ year + I(year^2), design = des, family = binomial(link = "cloglog"))
## 
## Survey design:
## survey::svydesign(ids = ~psu, strata = ~strata, data = pp, weight = ~weight)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -3.35596    0.06434  -52.16   <2e-16 ***
## year         0.38369    0.02195   17.48   <2e-16 ***
## I(year^2)   -0.02209    0.00149  -14.82   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1.009634)
## 
## Number of Fisher Scoring iterations: 6
fit.c<-svyglm(b2event~year+I(year^2)+I(year^3 ),
              design=des ,
              family=binomial(link="cloglog"))
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
summary(fit.c)
## 
## Call:
## svyglm(formula = b2event ~ year + I(year^2) + I(year^3), design = des, 
##     family = binomial(link = "cloglog"))
## 
## Survey design:
## survey::svydesign(ids = ~psu, strata = ~strata, data = pp, weight = ~weight)
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -4.1368559  0.0912631  -45.33   <2e-16 ***
## year         0.8285081  0.0401488   20.64   <2e-16 ***
## I(year^2)   -0.0843188  0.0048356  -17.44   <2e-16 ***
## I(year^3)    0.0023341  0.0001608   14.52   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.964793)
## 
## Number of Fisher Scoring iterations: 6
fit.q<-svyglm(b2event~year+I(year^2)+I(year^3 )+I(year^4),
              design=des ,
              family=binomial(link="cloglog"))
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
summary(fit.q)
## 
## Call:
## svyglm(formula = b2event ~ year + I(year^2) + I(year^3) + I(year^4), 
##     design = des, family = binomial(link = "cloglog"))
## 
## Survey design:
## survey::svydesign(ids = ~psu, strata = ~strata, data = pp, weight = ~weight)
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -5.216e+00  1.431e-01 -36.444  < 2e-16 ***
## year         1.659e+00  1.006e-01  16.486  < 2e-16 ***
## I(year^2)   -2.680e-01  2.281e-02 -11.750  < 2e-16 ***
## I(year^3)    1.713e-02  1.943e-03   8.816  < 2e-16 ***
## I(year^4)   -3.835e-04  5.415e-05  -7.082 3.53e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.9679146)
## 
## Number of Fisher Scoring iterations: 6
library(splines)
fit.sp<-svyglm(b2event~ns(year, df = 3),
               design=des ,
               family=binomial(link="cloglog"))
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
summary(fit.sp)
## 
## Call:
## svyglm(formula = b2event ~ ns(year, df = 3), design = des, family = binomial(link = "cloglog"))
## 
## Survey design:
## survey::svydesign(ids = ~psu, strata = ~strata, data = pp, weight = ~weight)
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -3.82491    0.07575 -50.492  < 2e-16 ***
## ns(year, df = 3)1  0.95545    0.11930   8.009 4.97e-15 ***
## ns(year, df = 3)2  3.18995    0.16248  19.633  < 2e-16 ***
## ns(year, df = 3)3 -0.16044    0.15785  -1.016     0.31    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.9607684)
## 
## Number of Fisher Scoring iterations: 6
## Hazards

dat<-expand.grid(year=seq(1,20,1))
dat$genmod<-predict(fit.0, newdata=data.frame(year=as.factor(1:20 )), type="response")
dat$cons<-predict(fit.c,newdata=dat,  type="response")
dat$lin<-predict(fit.l, newdata=dat, type="response")
dat$sq<-predict(fit.s, newdata=dat, type="response")
dat$cub<-predict(fit.c, newdata=dat, type="response")
dat$quart<-predict(fit.q, newdata=dat, type="response")
dat$spline<-predict(fit.sp, newdata=expand.grid(year=seq(1,20,1)), type="response")
dat
##    year    genmod       cons        lin         sq        cub      quart
## 1     1 0.1022329 0.03313604 0.08815054 0.04883565 0.03313604 0.02193840
## 2     2 0.1022329 0.05908727 0.09103227 0.06646075 0.05908727 0.05678264
## 3     3 0.1022329 0.09120755 0.09400326 0.08641637 0.09120755 0.10291220
## 4     4 0.1022329 0.12393847 0.09706594 0.10742423 0.12393847 0.14275615
## 5     5 0.1022329 0.15089228 0.10022279 0.12778480 0.15089228 0.16388223
## 6     6 0.1022329 0.16740835 0.10347630 0.14561261 0.16740835 0.16570870
## 7     7 0.1022329 0.17185330 0.10682904 0.15912493 0.17185330 0.15489811
## 8     8 0.1022329 0.16543487 0.11028360 0.16691445 0.16543487 0.13909384
## 9     9 0.1022329 0.15116988 0.11384259 0.16815444 0.15116988 0.12371293
## 10   10 0.1022329 0.13267571 0.11750868 0.16271246 0.13267571 0.11152262
## 11   11 0.1022329 0.11320260 0.12128457 0.15116809 0.11320260 0.10342332
## 12   12 0.1022329 0.09509968 0.12517297 0.13473441 0.09509968 0.09928661
## 13   13 0.1022329 0.07971626 0.12917666 0.11508504 0.07971626 0.09840487
## 14   14 0.1022329 0.06759968 0.13329839 0.09410183 0.06759968 0.09953025
## 15   15 0.1022329 0.05881197 0.13754099 0.07358435 0.05881197 0.10065714
## 16   16 0.1022329 0.05323979 0.14190726 0.05498699 0.05323979 0.09886525
## 17   17 0.1022329 0.05085754 0.14640005 0.03924959 0.05085754 0.09078436
## 18   18 0.1022329 0.05198023 0.15102220 0.02675798 0.05198023 0.07428135
## 19   19 0.1022329 0.05761491 0.15577656 0.01742441 0.05761491 0.05103379
## 20   20 0.1022329 0.07013976 0.16066599 0.01084067 0.07013976 0.02742312
##        spline
## 1  0.02158409
## 2  0.03066431
## 3  0.04298980
## 4  0.05878068
## 5  0.07750134
## 6  0.09748243
## 7  0.11581018
## 8  0.12887238
## 9  0.13492314
## 10 0.13449755
## 11 0.12912848
## 12 0.12074750
## 13 0.11121754
## 14 0.10206049
## 15 0.09396874
## 16 0.08680359
## 17 0.08039563
## 18 0.07460558
## 19 0.06931880
## 20 0.06444111
plot(genmod~year, dat, type="l", ylab="h(t)", xlab="Time", ylim=c(0, .25), xlim=c(0, 20))
title(main="Hazard function from different time parameterizations")
lines(cons~year, dat, col=1, lwd=2, lty=3)
lines(lin~year, dat, col=2, lwd=2)
lines(sq~year, dat, col=3, lwd=2)
lines(cub~year, dat, col=4, lwd=2)
lines(quart~year, dat, col=5, lwd=2)
lines(spline~year, dat, col=6, lwd=2)
legend("topleft", 
       legend=c("General Model","constant", "Linear","Square", "Cubic", "Quartic", "Natural spline"),
       col=c(1,1:6), lty=c(1,3,1,1,1,1,1), lwd=1.5)

#AIC table
aic<-round(c(
  fit.l$deviance+2*length(fit.l$coefficients),
  fit.s$deviance+2*length(fit.s$coefficients),
  fit.c$deviance+2*length(fit.c$coefficients),
  fit.q$deviance+2*length(fit.q$coefficients),
  fit.sp$deviance+2*length(fit.sp$coefficients),
  fit.0$deviance+2*length(fit.0$coefficients)),2)
#compare all aics to the one from the general model
dif.aic<-round(aic-aic[6],2)
data.frame(model =c( "linear","square", "cubic", "quartic","spline", "general"),
           aic=aic,
           aic_dif=dif.aic)
##     model      aic  aic_dif
## 1  linear 25090.01   -90.04
## 2  square 24386.34  -793.71
## 3   cubic 24158.01 -1022.04
## 4 quartic 24010.14 -1169.91
## 5  spline 24002.84 -1177.21
## 6 general 25180.05     0.00
## According to the model aics, the best fit for the model would be the spline. However, it should be noted that the quartic comes pretty close to that of the spline model, and is almost as much a fit for the data.