# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(scales)
library(ggrepel)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("WMT", "MSFT", "GE")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "GE" "MSFT" "WMT"
#Weights
weights <- c(0.25, 0.25, 0.5)
weights
## [1] 0.25 0.25 0.50
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 GE 0.25
## 2 MSFT 0.25
## 3 WMT 0.5
# tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0342
## 2 2013-02-28 0.0235
## 3 2013-03-28 0.0371
## 4 2013-04-30 0.0463
## 5 2013-05-31 0.0104
## 6 2013-06-28 -0.00434
## 7 2013-07-31 0.0147
## 8 2013-08-30 -0.0291
## 9 2013-09-30 0.0157
## 10 2013-10-31 0.0565
## # … with 50 more rows
portfolio_Kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_Kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 0.110
# Assign a Value for window
window = 24
# Transform Data: Calculate 24 Month rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
# Plot
rolling_kurt_tbl %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "Corn Flower Blue") +
# Formatting
scale_y_continuous(breaks = seq(-1, 4, .5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = .5)) +
# Labeling
labs(x = NULL,
y = "Kurtosis",
title = paste0("Rolling ", window, " Kurtosis")) +
# Annotate
annotate(geom = "text", x = as.Date("2016-07-01"),
y = 3, size = 3, color = "red",
label = str_glue("Downside risk skyrocketed
in mid 2017" ))
Has the downside risk of your portfolio increased or decreased over time? Explain using the plot you created. You may also refer to the skewness of the returns distribution you plotted in the previous assignment.
Downside risk has increased significantly within the time frame that I am measuring. The Kurtosis findings suggest that the portfolio is less likely to follow a normal distribution curve, and are more likely to have skewed returns. This is supported by the skewness that I found in the previous application problem. This higher level of kurtosis indicates a higher level of varience for the portfolio and therefore greater risk.