tbp_table_RA_fill0 <- tbp_table %>%
filter (! is.na (Taxon)) %>%
# group_by(number) %>% mutate(RA = reads/sum(reads)) %>% ungroup() %>%
pivot_wider (id_cols = Taxon, names_from = number, values_from = RA, values_fill = 0 ) %>%
pivot_longer (cols = - 1 , names_to = "number" , values_to = "RA" ) %>%
left_join (tbp_table %>% select (number, group)) %>% distinct (number, Taxon, group, RA)
library (rstatix)
tbp_table_RA_fill0 %>% group_by (Taxon) %>%
t_test (RA ~ group) %>% adjust_pvalue (method = "BH" ) %>% add_significance () %>%
gt:: gt_preview ()
species_signif <- tbp_table_RA_fill0 %>% group_by (Taxon) %>% group_by (Taxon) %>%
t_test (RA ~ group) %>% adjust_pvalue (method = "BH" ) %>% filter (p.adj < .05 ) %>% pull (Taxon) %>% unique ()
for (taxon in high_species){
tbp_table_RA_fill0 %>% filter (Taxon == taxon) %>%
ggplot (aes (x = group, y = RA, fill = group)) + geom_boxplot () +
geom_jitter ()+
ggsignif:: geom_signif (comparisons = list (c ("Hospitalized" , "Ambulatoric" ), c ("healthy" , "Hospitalized" ), c ("healthy" , "Ambulatoric" )),
step_increase = .1 , map_signif_level = F)+ theme_classic () + ggtitle (taxon)
ggsave (paste0 (taxon, ".png" ), height = 4 )
}
tbp_table_RA_fill0 %>%
# filter(Taxon %in% species_signif) %>%
ggplot (aes (x = group, y = RA, fill = group)) +
geom_jitter (aes (color = group),alpha = .4 ) +
geom_boxplot ( outlier.size = 0 ) +
ggsignif:: geom_signif (comparisons = list (c ("Hospitalized" , "Ambulatoric" ), c ("healthy" , "Hospitalized" ), c ("healthy" , "Ambulatoric" )),
step_increase = .1 , map_signif_level = F)+ theme_classic () +
facet_wrap (~ Taxon, scales = "free_y" )
ggsave ("Taxons_level.png" , height = 8 , width = 8 )