1 Objetivo

Identificar los valores de la función de probabilidad bajo la fórmula de distribución de Poisson.

2 Descripción

Realizar distribuciones de probabilidad conforme a la distribución de probabilidad de Poisson a partir del valor medio dado en ejercicios.

Se generan las tablas de probabilidad conforme a distribución Poisson, se identifican los valores de probabilidad cuando la variable discreta \(x\) tenga algún exactamente algún valor, \(\leq\) a algún valor o \(\gt\) o \(\geq\), entre otros.

3 Fundamento teórico

Otra variable aleatoria discreta que tiene numerosas aplicaciones prácticas es la variable aleatoria de Poisson. Su distribución de probabilidad da un buen modelo para datos que representa el número de sucesos de un evento especificado en una unidad determinada de tiempo o espacio.

Los experimentos que dan valores numéricos de una variable aleatoria X, el número de resultados que ocurren durante un intervalo dado o en una región específica, se llaman experimentos de Poisson.

Esta distribución discreta, suele usarse para estimar el número de veces que sucede un hecho determinado (ocurrencias) en un intervalo de tiempo o de espacio. Por ejemplo,

  • La variable de interés va desde el número promedio de automóviles que llegan (llegadas) a un lavado de coches en una hora o

  • El número medio de reparaciones necesarias en 10 kms. de una autopista o,

  • El número promedio de fugas de agua en tubería en un lapso 3 meses.

  • El número de focos promedio que fallan en una cantidad de lote de 1000 focos.

  • El número medio de fugas en 100 kms.de tubería, entre otros.

3.1 Fórmula

\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \] en donde:

  • \(f(x)\) es la función de probabilidad para valores de \(x=0,1,2,3..,n\).

  • \(\mu\) es el valor medio esperado en cierto lapso de tiempo. Algunas veces expresado como \(\lambda\) lambda.

  • \(x\) es la variable aleatoria. Es una variable aleatoria discreta \((x = 0, 1,. 2, . . . )\)

  • \(e\) valor constante, es la base de los logaritmos naturales \(2.71728\).

Propiedades de un evento Poisson:

  • La probabilidad de ocurrencia es la misma para cualquiera de dos intérvalos de la misma longitud.

  • La ocurrencia o no ocurrencia en cualquier intervalo es independiente de la ocurrencia o no ocurrencia en cualquier otro intervalo.

  • El factor de proporcionalidad para la probabilidad de un hecho en un intervalo infinitésimo. Se le suele designar como parámetro de intensidad y corresponde con el número medio de hechos que cabe esperar que se produzcan en un intervalo unitario (media de la distribución);

  • El valor de la media también coincide con la varianza de la distribución.

  • Se trata de un modelo discreto y que el campo de variación de la variable será el conjunto de los número naturales, incluido el cero: \(x \in \text{{0, 1, 2, 3, 4 ......... ......}}\)

3.2 Probabilidad acumulada

\[ F(x) = \sum_{0}^{n}f.x_i \]

3.3 Esperanza, varianza y desviación estándard

Los valores de la esperanza (o media) y de la varianza para la distribución de Poisson son de la siguiente manera:

3.3.1 El valor medio o esperanza\[E(X) = \lambda \]

3.3.2 La varianza\[Var(X) = \sigma^{2} = \lambda\]

Es decir, tanto el valor esperado como la varianza de una variable aleatoria con distribución de Poisson son iguales.

3.3.3 La desviación\[\sigma = \sqrt{Var(x)} = \sqrt{\sigma^{2}}\]

El los siguiente ejercicios se hace uso de funciones de distribución para Poisson en R, al igual que otras de las distribuciones de probabilidad, R trae consigo funciones de paquete base que ya permiten calcular la probabilidad, la densidad y la generación de números aleatorios, entre otras.

De igual modo se tienen funciones previamente codificadas que generan los mismos resultados en la dirección: https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/Agosto-Diciembre%202022/funciones/funciones%20para%20distribuciones.R

4 Desarrollo

4.1 Cargar librerías

library(dplyr)
library(gtools)
library(ggplot2)
library(mosaic) # Gráficos de distribuciones
library(cowplot) #Imágenes en el mismo renglón
library(plotly)
options(scipen=999) # Notación normal
# options(scipen=1) # Notación científica

4.2 Cargar funciones

#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/Agosto-Diciembre%202022/funciones/funciones%20para%20distribuciones.R")

4.3 Ejercicios

Se describen ejercicios en donde se encuentra la función de distribución

4.3.1 Llegadas a cajero automático

Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.

Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.

Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;

Aquí la variable aleatoria es \(x\) número de automóviles que llegan en un lapso de 15 minutos.

4.3.1.1 Probabilidad de que lleguen exactamente 5 automóviles en 15 minutos

Si la administración desea saber la probabilidad de que lleguen exactamente 5 automóviles en 15 minutos, \(x=5\),y se obtiene:

Inicializando variables y valores, estos valores son los parámetros que requiere la función de Poisson. \(x\) como variable aleatoria, \(\mu\) (miu) o \(\lambda\) (lambda) es el valor medio de la distribución y \(n\) como un valor final de los valores de la variable discreta \(x\), desde \(0\) hasta \(n\);.

Este último valor de \(n\) puede modificarse y observar los valores de densidad (probabilidad) de la variable discreta van reduciendo poco a poco.

media <- 10 # Media o lambda en la función de densidad
x <- 5    # Valores de la variable disrea
n = 25 # Estimado final de la variable aleatoria x , pero puede variar

Utilizando la función creada conforme a la fórmula

prob <- round(f.prob.poisson(media = media, x = x),4)
paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de :  0.0378"

Utilizando la función dpois()

prob2 <- round(dpois(x = x, lambda = media),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de :  0.0378"

Para este caso al igual que las entregas de Caso de binomial e hipergeométrica, también se hace uso de la función previamente f.poisson.all(…) construída para este fín y que se encuentra en el script previamente cargado con la función source().

Esta función f.poisson.all(…), devuelve entre otras cosas, la tabla de distribución, el valor esperado, la varianza, la desviación estándar así como las visualizaciones gráficas de la densidad, histograma y acumulado de la variable discreta Poisson.

4.3.1.2 Tabla de probabilidad y gráfica de la probabilidad de Poisson.

Se crea una tabla de distribución codificada manualmente

options(scipen=999) # Notación normal 
tabla1 <- data.frame(x=0:25, f.x = round(dpois(x = 0:25, lambda = media),8), F.x = round(ppois(q=0:25, lambda = media), 8))
tabla1
##     x        f.x        F.x
## 1   0 0.00004540 0.00004540
## 2   1 0.00045400 0.00049940
## 3   2 0.00227000 0.00276940
## 4   3 0.00756665 0.01033605
## 5   4 0.01891664 0.02925269
## 6   5 0.03783327 0.06708596
## 7   6 0.06305546 0.13014142
## 8   7 0.09007923 0.22022065
## 9   8 0.11259903 0.33281968
## 10  9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174
## 22 21 0.00088861 0.99930035
## 23 22 0.00040391 0.99970426
## 24 23 0.00017561 0.99987988
## 25 24 0.00007317 0.99995305
## 26 25 0.00002927 0.99998232

Se hace la misma tabla de distribución usando la variable resultado que provienen de haber ejecutado la función previamente.

Ejecutando la función f.poisson.all(…)

resultado <- f.poisson.all(media = media)
tabla <- resultado$tabla
tabla
##     x        f.x        F.x
## 1   0 0.00004540 0.00004540
## 2   1 0.00045400 0.00049940
## 3   2 0.00227000 0.00276940
## 4   3 0.00756665 0.01033605
## 5   4 0.01891664 0.02925269
## 6   5 0.03783327 0.06708596
## 7   6 0.06305546 0.13014142
## 8   7 0.09007923 0.22022065
## 9   8 0.11259903 0.33281968
## 10  9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174

El resultado de ambas tablas debe ser similar.

4.3.1.3 Visualizando probabilidad de Poisson

Se presentan la gráfica de probabilidad con histograma y la densidad respectivamente. Se utiliza la llamada de la variable resultado.

plot_grid(resultado$g.hist, resultado$g.dens)

Histograma y acumulado

plot_grid(resultado$g.text, resultado$g_all$acum)

Usando plotly para visualizaciones dinámicas

resultado$g.hist.plotly
resultado$g.acum.plotly

4.3.1.4 ¿Cual es la probabilidad de que X sea menor o igual a diez?

\[f(x \leq10) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + ... + P(x=10)\]

i <- 10
tabla$F.x[i + 1]
## [1] 0.5830397
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", tabla$f.acum[i + 1])
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es:  "

4.3.1.5 Usando ppois()

ppois() determina la probabilidad acumulada de una distribución Poisson.

prob <- round(ppois(q = 10, lambda = media), 4)
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", prob)
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es:  0.583"

4.3.1.6 Media diferente

En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.

Regla de tres:

\[ 10 = 15\] \[ ? = 3\]

Entonces, la probabilidad de \(x=4\) llegadas en un lapso de 3 minutos con \(μ = 2\) está dada por la siguiente nueva función de probabilidad de Poisson.

\[ \mu = 2 \]

\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \]

Entonces ….

media <- 2
x <- 4
prob <- round(dpois(x = 4, lambda = media),4)
paste("La probabilidad cuando x = 4 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 4 y media igual a 2 es del: 9.02 %"

4.3.1.7 El valor de la esperanza media

Regresando a la media \(\mu = 10 \text{ o }\lambda = 10\) , entonces la esperanza media es igual a: \(10\)

4.3.1.8 La varianza

La varianza es igual a \(10\)

4.3.1.9 La desviación estándar

La raiz cuadrada de \(\sqrt{10}\)

sqrt(media)
## [1] 1.414214

4.3.1.10 Interpretación

Primeramente, la probabilidad que tenemos de que lleguen exactamente 5 automóviles en 15 minutos es de 0.0378. De igual manera, en el ejercicio nos encontramos con tablas de probabilidad y gráficas de la probabilidad de Poisson donde el resultado de cada tabla tiene que ser similar entre sí.

En el ejercicio visualizamos una gráfica de probabilidad con histograma y la densidad respectivamente utilizada. También, nos encontramos con una gráfica de la función acumulada que tiene el ejercicio.

Por último, podemos ver los resultados de la varianza y desviación estándar, donde la varianza la encontramos con un valor de 10 y la desviación estándar con un valor de √10.

4.3.2 Instalaciones industriales

En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es \(0.005\) y los accidentes son independientes entre sí.

¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día?
Se multiplica la cantidad la de días por su probabilidad para encontrar la media. Esta media será el parámetro para la distribución Poisson.

n <- 400
prob <- 0.005
media <- n * prob
media
## [1] 2

La variable aleatoria son los días desde \(x=0\)…hasta \(x=n\)

4.3.2.1 La tabla de distribución de probabilidad de Poisson

resultado <- f.poisson.all(media = media)
tabla <- resultado$tabla
tabla
##   x        f.x       F.x
## 1 0 0.13533528 0.1353353
## 2 1 0.27067057 0.4060059
## 3 2 0.27067057 0.6766764
## 4 3 0.18044704 0.8571235
## 5 4 0.09022352 0.9473470

4.3.2.2 Visualización de Poisson

Se presentan la gráfica de probabilidad con histograma y la densidad respectivamente. Se utiliza la llamada de la variable resultado.

plot_grid(resultado$g.hist, resultado$g.dens)

Histograma y acumulado

plot_grid(resultado$g.text, resultado$g_all$acum)

Usando plotly para visualizaciones dinámicas

resultado$g.hist.plotly
resultado$g.acum.plotly

4.3.2.3 ¿Cuál es la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día?

\(f(x=1)\)

Recordar que el índice de la tabla empieza en el valor cero de tal forma que se necesita el siguiente valor \(x+1\) en la tabla:

i <- 1
prob <- tabla$f.x[i+1]
paste("La probabilidad del valor de x=1 es: ", prob)
## [1] "La probabilidad del valor de x=1 es:  0.27067057"
paste("La probabilidad del valor de x=1 es: ", round(dpois(x = 1, lambda = media), 4))
## [1] "La probabilidad del valor de x=1 es:  0.2707"

4.3.3 ¿Cuál es la probabilidad de que haya a lo más tres días con un accidente?

  • El indice en la taba comienza en cero
i <- 3
prob <- round(tabla$F.x[i+1],4)
paste("La probabilidad del valor de x<=3 es: ", prob)
## [1] "La probabilidad del valor de x<=3 es:  0.8571"
paste("La probabilidad acumlada del valor de x<=3 es: ", round(ppois(q = 3, lambda = media, lower.tail = TRUE), 4))
## [1] "La probabilidad acumlada del valor de x<=3 es:  0.8571"

4.3.3.1 Interpretación

En el ejercicio, nos encontramos con que la probabilidad de que en cualquier periodo dado de 400 días habrá un accidente en un día es de un 2%, visualizamos que es una probabilidad bastante baja, pero es un caso que puede suceder.

También, obtenemos la probabilidad de que haya algún accidente en tres días, que esta probabilidad es de 0.8571.

De igual manera, nos encontramos con distintos elementos visuales como gráficas y tablas para poder ver los valores y comprender probabilidades en distintos casos que no se hayan implementado en el ejercicio.

4.3.4 Fabricante de automóviles

Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con \(\lambda = 5\).

Inicializando valores

media <- 5

4.3.4.1 La tabla de distribución cuando media igual a 5

resultado <- f.poisson.all(media = media)
tabla <- resultado$tabla
tabla
##     x        f.x        F.x
## 1   0 0.00673795 0.00673795
## 2   1 0.03368973 0.04042768
## 3   2 0.08422434 0.12465202
## 4   3 0.14037390 0.26502592
## 5   4 0.17546737 0.44049329
## 6   5 0.17546737 0.61596065
## 7   6 0.14622281 0.76218346
## 8   7 0.10444486 0.86662833
## 9   8 0.06527804 0.93190637
## 10  9 0.03626558 0.96817194
## 11 10 0.01813279 0.98630473

4.3.4.2 Visualización de Poisson

Se presentan la gráfica de probabilidad con histograma y la densidad respectivamente. Se utiliza la llamada de la variable resultado.

plot_grid(resultado$g.hist, resultado$g.dens)

Histograma y acumulado

plot_grid(resultado$g.text, resultado$g_all$acum)

Usando plotly para visualizaciones dinámicas

resultado$g.hist.plotly
resultado$g.acum.plotly

4.3.4.3 ¿Cuál es la probabilidad de que, a lo más, 3 automóviles por año sufran una catástrofe?

\[f(X \leq 3)\]

\[f(X=0) + f(X=1) + f(X=2) + f(X=3)\]

i <- 3
prob <- tabla$F.x[i+1]
paste("La probabilidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x<=3 es:  26.5026 %"
paste("La probabilidad del valor de x<=3 es: ", round(ppois(q = 3, lambda = media),4) * 100, "%")
## [1] "La probabilidad del valor de x<=3 es:  26.5 %"

4.3.4.4 ¿Cuál es la probabilidad de que más de 1 automóvil por año experimente una catástrofe?

\[ 1 - F(X \leq 1) \] \[ 1 - (f(X=0) + f(x=1))\]

i <- 1
prob <- 1 - tabla$F.x[i+1]
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es:  95.9572 %"
prob <- ppois(q = 1, lambda = media, lower.tail = FALSE)
paste("La probabilidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabilidad del valor de x>1 es:  95.9572 %"

4.3.4.5 Interpretación

Podemos visualizar en el ejercicio una tabla de distribución cuando media tiende a ser igual a 5, nos arroja los posibles valores con las posibles probabilidades de que pase la falla en el mecanismo de freno de un modelo específico. Esta tabla no da la probabilidad y el porcentaje de que pueda pasar esto y de igual manera, nos indica el número en el cual tiene mayor probabilidad de pasar.

Nos encontramos con una variedad de elementos visuales los cuales nos ayudan a comprender de mejor manera las distintas probabilidades que tiene cada caso y también para que no sea una información solamente de palabras y números, sino que con gráficos.

Por último, nos encontramos con que la probabilidad de que más de 1 automóvil por año experimente una catástrofe es de 95.9572 o redondeando decimales del 96%.

4.3.5 Declaración de impuestos

Suponga que, en promedio, \(1 \text { persona en }1000\)
comete un error numérico al preparar su declaración de impuestos. Si se seleccionan \(10,000\) formas al azar y se examinan, encuentre la probabilidad de que \(6, 7 \text { u } 8\) de las formas contengan un error. Ejercicio 5.65, Pág. 165.

\[ f(x=6:8) = f(x=6) + f(x=7) + f(x=8) \]

4.3.5.1 Valores iniciales

prob <- 1 / 1000
media <- prob * 10000

4.3.5.2 Tabla de distribución

resultado <- f.poisson.all(media = media)
tabla <- resultado$tabla
tabla
##     x        f.x        F.x
## 1   0 0.00004540 0.00004540
## 2   1 0.00045400 0.00049940
## 3   2 0.00227000 0.00276940
## 4   3 0.00756665 0.01033605
## 5   4 0.01891664 0.02925269
## 6   5 0.03783327 0.06708596
## 7   6 0.06305546 0.13014142
## 8   7 0.09007923 0.22022065
## 9   8 0.11259903 0.33281968
## 10  9 0.12511004 0.45792971
## 11 10 0.12511004 0.58303975
## 12 11 0.11373640 0.69677615
## 13 12 0.09478033 0.79155648
## 14 13 0.07290795 0.86446442
## 15 14 0.05207710 0.91654153
## 16 15 0.03471807 0.95125960
## 17 16 0.02169879 0.97295839
## 18 17 0.01276400 0.98572239
## 19 18 0.00709111 0.99281350
## 20 19 0.00373216 0.99654566
## 21 20 0.00186608 0.99841174

4.3.5.3 Usando dpois()

\[ f(x \text { de 6 a }8) = f(x=6) + f(x=7) + f(x=8) \]

Se suman las probabilidades

paste(round(dpois(x = 6, lambda = media),4), "+", round(dpois(x = 7, lambda = media),4), "+"
, round(dpois(x = 8, lambda = media),4))
## [1] "0.0631 + 0.0901 + 0.1126"
prob <- sum(dpois(x = 6:8, lambda = media))
paste("La probabilidad del valor de x de 6 a 8 es: ", round((prob * 100),4), "%")
## [1] "La probabilidad del valor de x de 6 a 8 es:  26.5734 %"

4.3.5.4 Interpretación

5 Interpretación

En el caso nos encontramos con una variedad de probabilidades y/o eventos que pueden llegar a pasar, estas influyen de gran manera en cada uno de los ejercicios implementados porque cuestionan una serie de eventos, los cuales puedan o tengan la probabilidad de que pasen.

De igual manera, en los ejercicios a realizar utilizamos la fórmula de Poisson:

\[ f(x) = \frac{{e^{ - \mu }\cdot \mu ^x }}{{x!}} \]

Además de esta, se utilizan otras fórmulas de probabilidad como la varianza y desviación estándar. También, en los ejercicios nos encontramos con la fórmula de la probabilidad acumulada, la cual se representa como:

\[ F(x) = \sum_{0}^{n}f.x_i \]

Por último, nos encontramos con varios elementos gráficos que nos ayudan a comprender tanto casos como probabilidades de un mejor manera y que lleguen a ser un poco más comprensibles al momento de ser representados o elementados al problema.

6 Referencias Bibliográficas