Prep

library(readxl)
library(dplyr)
library(magrittr)
library(knitr)
library(writexl)
library(agricolae)
library(DescTools)
library(dunn.test)
read_excel("~/Desktop/raw_winter.xlsx", sheet = "raw")   -> raw_winter
read_excel("~/Desktop/raw_winter.xlsx", sheet = "KRDI")  -> ppKRDI
read_excel("~/Desktop/raw_winter.xlsx", sheet = "FRAS4") -> ppFRAS4

raw_winter %>% 
  dplyr::mutate(KRDA = kcal / RDA) -> raw_winter
raw_winter$agesex <- factor(raw_winter$agesex, levels=c("M_Young", "F_Young", "M_Old", "F_Old"))
raw_winter$prepost <- factor(raw_winter$prepost, levels=c("pre", "post"))
raw_winter
## # A tibble: 222 × 19
##     ...1 ...2  agesex offin prepost sex     age carrer height weight carbohydr…¹
##    <dbl> <chr> <fct>  <chr> <fct>   <chr> <dbl>  <dbl>  <dbl>  <dbl>       <dbl>
##  1     1 2014  F_Old  off   <NA>    F        21     12   158    50.6        96.4
##  2     2 2014  M_Old  off   <NA>    M        21     11   168.   62.4       186. 
##  3     3 2014  M_Old  off   <NA>    M        20     14   180.   78.3        62.7
##  4     4 2014  F_Old  off   <NA>    F        19     10   163.   60.0       310. 
##  5     5 2014  M_Old  off   <NA>    M        23     14   178.   74.8       177. 
##  6     6 2014  M_Old  off   <NA>    M        20     11   184.   75.4       252. 
##  7     7 2014  M_Old  off   <NA>    M        19      8   180.   76.5       209. 
##  8     9 2014  M_Old  off   <NA>    M        20     12   184.   77         181. 
##  9    10 2014  M_Old  off   <NA>    M        19     11   168    63.9       171. 
## 10    11 2014  M_Old  off   <NA>    M        21     15   172.   63.8       192. 
## # … with 212 more rows, 8 more variables: `fat(g)` <dbl>, `protein(g)` <dbl>,
## #   `dietary fibre(g)` <dbl>, kcal <dbl>, RDA <dbl>, droms <dbl>, BAP <dbl>,
## #   KRDA <dbl>, and abbreviated variable name ¹​`carbohydrate(g)`

Descriptive statistics

age/sex

raw_winter %>% 
  group_by(agesex) %>% 
  summarise(n = n(),
            Age = mean(age),
            Age_sd = sd(age),
            Weight= mean(weight),
            Weight_sd = sd(weight), 
            Krda = mean(KRDA)*100,
            Krda_sd = sd(KRDA)*100) -> a

raw_winter %>%  
  tidyr::drop_na(carrer) -> carrerfull
carrerfull %>% 
  group_by(agesex) %>% 
  summarise(n = n(),
            Carrer = mean(carrer),
            Carrer_sd = sd(carrer)) -> b

raw_winter %>%  
  tidyr::drop_na(height) -> heightfull 
heightfull %>%
    group_by(agesex) %>% 
    summarise(n = n(),
            Height = mean(height),
            Height_sd = sd(height)) -> c
  
df1 <- data.frame(c(a,b,c))
df1
##    agesex  n      Age   Age_sd   Weight Weight_sd     Krda  Krda_sd agesex.1
## 1 M_Young 99 15.19192 2.023720 59.05909 13.768602 88.20138 40.68680  M_Young
## 2 F_Young 60 14.96667 1.775222 53.56333  7.262732 92.26304 34.34027  F_Young
## 3   M_Old 45 21.60000 2.434599 68.75889  5.422829 76.10686 30.73211    M_Old
## 4   F_Old 18 21.22222 2.734433 59.36111  4.285425 68.89143 50.68055    F_Old
##   n.1    Carrer Carrer_sd agesex.2 n.2   Height Height_sd
## 1  67  6.447761  2.996380  M_Young  68 167.4294  8.018766
## 2  42  6.515952  2.909439  F_Young  42 159.8548  6.240005
## 3  38 13.000000  3.653950    M_Old  38 174.3000  5.674552
## 4  14 12.285714  3.383866    F_Old  14 164.0000  3.268968

off/in

raw_winter %>%  
  tidyr::drop_na(offin) -> offinfull

offinfull$offin <- factor(offinfull$offin, levels=c("off", "in"))

offinfull %>% 
  group_by(offin) %>% 
  summarise(n = n(), 
            Krda = mean(KRDA)*100,
            Krda_sd = sd(KRDA)*100) -> d

df2 <- data.frame(d)
df2
##   offin   n     Krda  Krda_sd
## 1   off 139 89.80567 42.02902
## 2    in  58 75.93017 29.28151

pre/post

raw_winter %>% 
  group_by(prepost) %>% 
  summarise(n = n(),
            Age = mean(age),
            Age_sd = sd(age),
            Carrer = mean(carrer),
            Carrer_sd = sd(carrer),
            Height = mean(height),
            Height_sd = sd(height),
            Weight= mean(weight),
            Weight_sd = sd(weight), 
            Krda = mean(KRDA)*100,
            Krda_sd = sd(KRDA)*100)-> e

ppFRAS4 %>%  
  tidyr::drop_na(c(pre.droms, pre.BAP, post.droms, post.BAP)) -> ppFRAS4
ppFRAS4 %>%
  summarise(n = n(),
            pre.d.roms = mean(pre.droms),
            pre.d.roms_sd = sd(pre.droms),
            post.d.roms = mean(post.droms),
            post.d.roms_sd = sd(post.droms),
            pre.Bap = mean(pre.BAP),
            pre.Bap_sd = sd(pre.BAP),
            post.Bap = mean(post.BAP),
            post.Bap_sd = sd(post.BAP)) -> f

df3 <- as.data.frame(e)
df3
##   prepost   n      Age   Age_sd    Carrer Carrer_sd   Height Height_sd   Weight
## 1     pre  11 17.36364 4.924890  9.090909  4.504543 166.5727  7.967947 58.05455
## 2    post  11 18.36364 4.924890 10.090909  4.504543 167.7273  8.580104 58.15455
## 3    <NA> 200 16.81500 3.404221        NA        NA       NA        NA 59.72500
##   Weight_sd     Krda  Krda_sd
## 1  9.495406 87.73899 28.62289
## 2  9.189272 76.77473 23.71104
## 3 11.753193 85.61461 39.76818
df4 <- as.data.frame(f)
df4
##   n pre.d.roms pre.d.roms_sd post.d.roms post.d.roms_sd  pre.Bap pre.Bap_sd
## 1 9   236.3333      37.71604    198.3333       41.88675 2623.778   497.9171
##   post.Bap post.Bap_sd
## 1 2456.778    728.7981

Make excel

# writexl::write_xlsx(df,"~/Desktop/result_winter.xlsx")
# writexl::write_xlsx(setNames(df1,"setting"), paste0(outpath, "test.xlsx"))
# writexl::write_xlsx(list("temperature" = df1, "humidity"=df2), paste0(outpath, "test.xlsx"))

write_xlsx(list("DS_nutrition" = df1, "DS_offin"=df2, "DS_prepost"=df3, "FRAS4" =df4), paste0("~/Desktop/result_winter.xlsx"))

age/sex

Nomarlity test

by(raw_winter$KRDA, raw_winter$agesex, shapiro.test)
## raw_winter$agesex: M_Young
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.65674, p-value = 7.005e-14
## 
## ------------------------------------------------------------ 
## raw_winter$agesex: F_Young
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.96607, p-value = 0.09346
## 
## ------------------------------------------------------------ 
## raw_winter$agesex: M_Old
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.93161, p-value = 0.01069
## 
## ------------------------------------------------------------ 
## raw_winter$agesex: F_Old
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.82722, p-value = 0.00378

M_Young : p-value = 7.005e-14 < 유의수준 = 0.05, 정규성 가정을 만족하지 않음
F_Young : p-value = 0.09346 > 유의수준 = 0.05, 정규성 가정을 만족함
M_Old : p-value = 0.01069 < 유의수준 = 0.05, 정규성 가정을 만족하지 않음
F_Old : p-value = 0.00378 < 유의수준 = 0.05, 정규성 가정을 만족하지 않음

정규성 가정을 전부 다 만족하지 않으므로 비모수검정

Significance test

kruskal.test(formula = KRDA ~ agesex,
             data   = raw_winter)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  KRDA by agesex
## Kruskal-Wallis chi-squared = 13.654, df = 3, p-value = 0.003417
# summary(aov(KRDA ~ agesex, raw_winter))
# anova(lm(KRDA ~ agesex, raw_winter))

p-value = 0.003417 < 유의수준 = 0.05, 통계적으로 유의한 차이 증명.

Post-Hoc

## bonferroni -------------------------------------------------------
dunn.test(raw_winter$KRDA, raw_winter$agesex, method = 'bonferroni')
##   Kruskal-Wallis rank sum test
## 
## data: x and group
## Kruskal-Wallis chi-squared = 13.6537, df = 3, p-value = 0
## 
## 
##                            Comparison of x by group                            
##                                  (Bonferroni)                                  
## Col Mean-|
## Row Mean |      F_Old    F_Young      M_Old
## ---------+---------------------------------
##  F_Young |  -3.098451
##          |    0.0058*
##          |
##    M_Old |  -1.177301   2.557522
##          |     0.7172     0.0316
##          |
##  M_Young |  -2.648306   0.941847  -1.948176
##          |    0.0243*     1.0000     0.1542
## 
## alpha = 0.05
## Reject Ho if p <= alpha/2
## Tukey ------------------------------------------------------------
nparcomp::nparcomp(formula = KRDA ~ agesex,
                   data    = raw_winter,
                   type    = "Tukey")
## 
##  #------Nonparametric Multiple Comparisons for relative contrast effects-----# 
##  
##  - Alternative Hypothesis:  True relative contrast effect p is not equal to 1/2 
##  - Type of Contrast : Tukey 
##  - Confidence level: 95 % 
##  - Method = Logit - Transformation 
##  - Estimation Method: Pairwise rankings 
##  
##  #---------------------------Interpretation----------------------------------# 
##  p(a,b) > 1/2 : b tends to be larger than a 
##  #---------------------------------------------------------------------------# 
## 
## $Data.Info
##    Sample Size
## 1 M_Young   99
## 2 F_Young   60
## 3   M_Old   45
## 4   F_Old   18
## 
## $Contrast
##                   M_Young F_Young M_Old F_Old
## F_Young - M_Young      -1       1     0     0
## M_Old - M_Young        -1       0     1     0
## F_Old - M_Young        -1       0     0     1
## M_Old - F_Young         0      -1     1     0
## F_Old - F_Young         0      -1     0     1
## F_Old - M_Old           0       0    -1     1
## 
## $Analysis
##               Comparison Estimator Lower Upper Statistic    p.Value
## 1 p( M_Young , F_Young )     0.553 0.428 0.671  1.070137 0.69697249
## 2   p( M_Young , M_Old )     0.389 0.262 0.533 -1.957642 0.18579773
## 3   p( M_Young , F_Old )     0.300 0.128 0.556 -1.992360 0.17335663
## 4   p( F_Young , M_Old )     0.360 0.236 0.507 -2.409155 0.06644819
## 5   p( F_Young , F_Old )     0.289 0.126 0.534 -2.197727 0.11120924
## 6     p( M_Old , F_Old )     0.373 0.179 0.619 -1.308648 0.53923776
## 
## $Overall
##   Quantile    p.Value
## 1 2.525806 0.06644819
## 
## $input
## $input$formula
## KRDA ~ agesex
## 
## $input$data
## # A tibble: 222 × 19
##     ...1 ...2  agesex offin prepost sex     age carrer height weight carbohydr…¹
##    <dbl> <chr> <fct>  <chr> <fct>   <chr> <dbl>  <dbl>  <dbl>  <dbl>       <dbl>
##  1     1 2014  F_Old  off   <NA>    F        21     12   158    50.6        96.4
##  2     2 2014  M_Old  off   <NA>    M        21     11   168.   62.4       186. 
##  3     3 2014  M_Old  off   <NA>    M        20     14   180.   78.3        62.7
##  4     4 2014  F_Old  off   <NA>    F        19     10   163.   60.0       310. 
##  5     5 2014  M_Old  off   <NA>    M        23     14   178.   74.8       177. 
##  6     6 2014  M_Old  off   <NA>    M        20     11   184.   75.4       252. 
##  7     7 2014  M_Old  off   <NA>    M        19      8   180.   76.5       209. 
##  8     9 2014  M_Old  off   <NA>    M        20     12   184.   77         181. 
##  9    10 2014  M_Old  off   <NA>    M        19     11   168    63.9       171. 
## 10    11 2014  M_Old  off   <NA>    M        21     15   172.   63.8       192. 
## # … with 212 more rows, 8 more variables: `fat(g)` <dbl>, `protein(g)` <dbl>,
## #   `dietary fibre(g)` <dbl>, kcal <dbl>, RDA <dbl>, droms <dbl>, BAP <dbl>,
## #   KRDA <dbl>, and abbreviated variable name ¹​`carbohydrate(g)`
## 
## $input$type
## [1] "Tukey"
## 
## $input$conf.level
## [1] 0.95
## 
## $input$alternative
## [1] "two.sided" "less"      "greater"  
## 
## $input$asy.method
## [1] "logit"  "probit" "normal" "mult.t"
## 
## $input$plot.simci
## [1] FALSE
## 
## $input$control
## NULL
## 
## $input$info
## [1] TRUE
## 
## $input$rounds
## [1] 3
## 
## $input$contrast.matrix
## NULL
## 
## $input$correlation
## [1] FALSE
## 
## $input$weight.matrix
## [1] FALSE
## 
## 
## $text.Output
## [1] "True relative contrast effect p is not equal to 1/2"
## 
## $connames
## [1] "p( M_Young , F_Young )" "p( M_Young , M_Old )"   "p( M_Young , F_Old )"  
## [4] "p( F_Young , M_Old )"   "p( F_Young , F_Old )"   "p( M_Old , F_Old )"    
## 
## $AsyMethod
## [1] "Logit - Transformation"
## 
## attr(,"class")
## [1] "nparcomp"
## LSD --------------------------------------------------------------
model<-aov(KRDA ~ agesex, raw_winter)

comparison<-LSD.test(model,"agesex",group=F)
comparison
## $statistics
##     MSerror  Df      Mean       CV
##   0.1454256 218 0.8528186 44.71609
## 
## $parameters
##         test p.ajusted name.t ntr alpha
##   Fisher-LSD      none agesex   4  0.05
## 
## $means
##              KRDA       std  r       LCL       UCL       Min      Max       Q25
## F_Old   0.6889143 0.5068055 18 0.5117606 0.8660679 0.1455912 2.225234 0.3444273
## F_Young 0.9226304 0.3434027 60 0.8255994 1.0196614 0.3626002 1.987853 0.6537550
## M_Old   0.7610686 0.3073211 45 0.6490268 0.8731104 0.3088165 1.753853 0.5327090
## M_Young 0.8820138 0.4068680 99 0.8064753 0.9575524 0.3268118 3.993003 0.6812488
##               Q50      Q75
## F_Old   0.4958059 0.946188
## F_Young 0.8960822 1.140565
## M_Old   0.6594340 1.002902
## M_Young 0.8108828 1.021395
## 
## $comparison
##                    difference pvalue signif.         LCL          UCL
## F_Old - F_Young   -0.23371614 0.0235       * -0.43570235 -0.031729939
## F_Old - M_Old     -0.07215432 0.4982         -0.28176531  0.137456669
## F_Old - M_Young   -0.19309957 0.0494       * -0.38568586 -0.000513286
## F_Young - M_Old    0.16156182 0.0328       *  0.01334447  0.309779174
## F_Young - M_Young  0.04061657 0.5157         -0.08235129  0.163584430
## M_Old - M_Young   -0.12094525 0.0791       . -0.25607273  0.014182225
## 
## $groups
## NULL
## 
## attr(,"class")
## [1] "group"
comparison<-LSD.test(model,"agesex",p.adj="bonferroni",group=F)
comparison
## $statistics
##     MSerror  Df      Mean       CV
##   0.1454256 218 0.8528186 44.71609
## 
## $parameters
##         test  p.ajusted name.t ntr alpha
##   Fisher-LSD bonferroni agesex   4  0.05
## 
## $means
##              KRDA       std  r       LCL       UCL       Min      Max       Q25
## F_Old   0.6889143 0.5068055 18 0.5117606 0.8660679 0.1455912 2.225234 0.3444273
## F_Young 0.9226304 0.3434027 60 0.8255994 1.0196614 0.3626002 1.987853 0.6537550
## M_Old   0.7610686 0.3073211 45 0.6490268 0.8731104 0.3088165 1.753853 0.5327090
## M_Young 0.8820138 0.4068680 99 0.8064753 0.9575524 0.3268118 3.993003 0.6812488
##               Q50      Q75
## F_Old   0.4958059 0.946188
## F_Young 0.8960822 1.140565
## M_Old   0.6594340 1.002902
## M_Young 0.8108828 1.021395
## 
## $comparison
##                    difference pvalue signif.         LCL        UCL
## F_Old - F_Young   -0.23371614 0.1413         -0.50658472 0.03915244
## F_Old - M_Old     -0.07215432 1.0000         -0.35532343 0.21101479
## F_Old - M_Young   -0.19309957 0.2964         -0.45326956 0.06707041
## F_Young - M_Old    0.16156182 0.1967         -0.03866897 0.36179262
## F_Young - M_Young  0.04061657 1.0000         -0.12550401 0.20673715
## M_Old - M_Young   -0.12094525 0.4747         -0.30349259 0.06160208
## 
## $groups
## NULL
## 
## attr(,"class")
## [1] "group"
## scheffe ; group 별 n수 다를 때 -----------------------------------
scheffe.test(model, "agesex", alpha = 0.05, console = T)
## 
## Study: model ~ "agesex"
## 
## Scheffe Test for KRDA 
## 
## Mean Square Error  : 0.1454256 
## 
## agesex,  means
## 
##              KRDA       std  r       Min      Max
## F_Old   0.6889143 0.5068055 18 0.1455912 2.225234
## F_Young 0.9226304 0.3434027 60 0.3626002 1.987853
## M_Old   0.7610686 0.3073211 45 0.3088165 1.753853
## M_Young 0.8820138 0.4068680 99 0.3268118 3.993003
## 
## Alpha: 0.05 ; DF Error: 218 
## Critical Value of F: 2.646014 
## 
## Groups according to probability of means differences and alpha level( 0.05 )
## 
## Means with the same letter are not significantly different.
## 
##              KRDA groups
## F_Young 0.9226304      a
## M_Young 0.8820138      a
## M_Old   0.7610686      a
## F_Old   0.6889143      a
## bonferroni -------------------------------------------------------
PostHocTest(model, method='bonferroni')
## 
##   Posthoc multiple comparisons of means : Bonferroni 
##     95% family-wise confidence level
## 
## $agesex
##                        diff     lwr.ci     upr.ci   pval    
## F_Young-M_Young  0.04061657 -0.1255040 0.20673715 1.0000    
## M_Old-M_Young   -0.12094525 -0.3034926 0.06160208 0.4747    
## F_Old-M_Young   -0.19309957 -0.4532696 0.06707041 0.2964    
## M_Old-F_Young   -0.16156182 -0.3617926 0.03866897 0.1967    
## F_Old-F_Young   -0.23371614 -0.5065847 0.03915244 0.1413    
## F_Old-M_Old     -0.07215432 -0.3553234 0.21101479 1.0000    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

off/in

Nomarlity test

by(raw_winter$KRDA, raw_winter$offin, shapiro.test)
## raw_winter$offin: in
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.96033, p-value = 0.05542
## 
## ------------------------------------------------------------ 
## raw_winter$offin: off
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.78062, p-value = 3.799e-13

in : p-value = 0.05542 > 유의수준 = 0.05, 정규성 가정을 만족함
off : p-value = 3.799e-13 < 유의수준 = 0.05, 정규성 가정을 만족하지 않음

정규성 가정을 전부 다 만족하지 않으므로 비모수검정

Significance test

wilcox.test(formula     = KRDA ~ offin,
            data        = raw_winter,
            alternative = "two.sided")
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  KRDA by offin
## W = 3125, p-value = 0.01304
## alternative hypothesis: true location shift is not equal to 0

p-value = 0.01304 < 유의수준 = 0.05, 통계적으로 유의한 차이 증명.

pre/post

Nomarlity test

by(raw_winter$KRDA, raw_winter$prepost, shapiro.test)
## raw_winter$prepost: pre
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.98767, p-value = 0.9941
## 
## ------------------------------------------------------------ 
## raw_winter$prepost: post
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.97595, p-value = 0.9395

pre : p-value = 0.9941 > 유의수준 = 0.05, 정규성 가정을 만족함
post : p-value = 0.9395 > 유의수준 = 0.05, 정규성 가정을 만족함

정규성 가정을 전부 다 만족하므로 모수검정

by(raw_winter$droms, raw_winter$prepost, shapiro.test)
## raw_winter$prepost: pre
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.93018, p-value = 0.4497
## 
## ------------------------------------------------------------ 
## raw_winter$prepost: post
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.93455, p-value = 0.4941

pre : p-value = 0.4497 > 유의수준 = 0.05, 정규성 가정을 만족함
post : p-value = 0.4941 > 유의수준 = 0.05, 정규성 가정을 만족함

정규성 가정을 전부 다 만족하므로 모수검정

by(raw_winter$BAP, raw_winter$prepost, shapiro.test)
## raw_winter$prepost: pre
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.75673, p-value = 0.00431
## 
## ------------------------------------------------------------ 
## raw_winter$prepost: post
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.80918, p-value = 0.01243

pre : p-value = 0.00431 < 유의수준 = 0.05, 정규성 가정을 만족하지 않음
post : p-value = 0.01243 < 유의수준 = 0.05, 정규성 가정을 만족하지 않음

정규성 가정을 전부 다 만족하지 않으므로 비모수검정

Significance test_pre/post

#KRDA
t.test(ppKRDI$pre,
       ppKRDI$post,
       alternative = "two.sided",
       paired = TRUE)
## 
##  Paired t-test
## 
## data:  ppKRDI$pre and ppKRDI$post
## t = 1.9068, df = 10, p-value = 0.08565
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##  -0.01847447  0.23775952
## sample estimates:
## mean difference 
##       0.1096425
#d-roms
t.test(ppFRAS4$pre.droms,
       ppFRAS4$post.droms,
       alternative = "two.sided",
       paired = TRUE)
## 
##  Paired t-test
## 
## data:  ppFRAS4$pre.droms and ppFRAS4$post.droms
## t = 4.2007, df = 8, p-value = 0.002994
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##  17.13948 58.86052
## sample estimates:
## mean difference 
##              38
#BAP
wilcox.test(ppFRAS4$pre.BAP,
            ppFRAS4$post.BAP,
            alternative = "two.sided",
            paired = FALSE)
## Warning in wilcox.test.default(ppFRAS4$pre.BAP, ppFRAS4$post.BAP, alternative =
## "two.sided", : cannot compute exact p-value with ties
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  ppFRAS4$pre.BAP and ppFRAS4$post.BAP
## W = 44.5, p-value = 0.7572
## alternative hypothesis: true location shift is not equal to 0

KRDA : p-value = 0.08565 > 유의수준 = 0.05, 통계적으로 유의하지 않음.
d-roms : p-value = 0.002994 < 유의수준 = 0.05, 통계적으로 유의한 차이 증명.
BAP : p-value = 0.7572 > 유의수준 = 0.05, 통계적으로 유의하지 않음.