library(wooldridge)
## Warning: le package 'wooldridge' a été compilé avec la version R 4.1.3
data(hprice2)
library(rmarkdown)
paged_table(hprice2)
lm(scale(price) ~ 0 + scale(nox) + scale(crime) + scale(rooms) + scale(dist) + scale(stratio), data = hprice2)
## 
## Call:
## lm(formula = scale(price) ~ 0 + scale(nox) + scale(crime) + scale(rooms) + 
##     scale(dist) + scale(stratio), data = hprice2)
## 
## Coefficients:
##     scale(nox)    scale(crime)    scale(rooms)     scale(dist)  scale(stratio)  
##        -0.3404         -0.1433          0.5139         -0.2348         -0.2703
lm(log(price) ~ log(nox) +  rooms , data = hprice2)
## 
## Call:
## lm(formula = log(price) ~ log(nox) + rooms, data = hprice2)
## 
## Coefficients:
## (Intercept)     log(nox)        rooms  
##      9.2337      -0.7177       0.3059
ornek6_2<-lm(log(price) ~ log(nox) + log(dist)+  rooms + I(rooms^2) + stratio , data = hprice2)
summary(ornek6_2)
## 
## Call:
## lm(formula = log(price) ~ log(nox) + log(dist) + rooms + I(rooms^2) + 
##     stratio, data = hprice2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.04285 -0.12774  0.02038  0.12650  1.25272 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.385477   0.566473  23.630  < 2e-16 ***
## log(nox)    -0.901682   0.114687  -7.862 2.34e-14 ***
## log(dist)   -0.086781   0.043281  -2.005  0.04549 *  
## rooms       -0.545113   0.165454  -3.295  0.00106 ** 
## I(rooms^2)   0.062261   0.012805   4.862 1.56e-06 ***
## stratio     -0.047590   0.005854  -8.129 3.42e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2592 on 500 degrees of freedom
## Multiple R-squared:  0.6028, Adjusted R-squared:  0.5988 
## F-statistic: 151.8 on 5 and 500 DF,  p-value: < 2.2e-16
ornek6_2_poly<-lm(log(price) ~ log(nox) + log(dist)+  poly(rooms, 2, raw = TRUE ) + stratio , data = hprice2)

summary(ornek6_2_poly)
## 
## Call:
## lm(formula = log(price) ~ log(nox) + log(dist) + poly(rooms, 
##     2, raw = TRUE) + stratio, data = hprice2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.04285 -0.12774  0.02038  0.12650  1.25272 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 13.385477   0.566473  23.630  < 2e-16 ***
## log(nox)                    -0.901682   0.114687  -7.862 2.34e-14 ***
## log(dist)                   -0.086781   0.043281  -2.005  0.04549 *  
## poly(rooms, 2, raw = TRUE)1 -0.545113   0.165454  -3.295  0.00106 ** 
## poly(rooms, 2, raw = TRUE)2  0.062261   0.012805   4.862 1.56e-06 ***
## stratio                     -0.047590   0.005854  -8.129 3.42e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2592 on 500 degrees of freedom
## Multiple R-squared:  0.6028, Adjusted R-squared:  0.5988 
## F-statistic: 151.8 on 5 and 500 DF,  p-value: < 2.2e-16
data("attend")
(ornek6_3 <- lm(stndfnl~ atndrte*priGPA + ACT + I(priGPA^2) + I(ACT^2), data=attend))
## 
## Call:
## lm(formula = stndfnl ~ atndrte * priGPA + ACT + I(priGPA^2) + 
##     I(ACT^2), data = attend)
## 
## Coefficients:
##    (Intercept)         atndrte          priGPA             ACT     I(priGPA^2)  
##       2.050293       -0.006713       -1.628540       -0.128039        0.295905  
##       I(ACT^2)  atndrte:priGPA  
##       0.004533        0.005586
data(gpa2)
ornek6_5 <- lm(colgpa~sat+ hsperc + hsize + I(hsize^2), data=gpa2 )
summary(ornek6_5)
## 
## Call:
## lm(formula = colgpa ~ sat + hsperc + hsize + I(hsize^2), data = gpa2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.57543 -0.35081  0.03342  0.39945  1.81683 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.493e+00  7.534e-02  19.812  < 2e-16 ***
## sat          1.492e-03  6.521e-05  22.886  < 2e-16 ***
## hsperc      -1.386e-02  5.610e-04 -24.698  < 2e-16 ***
## hsize       -6.088e-02  1.650e-02  -3.690 0.000228 ***
## I(hsize^2)   5.460e-03  2.270e-03   2.406 0.016191 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5599 on 4132 degrees of freedom
## Multiple R-squared:  0.2781, Adjusted R-squared:  0.2774 
## F-statistic:   398 on 4 and 4132 DF,  p-value: < 2.2e-16
tahmin_verileri = data.frame(sat=1200, hsperc=30, hsize=5)
tahmin_verileri
##    sat hsperc hsize
## 1 1200     30     5
tahmin_verileri = data.frame(sat=1200, hsperc=30, hsize=5)
tahmin_verileri
##    sat hsperc hsize
## 1 1200     30     5
predict(ornek6_5, tahmin_verileri, interval = "confidence" )
##        fit      lwr      upr
## 1 2.700075 2.661104 2.739047