Halo Investor dan Trader,
Halaman ini berisi Raw Information dari Technical Analysis ala Muhamad Makky Dandytra, CFTe untuk MMD Charts.
## [1] "Based on Trading Date 25 Oktober 2022"
Untuk informasi lengkap, silahkan kunjungi website https://www.mmdcharts.com.
Semoga berguna dan bermanfaat.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Trend dan Stoch. Oscillator.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Net Buy Asing yang positif dalam 5 hari.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik ini menampilkan Sektor dan Relasinya-nya dengan Rata - Rata Pergerakannya dalam 1D, 5D dan 20D.
Grafik Super Quadrant Stocks ini menampilkan Trend dan Sinyal dibagi per Sektor.
Grafik Super Quadrant Stocks ini menampilkan Trend dan sinyal Buy dibagi per Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Outperform Trend dan Uptrend - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Outperform Trend dan Uptrend dengan sinyal Buy - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Champion Quadrant dan Uptrend - dibagi berdasarkan Sektor.
Grafik Super Quadrant Stocks ini hanya menampilkan Saham dalam Champion Quadrant dan Uptrend dengan sinyal Buy - dibagi berdasarkan Sektor.
# TPT.IDX
#
# TPT %>%
# filter(KairiMABB20 > 0, KairiMABB60 > 0, KairiMABB200 > 0) %>%
# arrange(DateTime, Ticker) %>%
# select(Ticker, Close, Ch1D, Ch5D, Ch20D, YTDRet) %>%
# ggplot(aes(x = DateTime))+
# geom_bar(aes(y = Ch1D))+
# facet_wrap(~ Ticker, ncol = 5)
Table dan Grafik ini menggolongkan saham pada return 1, 5, 20 hari dan YTD (dari sejak awal tahun 2020).
head(TPT)
## Ticker Close DateTime Trend SO SOSignal Ch1D YestCh Ch5D Ch20D
## 1 WIKA 900 2022-10-25 Downtrend 61.11 Buy Now 0.56 -1.10 2.27 -6.74
## 2 ARTO 5500 2022-10-25 Downtrend 64.02 Sell Now 0.00 1.38 12.24 -21.43
## 3 EMTK 1535 2022-10-25 Downtrend 54.54 Still Sell 0.00 0.33 3.02 -5.25
## 4 PTBA 3750 2022-10-25 Downtrend 25.08 Buy Now -0.79 -1.31 -5.30 -10.07
## 5 KLBF 2000 2022-10-25 Uptrend 63.25 Buy Now 0.25 1.01 5.26 8.11
## 6 BRMS 185 2022-10-25 Uptrend 65.15 Alert Buy -0.54 5.08 6.94 11.45
## Ch60D YTDRet Volume ChTurnover ChTurnover5D AvgCondition RCTrend
## 1 -3.23 -18.55 Abv Prev&Avg 0.05 -0.71 Low TO U/P Trend
## 2 -48.60 -65.63 Above Previous 0.17 -0.70 High TO U/P Trend
## 3 -17.91 -32.68 --- -0.47 -0.67 Low TO U/P Trend
## 4 -12.38 38.38 --- -0.03 -0.64 High TO U/P Trend
## 5 26.18 23.84 Above Previous 0.46 -0.56 High TO O/P Trend
## 6 -19.57 59.48 --- -0.44 -0.52 Low TO O/P Trend
## RCMomentum RCTrendSignal RCMomentumSignal KairiMABB20 KairiMABB60
## 1 O/P Momentum --- O/P Momentum Signal -0.03 -0.09
## 2 O/P Momentum --- --- -0.09 -0.29
## 3 O/P Momentum --- --- -0.03 -0.13
## 4 O/P Momentum --- O/P Momentum Signal -0.09 -0.10
## 5 U/P Momentum --- --- 0.05 0.15
## 6 U/P Momentum --- U/P Momentum Signal 0.13 -0.08
## KairiMABB200 BB Bandwidth F1D F2D F1Wk F1Mo MTTrend
## 1 -0.11 23.65 8.25 0.86 -0.54 -0.22 -3.48 Downtrend
## 2 -0.52 33.34 48.89 10.14 5.87 46.92 26.35 Downtrend
## 3 -0.24 36.27 12.71 -4.86 -1.91 20.13 -53.64 Downtrend
## 4 0.00 5.23 18.65 -11.09 -22.98 -52.57 75.79 Downtrend
## 5 0.18 89.96 14.64 -13.75 -20.93 -110.59 -402.97 Uptrend
## 6 -0.07 90.12 35.12 0.17 -1.26 -8.33 -151.41 Downtrend
## WkESOValue WkESO PriceVolumeCond Last1DPVCond Last2DPVCond RC.JKSE MA.RC
## 1 15.26 Still Buy Real + Real - Real - 127.69 131.83
## 2 21.64 Buy Now --- Fake + Fake + 780.32 857.07
## 3 13.81 Buy Now --- Fake + Fake + 217.78 223.84
## 4 27.15 Alert Buy fake - fake - fake - 532.04 586.37
## 5 64.50 Still Buy Real + Fake + Fake + 283.75 270.81
## 6 48.36 Still Buy fake - Real + Real + 26.25 23.24
## RC.BB PrevRC.BB Corr20D Corr60D Corr5D KairiMA20 KairiMA60 KairiMA200
## 1 10.76 -1.58 0.36 0.82 0.66 -2.22 -10.25 -10.32
## 2 30.17 27.88 0.78 0.45 -0.24 -8.87 -42.65 -105.95
## 3 25.53 22.45 0.49 0.51 0.93 -1.78 -15.80 -29.41
## 4 2.51 -1.60 -0.03 0.52 0.39 -9.11 -11.93 0.67
## 5 79.38 80.54 -0.17 -0.41 0.20 5.53 12.21 16.22
## 6 86.51 92.21 0.00 0.61 0.86 12.35 -9.10 -6.68
## MA20Direction MA60Direction MA200Direction LTTrend MoESOValue
## 1 -3.25 -0.50 -1.15 Downtrend 40.75
## 2 -75.00 -86.67 -58.13 Downtrend 9.52
## 3 -4.25 -5.58 -3.78 Downtrend 9.60
## 4 -21.00 -8.83 4.75 Uptrend 62.03
## 5 7.50 6.92 1.97 Uptrend 74.39
## 6 0.95 -0.75 0.38 New Uptrend 16.05
## MoESO MarketCap Turnover AvgMOTurnover TurnoverRatio
## 1 Alert Buy 8072.96 9.90 13.48 0.12
## 2 Still Buy 75447.28 114.28 109.56 0.15
## 3 Alert Buy 94006.09 18.39 38.99 0.02
## 4 Still Sell 43202.47 122.00 151.32 0.28
## 5 Warning Sell 93750.24 89.68 91.43 0.10
## 6 Still Buy 26270.00 126.78 164.30 0.48
## AvgMOTurnoverRatio IDXSector IDXIndustry
## 1 0.16 Infrastruktur Konstruksi Bangunan
## 2 0.14 Keuangan Bank
## 3 0.04 Perindustrian Perusahaan Holding Multi-sektor
## 4 0.33 Energi Produksi Batu Bara
## 5 0.10 Kesehatan Farmasi
## 6 0.71 Barang Baku Logam & Mineral Lainnya
## Candle MA200
## 1 Hammer - Inverted Below MA200
## 2 Hammer - Inverted Below MA200
## 3 Black Candle Below MA200
## 4 Marubozu - Opening Black Above MA200
## 5 Black Candle Above MA200
## 6 Black Candle Below MA200
# value : SO, Ch1D, Ch5D, Ch20D, YTDRet, ChTurnover, KairiMABB20, KairiMABB60, KairiMABB200, BB, Bandwidth, F1D, F2D, F1Wk, F1Mo,KairiMA20, KairiMA60, KairiMA200, MA20Direction, MA60Direction, MA200Direction
# Discrete : Ticker, Trend, SOSignal, Volume, AvgCondition, RCTrend, RCMomentum, RCTrendSignal, RCMomentumSignal, PriceVolumeCond, MA200
TPT.value <- TPT %>%
select(c("SO", "Ch1D", "Ch5D", "Ch20D", "YTDRet", "ChTurnover", "KairiMABB20", "KairiMABB60", "KairiMABB200", "BB", "Bandwidth", "F1D", "F2D", "F1Wk", "F1Mo","KairiMA20", "KairiMA60", "KairiMA200", "MA20Direction", "MA60Direction", "MA200Direction"))
TPT.Discrete <- TPT %>%
select(c("Trend", "SOSignal", "Volume", "AvgCondition", "RCTrend", "RCMomentum", "RCTrendSignal", "RCMomentumSignal", "PriceVolumeCond", "MA200"))
library(DataExplorer)
##
## Attaching package: 'DataExplorer'
## The following object is masked from 'package:expss':
##
## split_columns
plot_intro(TPT)
plot_intro(TPT.Discrete)
plot_intro(TPT.value)
plot_missing(TPT)
plot_missing(TPT.Discrete)
plot_missing(TPT.value)
plot_bar(TPT.Discrete)
plot_histogram(TPT.value)
single.stock <- "JSMR"
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Close)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Ch1D, .smooth = F)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_seasonal_diagnostics(DateTime, Ch1D, .feature_set = "wday.lbl")
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_stl_diagnostics(DateTime, Close, .feature_set = c("observed", "season", "trend"))
## .date_var is missing. Using: DateTime
## frequency = 5 observations per 1 week
## trend = 65 observations per 3 months
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_stl_diagnostics(DateTime, Ch1D, .feature_set = c("observed", "season", "trend"))
## .date_var is missing. Using: DateTime
## frequency = 5 observations per 1 week
## trend = 65 observations per 3 months
TPT.IDX %>%
filter(Ticker == single.stock) %>%
arrange(DateTime) %>%
select(DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_acf_diagnostics(DateTime, Ch1D, .lags = 20)
## .date_var is missing. Using: DateTime
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## Please use `gather()` instead.
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM")) %>%
arrange(Ticker, DateTime) %>%
select(Ticker, DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
plot_time_series(DateTime, Close, .facet_vars = Ticker)
## .date_var is missing. Using: DateTime
TPT.IDX %>%
filter(Ticker %in% c("ASII", "TLKM")) %>%
arrange(Ticker, DateTime) %>%
select(Ticker, DateTime, Close, Ch1D) %>%
filter_by_time(.start_date = "2021-12-31") %>%
pivot_wider(names_from = Ticker, values_from = c(Close, Ch1D)) %>%
drop_na() %>%
mutate(across(Close_ASII:Ch1D_TLKM, .fns = standardize_vec)) %>%
pivot_longer(Close_ASII:Ch1D_TLKM) %>%
filter(name == c("Close_ASII", "Close_TLKM")) %>%
plot_time_series(DateTime, value, .color_var = name, .smooth = FALSE)
## .date_var is missing. Using: DateTime
## Standardization Parameters
## mean: 6481.43939393939
## standard deviation: 571.004835083707
## Standardization Parameters
## mean: 4360.65656565657
## standard deviation: 199.921490256345
## Standardization Parameters
## mean: 0.0995454545454545
## standard deviation: 1.8916547413204
## Standardization Parameters
## mean: 0.0544444444444444
## standard deviation: 1.5664526980645