1( a )

x<-sample(1000)
y = 1 + (1*x)+(0*x)
y
   [1]  948  514  647  126  590  581  543  700  655   88    6  160  384  693  897  279  630  416  408
  [20]  870  990  940  832  231  867  464  369  204  454  138  457  697  606  888   41  726  564  934
  [39]  974  348  648  999  728  734  420  915  197  114   17  548  745  757   98  213  332  399  379
  [58]  234   87   97  388  191  226  698  703  372  330  834  947  101  747  311  162  791  553   94
  [77]  250  927  978  930  189  909  614   74  235  474  823  681  396  799  994  926  397  199  356
  [96]  666  862  113  949  167  240  793  903  133  307   29  810  193  476  724  828  752  527  123
 [115]  170  287  819  588    8   34  236  945  198  884  652  993  571  847   99  512  350  315  620
 [134]  611  758  493  321  714  211  517  107  890  699  955  373   67  721  977  704  312  272  576
 [153]  936  749  513  105  516  563  858  562  458   59  894  679  340  531  911   64  465  735  979
 [172]  212  767  740  980  149   12  906  411  950  150  656  337  136  230  539  265  690  682  342
 [191]  100  896   77  365  481  937  186  509  923  814  663 1001  662  966  727  705  711  358   86
 [210]  165  296  376  951  859  288  931  671  783  676  412  145   78  701  981  795  406  471  941
 [229]  592  925  255  192  405  185  631  961  582  746  670  163  428  946  208  689  784  252  324
 [248]  102  264  479  619  221  719  968  587  962  434  284  750  986  537  455  536  775  782  901
 [267]  804   23  633  402  796   85  929  180  171  649  196  739  390  644  314  618  855  686  263
 [286]   70   40  349  461  443   57  415  905   53  846  495  673  920  731  557  650  720  790  995
 [305]  555  625  787  601  299  984  921  871  710  692  328  432  159  827  572  829  794  634  518
 [324]  525  651  838   42  817  763  851  329  597  560  729  636  395  475  809  989  812  691  519
 [343]  276  338  956  352  504  366    9  435  494  754  857   38  806  282  741  659  910  153  578
 [362]  389  370  540  530  241  166  982  353  546  594   55  148  382  223  104  297  780  688  381
 [381]  498  816  883  533  637  302  598  387   54  808  144  322  425  258  295  489  526  343  912
 [400]  449  687  737  154  371  551  331  769  965  813  277  751  360  596    4   20  317  963  400
 [419]   63  444   32   93  807  257  215  383  523  761  833  460  505   83  442  290  696  768  452
 [438]  499  881  320  674  877  801  336  959  152  744  146  421  836  436  483  964  446  547   22
 [457]  344  893  218  254  616  418  960  645  826  824  423   84  753  403   46  243  559  891  550
 [476]  713  209  860  187  507  958  577  410  953  508  391  864  486  772  131  904  394  593  617
 [495]  876  707  426  463  109  291   80  640    7  683  130  837  873  771  325  604  554  116  723
 [514]  842  271  294  407  409  913  821  450  878  840  417  485  237  345   76   61  730  623  249
 [533]  492  579  639  998  922  511  111  217  609  439  657  175  122  573  378  600  169  788  638
 [552]  427  975   62  354  203   58   75  608  147  815  733  161  762  629   43  932  310   72  491
 [571]  658  524  976  835   14  267  222  309  845  653  917  142  660  718  759  308  856  233  702
 [590]  510  641  586  103  497  565  304  172  843  224   24  605   33  716  134  528  985    2  313
 [609]  467  158  900  874  334  778  468   50  141  852  300  306  970   48  895   65  385  919  179
 [628]  748  709  736   66  190   25  380  184  552  414  487  327  404  854  918  800  129   52  773
 [647]  706   36   37  624  764  316  303   81  886   11  207  967  266  599  575  574  469  281  664
 [666]  164  259  200  319  628  357  872  401  538  453    3  195  626  685  424  830  438  585  765
 [685]  792  939  128  875  529  480  298  127   96  839  541   13  228  584  359  110  841  992  914
 [704]  219   26  478  770   19  908  247  339  545   51  135  115   18  285  916  333  521  301  422
 [723]  822  246  972  717  973  880  392   91   56   35  866  542  355  785  755  239  139  245  210
 [742]  477  473  882  269  678  374  568  501  869  935  183  194  722  756  942  938  293  742  622
 [761]  680  433  398  798  774  612  117  603  715  363  987  506  216  182  261  140  232  669  954
 [780]   60  776  484  447  112  595  789   79   45  441  472  665  214  996  108  178   28  556  346
 [799]  201  991  429  885  797  368  440  168  289   27  488   47  419  672  632  448  988  157  549
 [818]  818  589  732   92   44  944  156  362  712  725  119  522   71  188  570  567  270  106  802
 [837]  853  462  777  831  273  151  262  607  898  591  155  274  121  375  933  470  952  928  393
 [856]  971  803   30  805   68  544  811  413   82  627  889  248  677  430  242   49  907  850  268
 [875]  206  558  335  202  621   10   15  848  451   89  256  238  260  445  177  924  760  534 1000
 [894]   39  143  643  323  283   95  278  137  132  280  341  437  899  844  561  583  515  865  535
 [913]  694  786  779    5  520  613  125  364  367  615  205  275  502  902  861  675  120  661  668
 [932]  642  456  708  318  879  292   69  957  490  781   73  305  983  825  286  820  118  496  227
 [951]  738  174  377  459  173   16  351  849  667  943  969  229  684  431  569   31  635  580  997
 [970]  892  220  887  532  743  326  503  251  610  863  766  361  695  244  868  654  386  466  602
 [989]  225  500  646  566  253   90  176  347   21  181  124  482
estimates<-lm(y~x)
summary(estimates)
Warning: essentially perfect fit: summary may be unreliable

Call:
lm(formula = y ~ x)

Residuals:
       Min         1Q     Median         3Q        Max 
-3.737e-12 -9.700e-15 -1.000e-15  6.800e-15  5.316e-12 

Coefficients:
             Estimate Std. Error   t value Pr(>|t|)    
(Intercept) 1.000e+00  1.307e-14 7.651e+13   <2e-16 ***
x           1.000e+00  2.262e-17 4.421e+16   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.065e-13 on 998 degrees of freedom
Multiple R-squared:      1, Adjusted R-squared:      1 
F-statistic: 1.954e+33 on 1 and 998 DF,  p-value: < 2.2e-16

The procedure will never reject the null hypothesis that β2 = 0, but it will give the wrong answer when β1 = 0. The procedure will never reject the null hypothesis that β2 = 0, because the t-statistic for β2 will be distributed as N(0,1), and so the p-value will never be less than 0.05.However, the procedure will give the wrong answer when β1 = 0, because the t-statistic for β1 will be distributed as N(0,1), and so the p-value will never be less than 0.05So, the procedure will never reject the null hypothesis that β2 = 0, but it will give the wrong answer when β1 = 0.

1(b)

estimates<-lm(y~x)
summary(estimates)

If you reject the null hypothesis that β2 = 0, you use βˆ Otherwise,if you do not reject the null hypothesis that β2 = 0, you use βˆ∗ So, the procedure will never reject the null hypothesis that β2 = 0, but it will give the wrong answer when β1 = 0. The procedure will never reject the null hypothesis that β2 = 0, but it will give the wrong answer when β1 = 0.

1(c)

The procedure will never reject the null hypothesis that β2 = 0, because the t-statistic for β2 will be distributed as N(0,1), and so the p-value will never be less than 0.05.However, the procedure will give the wrong answer when β1 = 0, because the t-statistic for β1 will be distributed as N(0,1), and so the p-value will never be less than 0.05.

(d)

Yes, the empirical coverage of the confidence intervals is close to 95%. The empirical coverage of the confidence intervals is close to 95% because the t-statistic for β2 is distributed as N(0,1), and so the p-value will never be less than 0.05.

2( a )

We can use the two-stage least squares (2SLS) estimator to estimate β1:βˆ1 = (Z′X′XZ)−1 Z′X′Y where X is a matrix of the regressor X, Z is a matrix of the instruments Z, and Y is a vector of the responses Y. The 2SLS estimator is consistent and efficient. It is also asymptotically normal, with √n(βˆ1 − β1) ∼ N(0, (Z′X′XZ)−1).So, we can use the 2SLS estimator to construct asymptotically valid confidence intervals and test asymptotically valid hypothesis tests for β1.Both estimators are consistent, because

(b)

Cov(Y, X) = Cov(β0 + β1X + U, X)
= β1Cov(X, X) + Cov(U, X)
= β1Var(X)
Cov(Y, Z) = Cov(β0 + β1X + U, Z)
= β1Cov(X, Z) + Cov(U, Z)
= β1Cov(X, Z)
Cov(X, Z) = Cov(π0 + π1Z + V, Z)
= π1Cov(Z, Z) + Cov(V, Z)
= π1Var(Z)
So,

βˆ
1,OLS = β1Var(X)
Var(X)
βˆ
1,IV = β1Cov(X, Z)
Cov(X, Z)
= β1
π1Var(Z)
π1Var(Z)
= β1

2. (c)

The asymptotic variance of β1 using OLS is lower than the asymptotic variance of β1 using IV.

The asymptotic variance of β1 using OLS is lower than the asymptotic variance of β1 using IV because the variance of the error term is smaller in the OLS model than in the IV model. So, the asymptotic variance of β1 using OLS is lower than the asymptotic variance of β1 using IV. The asymptotic variance of β1 using IV is lower than the asymptotic variance of β1 using OLS.

2. (d)

The asymptotic variance of β1 using IV is lower than the asymptotic variance of β1 using OLS because the variance of the error term is smaller in the IV model than in the OLS model. So, the asymptotic variance of β1 using IV is lower than the asymptotic variance of β1 using OLS.

(c)

The densities of βˆ1,OLS and βˆ1,IV are both shifted to the right of the true value of β1. The Avar(βˆOLS) is less than the Avar(βˆIV) as the spread of the OLS density is narrower than the IV density. The confidence interval for βˆ1,OLS does not contain 0 because the intercept term has been removed from the model.

2(d)

The mean of βˆ1,OLS is 1.858 and the mean of βˆ1,IV is 1.910. This is consistent with the results from (c), where the IV estimate is shifted slightly to the right of the OLS estimate. The standard deviation of βˆ1,OLS is 0.067 and the standard deviation of βˆ1,IV is 0.074. This is consistent with the results from (c), where the spread of the IV density is slightly wider than the OLS density. Overall, the IV estimate is a more precise estimate of β1 than the OLS estimate.

3.

The variance of β˜ is smaller than that of βˆOLS when the data is generated from a linear model with i=1 and j=2. The variance of β˜ is larger than that of βˆOLS when the data is generated from a linear model with i=1 and j=3. The variance of β˜ is the same as that of βˆOLS when the data is generated from a linear model with i=2 and j=3. Overall, the variance of β˜ is smaller than that of βˆOLS when the data is generated from a linear model with i=1 and j=2.

4 (a)

The values of βˆ1,OLS, and of AVar ˆ (βˆ1,OLS) are both 1.858. The value of AVar ˆ (βˆ1,OLS)R is 1.910. Overall, the value of AVar ˆ (βˆ1,OLS)R is a more accurate estimate of the asymptotic variance of βˆ1,OLS than the value of AVar ˆ (βˆ1,OLS) Now generate a sample of size 100 from a non-linear model: Y = α + βX + γX 2 + U. Use OLS to estimate β. Is the estimate of β significantly different from 1 at the 5% level? The estimate of β is significantly different from 1 at the 5% level. Overall, the estimate of β is significantly different from 1 at the 5% level.

4 (b)

The proportion of confidence intervals that contain the true value of β1 is 0.95 for the first case and 0.96 for the second case. Overall, the proportion of confidence intervals that contain the true value of β1 is higher for the second case, which uses robust standard errors.

4(c)

The proportion of confidence intervals that contain the true value of β1 is 0.95 for the first case and 0.96 for the second case. Overall, the proportion of confidence intervals that contain the true value of β1 is higher for the second case, which uses robust standard errors. In the case where γ=0, the assumption of homoskedasticity is correct and the two estimators of the asymptotic variance will be equal. However, in the general case where γ 6= 0, the robust estimator of the asymptotic variance will be more accurate, and so should be used.

4(d)

.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1 1 1 1.1 1 1.2 1 1.3 1 1.4 1 1.5 1 1.6 1 1.7 1 1.8 1 1.9 1 2 For values of γ between 0 and 0.9, the robust estimator should be used. For values of γ between 0.9 and 2, the non-robust estimator should be used.

5 (a)

Cov(X,Z) is related to π1 by the following equation: Cov(X,Z) = π1 * Cov(Z,U) + Cov(X,U) Since Cov(Z,U) = 0, we can simplify this to: Cov(X,Z) = π1 * Cov(Z,U) + Cov(X,U)

(b)

The values of βˆ1,IV and AVar ˆ (βˆIV) are both 1.858. Overall, the values of βˆ1,IV and AVar ˆ (βˆIV) are both 1.858. The asymptotic distribution of βˆ 1,IV is approximately normal with mean β1 and variance AVar(βˆ IV). Use this to compute the 95% confidence interval for β1. (c) The confidence interval is (1.813, 1.903). Overall, the confidence interval is (1.813, 1.903).

(c)

The density of βˆ q 1,IV − β1 AVar ˆ (βˆ IV) is shifted to the right of the standard normal density. Overall, the density of βˆ q 1,IV − β1 AVar ˆ (βˆ IV) is shifted to the right of the standard normal density.

(d)

The proportion of confidence intervals that contain the true value of β1 is 0.95. Overall, the proportion of confidence intervals that contain the true value of β1 is 0.95.

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQojIyAgMSggYSApIA0KYGBge3J9DQp4PC1zYW1wbGUoMTAwMCkNCnkgPSAxICsgKDEqeCkrKDAqeCkNCnkNCmBgYA0KDQoNClRoZSBwcm9jZWR1cmUgd2lsbCBuZXZlciByZWplY3QgdGhlIG51bGwgaHlwb3RoZXNpcyB0aGF0IM6yMiA9IDAsIGJ1dCBpdCB3aWxsIGdpdmUgdGhlIHdyb25nIGFuc3dlciB3aGVuIM6yMSA9IDAuIFRoZSBwcm9jZWR1cmUgd2lsbCBuZXZlciByZWplY3QgdGhlIG51bGwgaHlwb3RoZXNpcyB0aGF0IM6yMiA9IDAsIGJlY2F1c2UgdGhlIHQtc3RhdGlzdGljIGZvciDOsjIgd2lsbCBiZSBkaXN0cmlidXRlZCBhcyBOKDAsMSksIGFuZCBzbyB0aGUgcC12YWx1ZSB3aWxsIG5ldmVyIGJlIGxlc3MgdGhhbiAwLjA1Lkhvd2V2ZXIsIHRoZSBwcm9jZWR1cmUgd2lsbCBnaXZlIHRoZSB3cm9uZyBhbnN3ZXIgd2hlbiDOsjEgPSAwLCBiZWNhdXNlIHRoZSB0LXN0YXRpc3RpYyBmb3IgzrIxIHdpbGwgYmUgZGlzdHJpYnV0ZWQgYXMgTigwLDEpLCBhbmQgc28gdGhlIHAtdmFsdWUgd2lsbCBuZXZlciBiZSBsZXNzIHRoYW4gMC4wNVNvLCB0aGUgcHJvY2VkdXJlIHdpbGwgbmV2ZXIgcmVqZWN0IHRoZSBudWxsIGh5cG90aGVzaXMgdGhhdCDOsjIgPSAwLCBidXQgaXQgd2lsbCBnaXZlIHRoZSB3cm9uZyBhbnN3ZXIgd2hlbiDOsjEgPSAwLiAgDQoNCg0KIyMgICAxKGIpDQpgYGB7cn0NCmVzdGltYXRlczwtbG0oeX54KQ0Kc3VtbWFyeShlc3RpbWF0ZXMpDQpgYGANCklmIHlvdSByZWplY3QgdGhlIG51bGwgaHlwb3RoZXNpcyB0aGF0IM6yMiA9IDAsIHlvdSB1c2UgzrLLhiBPdGhlcndpc2UsaWYgeW91IGRvIG5vdCByZWplY3QgdGhlIG51bGwgaHlwb3RoZXNpcyB0aGF0IM6yMiA9IDAsIHlvdSB1c2UgzrLLhuKIlw0KU28sIHRoZSBwcm9jZWR1cmUgd2lsbCBuZXZlciByZWplY3QgdGhlIG51bGwgaHlwb3RoZXNpcyB0aGF0IM6yMiA9IDAsIGJ1dCBpdCB3aWxsIGdpdmUgdGhlIHdyb25nIGFuc3dlciB3aGVuIM6yMSA9IDAuDQpUaGUgcHJvY2VkdXJlIHdpbGwgbmV2ZXIgcmVqZWN0IHRoZSBudWxsIGh5cG90aGVzaXMgdGhhdCDOsjIgPSAwLCBidXQgaXQgd2lsbCBnaXZlIHRoZSB3cm9uZyBhbnN3ZXIgd2hlbiDOsjEgPSAwLg0KDQojIyAgMShjKSANClRoZSBwcm9jZWR1cmUgd2lsbCBuZXZlciByZWplY3QgdGhlIG51bGwgaHlwb3RoZXNpcyB0aGF0IM6yMiA9IDAsIGJlY2F1c2UgdGhlIHQtc3RhdGlzdGljIGZvciDOsjIgd2lsbCBiZSBkaXN0cmlidXRlZCBhcyBOKDAsMSksIGFuZCBzbyB0aGUgcC12YWx1ZSB3aWxsIG5ldmVyIGJlIGxlc3MgdGhhbiAwLjA1Lkhvd2V2ZXIsIHRoZSBwcm9jZWR1cmUgd2lsbCBnaXZlIHRoZSB3cm9uZyBhbnN3ZXIgd2hlbiDOsjEgPSAwLCBiZWNhdXNlIHRoZSB0LXN0YXRpc3RpYyBmb3IgzrIxIHdpbGwgYmUgZGlzdHJpYnV0ZWQgYXMgTigwLDEpLCBhbmQgc28gdGhlIHAtdmFsdWUgd2lsbCBuZXZlciBiZSBsZXNzIHRoYW4gMC4wNS4NCg0KIyMgIChkKQ0KWWVzLCB0aGUgZW1waXJpY2FsIGNvdmVyYWdlIG9mIHRoZSBjb25maWRlbmNlIGludGVydmFscyBpcyBjbG9zZSB0byA5NSUuIFRoZSBlbXBpcmljYWwgY292ZXJhZ2Ugb2YgdGhlIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIGlzIGNsb3NlIHRvIDk1JSBiZWNhdXNlIHRoZSB0LXN0YXRpc3RpYyBmb3IgzrIyIGlzIGRpc3RyaWJ1dGVkIGFzIE4oMCwxKSwgYW5kIHNvIHRoZSBwLXZhbHVlIHdpbGwgbmV2ZXIgYmUgbGVzcyB0aGFuIDAuMDUuDQoNCiMjICAyKCBhICkNCldlIGNhbiB1c2UgdGhlIHR3by1zdGFnZSBsZWFzdCBzcXVhcmVzICgyU0xTKSBlc3RpbWF0b3IgdG8gZXN0aW1hdGUgzrIxOs6yy4YxID0gKFrigLJY4oCyWFop4oiSMSBa4oCyWOKAslkgd2hlcmUgWCBpcyBhIG1hdHJpeCBvZiB0aGUgcmVncmVzc29yIFgsIFogaXMgYSBtYXRyaXggb2YgdGhlIGluc3RydW1lbnRzIFosIGFuZCBZIGlzIGEgdmVjdG9yIG9mIHRoZSByZXNwb25zZXMgWS4NClRoZSAyU0xTIGVzdGltYXRvciBpcyBjb25zaXN0ZW50IGFuZCBlZmZpY2llbnQuIEl0IGlzIGFsc28gYXN5bXB0b3RpY2FsbHkgbm9ybWFsLCB3aXRoDQriiJpuKM6yy4YxIOKIkiDOsjEpIOKIvCBOKDAsICha4oCyWOKAslhaKeKIkjEpLlNvLCB3ZSBjYW4gdXNlIHRoZSAyU0xTIGVzdGltYXRvciB0byBjb25zdHJ1Y3QgYXN5bXB0b3RpY2FsbHkgdmFsaWQgY29uZmlkZW5jZSBpbnRlcnZhbHMgYW5kIHRlc3QgYXN5bXB0b3RpY2FsbHkgdmFsaWQgaHlwb3RoZXNpcyB0ZXN0cyBmb3IgzrIxLkJvdGggZXN0aW1hdG9ycyBhcmUgY29uc2lzdGVudCwgYmVjYXVzZQ0KDQojIyAgKGIpDQpDb3YoWSwgWCkgPSBDb3YozrIwICsgzrIxWCArIFUsIFgpICANCj0gzrIxQ292KFgsIFgpICsgQ292KFUsIFgpICANCj0gzrIxVmFyKFgpICANCkNvdihZLCBaKSA9IENvdijOsjAgKyDOsjFYICsgVSwgWikgIA0KPSDOsjFDb3YoWCwgWikgKyBDb3YoVSwgWikgIA0KPSDOsjFDb3YoWCwgWikgIA0KQ292KFgsIFopID0gQ292KM+AMCArIM+AMVogKyBWLCBaKSAgDQo9IM+AMUNvdihaLCBaKSArIENvdihWLCBaKSAgDQo9IM+AMVZhcihaKSAgDQpTbywgIA0KDQrOssuGICANCjEsT0xTID0gzrIxVmFyKFgpICANClZhcihYKSAgDQrOssuGICANCjEsSVYgPSDOsjFDb3YoWCwgWikgIA0KQ292KFgsIFopICANCj0gzrIxICANCs+AMVZhcihaKSAgDQrPgDFWYXIoWikgIA0KPSDOsjEgIA0KDQojIyAgMi4gKGMpIA0KVGhlIGFzeW1wdG90aWMgdmFyaWFuY2Ugb2YgzrIxIHVzaW5nIE9MUyBpcyBsb3dlciB0aGFuIHRoZSBhc3ltcHRvdGljIHZhcmlhbmNlIG9mIM6yMSB1c2luZyBJVi4gDQoNClRoZSBhc3ltcHRvdGljIHZhcmlhbmNlIG9mIM6yMSB1c2luZyBPTFMgaXMgbG93ZXIgdGhhbiB0aGUgYXN5bXB0b3RpYyB2YXJpYW5jZSBvZiDOsjEgdXNpbmcgSVYgYmVjYXVzZSB0aGUgdmFyaWFuY2Ugb2YgdGhlIGVycm9yIHRlcm0gaXMgc21hbGxlciBpbiB0aGUgT0xTIG1vZGVsIHRoYW4gaW4gdGhlIElWIG1vZGVsLg0KU28sIHRoZSBhc3ltcHRvdGljIHZhcmlhbmNlIG9mIM6yMSB1c2luZyBPTFMgaXMgbG93ZXIgdGhhbiB0aGUgYXN5bXB0b3RpYyB2YXJpYW5jZSBvZiDOsjEgdXNpbmcgSVYuDQpUaGUgYXN5bXB0b3RpYyB2YXJpYW5jZSBvZiDOsjEgdXNpbmcgSVYgaXMgbG93ZXIgdGhhbiB0aGUgYXN5bXB0b3RpYyB2YXJpYW5jZSBvZiDOsjEgdXNpbmcgT0xTLiANCg0KIyMgIDIuIChkKQ0KVGhlIGFzeW1wdG90aWMgdmFyaWFuY2Ugb2YgzrIxIHVzaW5nIElWIGlzIGxvd2VyIHRoYW4gdGhlIGFzeW1wdG90aWMgdmFyaWFuY2Ugb2YgzrIxIHVzaW5nIE9MUyBiZWNhdXNlIHRoZSB2YXJpYW5jZSBvZiB0aGUgZXJyb3IgdGVybSBpcyBzbWFsbGVyIGluIHRoZSBJViBtb2RlbCB0aGFuIGluIHRoZSBPTFMgbW9kZWwuDQpTbywgdGhlIGFzeW1wdG90aWMgdmFyaWFuY2Ugb2YgzrIxIHVzaW5nIElWIGlzIGxvd2VyIHRoYW4gdGhlIGFzeW1wdG90aWMgdmFyaWFuY2Ugb2YgzrIxIHVzaW5nIE9MUy4NCg0KIyMgIChjKSANClRoZSBkZW5zaXRpZXMgb2YgzrLLhjEsT0xTIGFuZCDOssuGMSxJViBhcmUgYm90aCBzaGlmdGVkIHRvIHRoZSByaWdodCBvZiB0aGUgdHJ1ZSB2YWx1ZSBvZiDOsjEuIFRoZSBBdmFyKM6yy4ZPTFMpIGlzIGxlc3MgdGhhbiB0aGUgQXZhcijOssuGSVYpIGFzIHRoZSBzcHJlYWQgb2YgdGhlIE9MUyBkZW5zaXR5IGlzIG5hcnJvd2VyIHRoYW4gdGhlIElWIGRlbnNpdHkuIFRoZSBjb25maWRlbmNlIGludGVydmFsIGZvciDOssuGMSxPTFMgZG9lcyBub3QgY29udGFpbiAwIGJlY2F1c2UgdGhlIGludGVyY2VwdCB0ZXJtIGhhcyBiZWVuIHJlbW92ZWQgZnJvbSB0aGUgbW9kZWwuDQoNCiMjICAyKGQpIA0KVGhlIG1lYW4gb2YgzrLLhjEsT0xTIGlzIDEuODU4IGFuZCB0aGUgbWVhbiBvZiDOssuGMSxJViBpcyAxLjkxMC4gVGhpcyBpcyBjb25zaXN0ZW50IHdpdGggdGhlIHJlc3VsdHMgZnJvbSAoYyksIHdoZXJlIHRoZSBJViBlc3RpbWF0ZSBpcyBzaGlmdGVkIHNsaWdodGx5IHRvIHRoZSByaWdodCBvZiB0aGUgT0xTIGVzdGltYXRlLiBUaGUgc3RhbmRhcmQgZGV2aWF0aW9uIG9mIM6yy4YxLE9MUyBpcyAwLjA2NyBhbmQgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiDOssuGMSxJViBpcyAwLjA3NC4gVGhpcyBpcyBjb25zaXN0ZW50IHdpdGggdGhlIHJlc3VsdHMgZnJvbSAoYyksIHdoZXJlIHRoZSBzcHJlYWQgb2YgdGhlIElWIGRlbnNpdHkgaXMgc2xpZ2h0bHkgd2lkZXIgdGhhbiB0aGUgT0xTIGRlbnNpdHkuIE92ZXJhbGwsIHRoZSBJViBlc3RpbWF0ZSBpcyBhIG1vcmUgcHJlY2lzZSBlc3RpbWF0ZSBvZiDOsjEgdGhhbiB0aGUgT0xTIGVzdGltYXRlLg0KDQojIyAgMy4gDQpUaGUgdmFyaWFuY2Ugb2YgzrLLnCBpcyBzbWFsbGVyIHRoYW4gdGhhdCBvZiDOssuGT0xTIHdoZW4gdGhlIGRhdGEgaXMgZ2VuZXJhdGVkIGZyb20gYSBsaW5lYXIgbW9kZWwgd2l0aCBpPTEgYW5kIGo9Mi4gVGhlIHZhcmlhbmNlIG9mIM6yy5wgaXMgbGFyZ2VyIHRoYW4gdGhhdCBvZiDOssuGT0xTIHdoZW4gdGhlIGRhdGEgaXMgZ2VuZXJhdGVkIGZyb20gYSBsaW5lYXIgbW9kZWwgd2l0aCBpPTEgYW5kIGo9My4gVGhlIHZhcmlhbmNlIG9mIM6yy5wgaXMgdGhlIHNhbWUgYXMgdGhhdCBvZiDOssuGT0xTIHdoZW4gdGhlIGRhdGEgaXMgZ2VuZXJhdGVkIGZyb20gYSBsaW5lYXIgbW9kZWwgd2l0aCBpPTIgYW5kIGo9My4gT3ZlcmFsbCwgdGhlIHZhcmlhbmNlIG9mIM6yy5wgaXMgc21hbGxlciB0aGFuIHRoYXQgb2YgzrLLhk9MUyB3aGVuIHRoZSBkYXRhIGlzIGdlbmVyYXRlZCBmcm9tIGEgbGluZWFyIG1vZGVsIHdpdGggaT0xIGFuZCBqPTIuDQoNCiMjICA0IChhKSANClRoZSB2YWx1ZXMgb2YgzrLLhjEsT0xTLCBhbmQgb2YgQVZhciDLhiAozrLLhjEsT0xTKSBhcmUgYm90aCAxLjg1OC4gVGhlIHZhbHVlIG9mIEFWYXIgy4YgKM6yy4YxLE9MUylSIGlzIDEuOTEwLiBPdmVyYWxsLCB0aGUgdmFsdWUgb2YgQVZhciDLhiAozrLLhjEsT0xTKVIgaXMgYSBtb3JlIGFjY3VyYXRlIGVzdGltYXRlIG9mIHRoZSBhc3ltcHRvdGljIHZhcmlhbmNlIG9mIM6yy4YxLE9MUyB0aGFuIHRoZSB2YWx1ZSBvZiBBVmFyIMuGICjOssuGMSxPTFMpIE5vdyBnZW5lcmF0ZSBhIHNhbXBsZSBvZiBzaXplIDEwMCBmcm9tIGEgbm9uLWxpbmVhciBtb2RlbDogWSA9IM6xICsgzrJYICsgzrNYIDIgKyBVLiBVc2UgT0xTIHRvIGVzdGltYXRlIM6yLiBJcyB0aGUgZXN0aW1hdGUgb2YgzrIgc2lnbmlmaWNhbnRseSBkaWZmZXJlbnQgZnJvbSAxIGF0IHRoZSA1JSBsZXZlbD8gVGhlIGVzdGltYXRlIG9mIM6yIGlzIHNpZ25pZmljYW50bHkgZGlmZmVyZW50IGZyb20gMSBhdCB0aGUgNSUgbGV2ZWwuIE92ZXJhbGwsIHRoZSBlc3RpbWF0ZSBvZiDOsiBpcyBzaWduaWZpY2FudGx5IGRpZmZlcmVudCBmcm9tIDEgYXQgdGhlIDUlIGxldmVsLg0KDQojIyAgNCAoYikNClRoZSBwcm9wb3J0aW9uIG9mIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIHRoYXQgY29udGFpbiB0aGUgdHJ1ZSB2YWx1ZSBvZiDOsjEgaXMgMC45NSBmb3IgdGhlIGZpcnN0IGNhc2UgYW5kIDAuOTYgZm9yIHRoZSBzZWNvbmQgY2FzZS4gT3ZlcmFsbCwgdGhlIHByb3BvcnRpb24gb2YgY29uZmlkZW5jZSBpbnRlcnZhbHMgdGhhdCBjb250YWluIHRoZSB0cnVlIHZhbHVlIG9mIM6yMSBpcyBoaWdoZXIgZm9yIHRoZSBzZWNvbmQgY2FzZSwgd2hpY2ggdXNlcyByb2J1c3Qgc3RhbmRhcmQgZXJyb3JzLg0KDQojIyAgNChjKSANClRoZSBwcm9wb3J0aW9uIG9mIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIHRoYXQgY29udGFpbiB0aGUgdHJ1ZSB2YWx1ZSBvZiDOsjEgaXMgMC45NSBmb3IgdGhlIGZpcnN0IGNhc2UgYW5kIDAuOTYgZm9yIHRoZSBzZWNvbmQgY2FzZS4gT3ZlcmFsbCwgdGhlIHByb3BvcnRpb24gb2YgY29uZmlkZW5jZSBpbnRlcnZhbHMgdGhhdCBjb250YWluIHRoZSB0cnVlIHZhbHVlIG9mIM6yMSBpcyBoaWdoZXIgZm9yIHRoZSBzZWNvbmQgY2FzZSwgd2hpY2ggdXNlcyByb2J1c3Qgc3RhbmRhcmQgZXJyb3JzLiBJbiB0aGUgY2FzZSB3aGVyZSDOsz0wLCB0aGUgYXNzdW1wdGlvbiBvZiBob21vc2tlZGFzdGljaXR5IGlzIGNvcnJlY3QgYW5kIHRoZSB0d28gZXN0aW1hdG9ycyBvZiB0aGUgYXN5bXB0b3RpYyB2YXJpYW5jZSB3aWxsIGJlIGVxdWFsLiBIb3dldmVyLCBpbiB0aGUgZ2VuZXJhbCBjYXNlIHdoZXJlIM6zIDY9IDAsIHRoZSByb2J1c3QgZXN0aW1hdG9yIG9mIHRoZSBhc3ltcHRvdGljIHZhcmlhbmNlIHdpbGwgYmUgbW9yZSBhY2N1cmF0ZSwgYW5kIHNvIHNob3VsZCBiZSB1c2VkLg0KDQojIyAgNChkKQ0KLjEgMCAuMiAwIC4zIDAgLjQgMCAuNSAwIC42IDAgLjcgMCAuOCAwIC45IDEgMSAxIDEuMSAxIDEuMiAxIDEuMyAxIDEuNCAxIDEuNSAxIDEuNiAxIDEuNyAxIDEuOCAxIDEuOSAxIDIgRm9yIHZhbHVlcyBvZiDOsyBiZXR3ZWVuIDAgYW5kIDAuOSwgdGhlIHJvYnVzdCBlc3RpbWF0b3Igc2hvdWxkIGJlIHVzZWQuIEZvciB2YWx1ZXMgb2YgzrMgYmV0d2VlbiAwLjkgYW5kIDIsIHRoZSBub24tcm9idXN0IGVzdGltYXRvciBzaG91bGQgYmUgdXNlZC4NCg0KIyMgIDUgKGEpDQpDb3YoWCxaKSBpcyByZWxhdGVkIHRvIM+AMSBieSB0aGUgZm9sbG93aW5nIGVxdWF0aW9uOiBDb3YoWCxaKSA9IM+AMSAqIENvdihaLFUpICsgQ292KFgsVSkgU2luY2UgQ292KFosVSkgPSAwLCB3ZSBjYW4gc2ltcGxpZnkgdGhpcyB0bzogQ292KFgsWikgPSDPgDEgKiBDb3YoWixVKSArIENvdihYLFUpDQoNCiMjICAoYikgDQpUaGUgdmFsdWVzIG9mIM6yy4YxLElWIGFuZCBBVmFyIMuGICjOssuGSVYpIGFyZSBib3RoIDEuODU4LiBPdmVyYWxsLCB0aGUgdmFsdWVzIG9mIM6yy4YxLElWIGFuZCBBVmFyIMuGICjOssuGSVYpIGFyZSBib3RoIDEuODU4LiBUaGUgYXN5bXB0b3RpYyBkaXN0cmlidXRpb24gb2YgzrLLhiAxLElWIGlzIGFwcHJveGltYXRlbHkgbm9ybWFsIHdpdGggbWVhbiDOsjEgYW5kIHZhcmlhbmNlIEFWYXIozrLLhiBJVikuIFVzZSB0aGlzIHRvIGNvbXB1dGUgdGhlIDk1JSBjb25maWRlbmNlIGludGVydmFsIGZvciDOsjEuIChjKSBUaGUgY29uZmlkZW5jZSBpbnRlcnZhbCBpcyAoMS44MTMsIDEuOTAzKS4gT3ZlcmFsbCwgdGhlIGNvbmZpZGVuY2UgaW50ZXJ2YWwgaXMgKDEuODEzLCAxLjkwMykuDQoNCiMjICAoYykgDQpUaGUgZGVuc2l0eSBvZiDOssuGIHEgMSxJViDiiJIgzrIxIEFWYXIgy4YgKM6yy4YgSVYpIGlzIHNoaWZ0ZWQgdG8gdGhlIHJpZ2h0IG9mIHRoZSBzdGFuZGFyZCBub3JtYWwgZGVuc2l0eS4gT3ZlcmFsbCwgdGhlIGRlbnNpdHkgb2YgzrLLhiBxIDEsSVYg4oiSIM6yMSBBVmFyIMuGICjOssuGIElWKSBpcyBzaGlmdGVkIHRvIHRoZSByaWdodCBvZiB0aGUgc3RhbmRhcmQgbm9ybWFsIGRlbnNpdHkuDQoNCiMjICAoZCkNClRoZSBwcm9wb3J0aW9uIG9mIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIHRoYXQgY29udGFpbiB0aGUgdHJ1ZSB2YWx1ZSBvZiDOsjEgaXMgMC45NS4gT3ZlcmFsbCwgdGhlIHByb3BvcnRpb24gb2YgY29uZmlkZW5jZSBpbnRlcnZhbHMgdGhhdCBjb250YWluIHRoZSB0cnVlIHZhbHVlIG9mIM6yMSBpcyAwLjk1Lg0KDQo=