LIBRARY

library(tmap)
library(sp)
library(raster)
library(spdep)
## Loading required package: spData
## To access larger datasets in this package, install the spDataLarge
## package with: `install.packages('spDataLarge',
## repos='https://nowosad.github.io/drat/', type='source')`
## Loading required package: sf
## Linking to GEOS 3.9.1, GDAL 3.4.3, PROJ 7.2.1; sf_use_s2() is TRUE
library(spData)
library(spatial)
library(spatialreg)
## Loading required package: Matrix
## 
## Attaching package: 'spatialreg'
## The following objects are masked from 'package:spdep':
## 
##     get.ClusterOption, get.coresOption, get.mcOption,
##     get.VerboseOption, get.ZeroPolicyOption, set.ClusterOption,
##     set.coresOption, set.mcOption, set.VerboseOption,
##     set.ZeroPolicyOption
library(rgdal)
## Please note that rgdal will be retired by the end of 2023,
## plan transition to sf/stars/terra functions using GDAL and PROJ
## at your earliest convenience.
## 
## rgdal: version: 1.5-32, (SVN revision 1176)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.4.3, released 2022/04/22
## Path to GDAL shared files: C:/Users/hanik/AppData/Local/R/win-library/4.2/rgdal/gdal
## GDAL binary built with GEOS: TRUE 
## Loaded PROJ runtime: Rel. 7.2.1, January 1st, 2021, [PJ_VERSION: 721]
## Path to PROJ shared files: C:/Users/hanik/AppData/Local/R/win-library/4.2/rgdal/proj
## PROJ CDN enabled: FALSE
## Linking to sp version:1.5-0
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading sp or rgdal.

PETA JATIM

#Input Shp File
spJatim = shapefile("jatim baru.shp")
## Warning in .local(x, ...): .prj file is missing
names(spJatim)
##  [1] "POLY_ID"    "KODE_KAB"   "NAMA_KAB"   "KODE_PROP"  "NAMA_PROP" 
##  [6] "KODE"       "Y"          "X1"         "X2"         "X3"        
## [11] "X4"         "X5"         "X6"         "X7"         "X8"        
## [16] "X9"         "ZX1"        "ZX2"        "ZX3"        "ZX4"       
## [21] "ZX5"        "ZX6"        "ZX7"        "ZX8"        "ZX9"       
## [26] "ZY"         "COVID"      "PNEUMONIA"  "KEMISKINAN" "IPM"       
## [31] "IG"         "NOMOR"
#Menampilkan Peta Jawa Timur
tm_shape(spJatim) + tm_polygons()
## Warning: Currect projection of shape spJatim unknown. Long-lat (WGS84) is
## assumed.

Membuat Pemmbobot Queen

queen.nb=poly2nb(spJatim) #Pembobot queen
queen.listw=nb2listw(queen.nb) #convert nb to listw type
queen.jatim= queen.listw

#PERSAMAAN REGRESI

reg.eq=Y~X1+X2+X3+X4+X5+X6+X7+X8

#OLS

reg.OLS=lm(reg.eq,data=spJatim)
summary(reg.OLS)
## 
## Call:
## lm(formula = reg.eq, data = spJatim)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.056820 -0.013321 -0.002441  0.020950  0.058723 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  2.196e+00  7.576e-01   2.899  0.00707 **
## X1          -1.335e-06  4.420e-06  -0.302  0.76485   
## X2           2.684e-01  1.359e-01   1.975  0.05780 . 
## X3          -4.031e-02  1.525e-01  -0.264  0.79345   
## X4          -2.639e-01  3.166e-01  -0.834  0.41128   
## X5           1.871e-01  3.979e-01   0.470  0.64168   
## X6           1.017e+01  4.677e+00   2.175  0.03791 * 
## X7           2.583e+01  8.658e+00   2.983  0.00574 **
## X8          -2.314e+00  7.685e-01  -3.011  0.00535 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02866 on 29 degrees of freedom
## Multiple R-squared:  0.8558, Adjusted R-squared:  0.816 
## F-statistic: 21.51 on 8 and 29 DF,  p-value: 3.093e-10

#SLX (SCR)

reg.SLX<- lmSLX(reg.eq, data=spJatim, listw=queen.jatim)
summary(reg.SLX)
## 
## Call:
## lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))), 
##     data = as.data.frame(x), weights = weights)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.032528 -0.016371  0.001995  0.012736  0.046155 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  4.508e+00  1.691e+00   2.666  0.01445 * 
## X1           1.459e-06  5.540e-06   0.263  0.79483   
## X2           1.149e-01  2.010e-01   0.572  0.57354   
## X3           9.172e-02  1.577e-01   0.582  0.56692   
## X4          -6.493e-01  3.463e-01  -1.875  0.07476 . 
## X5          -3.516e-01  5.928e-01  -0.593  0.55938   
## X6           1.559e+01  6.142e+00   2.539  0.01911 * 
## X7           3.818e+01  1.116e+01   3.421  0.00257 **
## X8          -2.718e+00  1.097e+00  -2.477  0.02182 * 
## lag.X1      -7.246e-06  1.483e-05  -0.488  0.63028   
## lag.X2      -3.082e-02  2.932e-01  -0.105  0.91728   
## lag.X3       2.523e-01  3.114e-01   0.810  0.42684   
## lag.X4      -1.211e+00  9.401e-01  -1.288  0.21171   
## lag.X5       7.302e-01  1.189e+00   0.614  0.54573   
## lag.X6       1.953e+01  1.199e+01   1.630  0.11807   
## lag.X7      -2.457e+01  2.071e+01  -1.186  0.24875   
## lag.X8      -1.984e+00  1.445e+00  -1.373  0.18409   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02698 on 21 degrees of freedom
## Multiple R-squared:  0.9075, Adjusted R-squared:  0.837 
## F-statistic: 12.88 on 16 and 21 DF,  p-value: 1.883e-07
summary(impacts(reg.SLX))
## Impact measures (SlX, estimable, n-k):
##           Direct      Indirect         Total
## X1  1.459065e-06 -7.246157e-06 -5.787092e-06
## X2  1.149198e-01 -3.082281e-02  8.409699e-02
## X3  9.172361e-02  2.523143e-01  3.440379e-01
## X4 -6.493476e-01 -1.210958e+00 -1.860305e+00
## X5 -3.516444e-01  7.302236e-01  3.785791e-01
## X6  1.559181e+01  1.953278e+01  3.512460e+01
## X7  3.817770e+01 -2.456914e+01  1.360856e+01
## X8 -2.717666e+00 -1.983995e+00 -4.701662e+00
## ========================================================
## Standard errors:
##          Direct     Indirect        Total
## X1 5.539873e-06 1.483425e-05 1.534032e-05
## X2 2.009878e-01 2.932203e-01 2.412908e-01
## X3 1.576647e-01 3.113766e-01 3.623638e-01
## X4 3.463057e-01 9.400714e-01 1.103039e+00
## X5 5.927942e-01 1.189046e+00 1.121541e+00
## X6 6.142045e+00 1.198532e+01 1.508667e+01
## X7 1.115918e+01 2.071073e+01 1.885669e+01
## X8 1.097027e+00 1.444513e+00 1.736561e+00
## ========================================================
## Z-values:
##        Direct   Indirect      Total
## X1  0.2633751 -0.4884748 -0.3772471
## X2  0.5717750 -0.1051182  0.3485297
## X3  0.5817636  0.8103187  0.9494267
## X4 -1.8750703 -1.2881549 -1.6865276
## X5 -0.5931982  0.6141256  0.3375525
## X6  2.5385376  1.6297253  2.3281874
## X7  3.4211923 -1.1863000  0.7216833
## X8 -2.4773013 -1.3734700 -2.7074559
## 
## p-values:
##    Direct     Indirect Total    
## X1 0.79226148 0.62521  0.7059900
## X2 0.56747445 0.91628  0.7274424
## X3 0.56072591 0.41776  0.3424037
## X4 0.06078305 0.19769  0.0916942
## X5 0.55304852 0.53913  0.7357004
## X6 0.01113168 0.10316  0.0199022
## X7 0.00062347 0.23550  0.4704892
## X8 0.01323801 0.16961  0.0067801

#Perhitungan AIC

AIC(reg.SLX)
## [1] -153.2672
AIC(reg.OLS)
## [1] -152.3906

#Perbandingan Model dengan OLS

LR.Sarlm(reg.SLX,reg.OLS) # OLS vs SCR
## 
##  Likelihood ratio for spatial linear models
## 
## data:  
## Likelihood ratio = 16.877, df = 8, p-value = 0.03142
## sample estimates:
## Log likelihood of reg.SLX Log likelihood of reg.OLS 
##                  94.63362                  86.19530

#Perbaikan Model SCR

## Mengambil Matriks Variabel Prediktor dari model OLS
X=model.matrix(reg.OLS)
#Membentuk matriks lag spasial
lagX = create_WX(X,queen.jatim,prefix = "lag")
spJatim2=cbind(spJatim,lagX)
#Membuat model SCR secara manual
reg.SLX2=lm(Y~X1+X2+X3+X4+X5+X6+X7+X8+lag.X4
            +lag.X6,data=spJatim2)
summary(reg.SLX2)
## 
## Call:
## lm(formula = Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + lag.X4 + 
##     lag.X6, data = spJatim2)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.038196 -0.017165  0.000368  0.018216  0.045651 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.699e+00  7.057e-01   3.825 0.000702 ***
## X1          -2.325e-06  4.004e-06  -0.581 0.566334    
## X2           5.075e-02  1.494e-01   0.340 0.736697    
## X3           4.178e-02  1.406e-01   0.297 0.768589    
## X4          -6.389e-01  3.191e-01  -2.003 0.055365 .  
## X5           1.861e-02  3.605e-01   0.052 0.959216    
## X6           1.187e+01  4.722e+00   2.514 0.018217 *  
## X7           3.610e+01  8.453e+00   4.270 0.000216 ***
## X8          -2.884e+00  7.174e-01  -4.020 0.000419 ***
## lag.X4      -8.769e-01  7.801e-01  -1.124 0.270821    
## lag.X6       2.119e+01  7.934e+00   2.670 0.012674 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02562 on 27 degrees of freedom
## Multiple R-squared:  0.8927, Adjusted R-squared:  0.853 
## F-statistic: 22.47 on 10 and 27 DF,  p-value: 1.448e-10
AIC(reg.SLX2)
## [1] -159.6419