Theoretical concept for study

Theoretical concept for study

library(foreign)
data <- read.csv("C:/Users/binht/Dropbox/Hue/data/2022_data_consultant/01 DD 1/Rcode/data2_1.csv")
  1. BMA model
library(BMA)
## Loading required package: survival
## Loading required package: leaps
## Loading required package: robustbase
## 
## Attaching package: 'robustbase'
## The following object is masked from 'package:survival':
## 
##     heart
## Loading required package: inline
## Loading required package: rrcov
## Scalable Robust Estimators with High Breakdown Point (version 1.5-5)
names(data)
## [1] "TAI2group"           "TONG_LYTHUYET"       "C92Caregiver_spouse"
## [4] "C17Smoking_present"  "TONG_KIENTHUCCHUNG"  "PL_THUCHANH"        
## [7] "TONGmMRC"            "TONGCAT"             "TONGYDINH"
data$C17Smoking_present=as.factor(data$C17Smoking_present)
data$PL_THUCHANH=as.factor(data$PL_THUCHANH)
data$C92Caregiver_spouse=as.factor(data$C92Caregiver_spouse)
y=data[,1]
x=data[ ,-1]
bma =bic.glm(x, y, strict = FALSE, OR = 20,data=data, glm.family="binomial", factor.type=TRUE)
summary(bma)
## 
## Call:
## bic.glm.data.frame(x = x, y = y, glm.family = "binomial", strict = FALSE,     OR = 20, factor.type = TRUE, data = data)
## 
## 
##   6  models were selected
##  Best  5  models (cumulative posterior probability =  0.9593 ): 
## 
##                        p!=0    EV         SD       model 1     model 2   
## Intercept              100    -14.803951  2.11590    -15.0460    -13.2882
## TONG_LYTHUYET          100.0    0.323197  0.05619      0.3173      0.3236
## C92Caregiver_spouse      4.1                                             
##                    .1          -0.020066  0.23310       .           .    
## C17Smoking_present       4.2                                             
##                   .1           -0.021348  0.22611       .           .    
## TONG_KIENTHUCCHUNG       0.0    0.000000  0.00000       .           .    
## PL_THUCHANH              4.9                                             
##            .1                   0.037602  0.27816       .           .    
## TONGmMRC                 0.0    0.000000  0.00000       .           .    
## TONGCAT                  6.7   -0.009056  0.04509       .         -0.1349
## TONGYDINH                5.6   -0.105286  0.65001       .           .    
##                                                                          
## nVar                                                     1           2   
## BIC                                                -2485.0781  -2480.2610
## post prob                                              0.746       0.067 
##                        model 3     model 4     model 5   
## Intercept                -13.2706    -15.1328    -14.7143
## TONG_LYTHUYET              0.4212      0.3127      0.3154
## C92Caregiver_spouse                                      
##                    .1       .           .           .    
## C17Smoking_present                                       
##                   .1        .           .         -0.5125
## TONG_KIENTHUCCHUNG          .           .           .    
## PL_THUCHANH                                              
##            .1               .          0.7733       .    
## TONGmMRC                    .           .           .    
## TONGCAT                     .           .           .    
## TONGYDINH                 -1.8857       .           .    
##                                                          
## nVar                         2           2           2   
## BIC                    -2479.8930  -2479.6165  -2479.3073
## post prob                  0.056       0.049       0.042
a=imageplot.bma(bma)

library("epiDisplay")
## Loading required package: MASS
## Loading required package: nnet
m1= glm(TAI2group ~ TONGYDINH, family=binomial, data=data)
logistic.display(m1)
## 
## Logistic regression predicting TAI2group 
##  
##                        OR(95%CI)                P(Wald's test) P(LR-test)
## TONGYDINH (cont. var.) 814.06 (161.34,4107.51)  < 0.001        < 0.001   
##                                                                          
## Log-likelihood = -26.1884
## No. of observations = 420
## AIC value = 56.3769
m2= glm(TAI2group ~ TONGYDINH+PL_THUCHANH, family=binomial, data=data)
logistic.display(m2)
## 
## Logistic regression predicting TAI2group 
##  
##                        crude OR(95%CI)          adj. OR(95%CI)         
## TONGYDINH (cont. var.) 814.06 (161.34,4107.51)  696.6 (137.78,3521.82) 
##                                                                        
## PL_THUCHANH: 1 vs 0    3.13 (2.06,4.75)         2.29 (0.43,12.32)      
##                                                                        
##                        P(Wald's test) P(LR-test)
## TONGYDINH (cont. var.) < 0.001        < 0.001   
##                                                 
## PL_THUCHANH: 1 vs 0    0.335          0.339     
##                                                 
## Log-likelihood = -25.7321
## No. of observations = 420
## AIC value = 57.4643
m3= glm(TAI2group ~ TONGYDINH+C17Smoking_present , family=binomial, data=data)
logistic.display(m3)
## 
## Logistic regression predicting TAI2group 
##  
##                            crude OR(95%CI)          adj. OR(95%CI)       
## TONGYDINH (cont. var.)     814.06 (161.34,4107.51)  787.34 (156,3973.79) 
##                                                                          
## C17Smoking_present: 1 vs 0 0.65 (0.44,0.98)         0.69 (0.13,3.54)     
##                                                                          
##                            P(Wald's test) P(LR-test)
## TONGYDINH (cont. var.)     < 0.001        < 0.001   
##                                                     
## C17Smoking_present: 1 vs 0 0.657          0.658     
##                                                     
## Log-likelihood = -26.0903
## No. of observations = 420
## AIC value = 58.1805
m4= glm(TAI2group ~ TONGYDINH+C92Caregiver_spouse, family=binomial, data=data)
logistic.display(m4)
## 
## Logistic regression predicting TAI2group 
##  
##                             crude OR(95%CI)          adj. OR(95%CI)          
## TONGYDINH (cont. var.)      814.06 (161.34,4107.51)  789.43 (156.41,3984.33) 
##                                                                              
## C92Caregiver_spouse: 1 vs 0 0.63 (0.41,0.97)         0.68 (0.11,4.07)        
##                                                                              
##                             P(Wald's test) P(LR-test)
## TONGYDINH (cont. var.)      < 0.001        < 0.001   
##                                                      
## C92Caregiver_spouse: 1 vs 0 0.671          0.671     
##                                                      
## Log-likelihood = -26.0981
## No. of observations = 420
## AIC value = 58.1962
m5= glm(TAI2group ~ TONGYDINH+TONGmMRC, family=binomial, data=data)
logistic.display(m5)
## 
## Logistic regression predicting TAI2group 
##  
##                        crude OR(95%CI)          adj. OR(95%CI)          
## TONGYDINH (cont. var.) 814.06 (161.34,4107.51)  800.48 (149.37,4289.97) 
##                                                                         
## TONGmMRC (cont. var.)  0.55 (0.39,0.76)         0.95 (0.25,3.68)        
##                                                                         
##                        P(Wald's test) P(LR-test)
## TONGYDINH (cont. var.) < 0.001        < 0.001   
##                                                 
## TONGmMRC (cont. var.)  0.944          0.944     
##                                                 
## Log-likelihood = -26.186
## No. of observations = 420
## AIC value = 58.3719